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1. The four Bell states have the following mathematical expressions on the basis

{|0⟩ , |1⟩} (the eigenstates of σz ),

|Φ±⟩ = 1√
2
(|00⟩ ± |11⟩),

|Ψ±⟩ = 1√
2
(|01⟩ ± |10⟩).

(1) Prove that the four Bell states can be transformed to each other using single

qubit rotations {I, σx, σy, σz} .

(2) Show that each of the four Bell states is an eigenstate of the observables

{σ1xσ2x, σ1yσ2y, σ1zσ2z} and write down the corresponding eigenvalues.

2. For the singlet state |ψ−⟩ = 1√
2
(|01⟩ − |10⟩), prove that Alice and Bob’s outcomes

are always anti-correlated when they measure two particles respectively along the

same direction.

3. Let σθ ≡ cos θσz+sin θσx. Define |+θ⟩ = cos θ
2 |0⟩+sin θ

2 |1⟩ and |−θ⟩ = − sin θ
2 |0⟩+

cos θ
2 |1⟩.

(1) Verify that |+θ⟩ is the eigenket of σθ with eigenvalue +1, and |−θ⟩ is the eigenket

of σθ with eigenvalue -1.
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(2) Ry(θ) = exp
(
−iθσy

2

)
represents the counterclockwise rotation of angle θ around

the y-axis. Verify that σθ = Ry(θ)σzRy(−θ).

(3) Using the definitions of |+θ⟩ and |−θ⟩, show that for any θ,

1√
2
(|00⟩+ |11⟩) = 1√

2
(|+θ+θ⟩+ |−θ−θ⟩).

4. Suppose |ψ⟩ is a pure state of a composite system AB. Prove that there exist

orthonormal states |iA⟩ for system A, and orthonormal states |iB⟩ for system B such

that

|ψ⟩ =
∑
i

λi|iA⟩|iB⟩,

where λi are non-negative real numbers satisfying
∑

i λ
2
i = 1 known as Schmidt

coefficients .

5. Prove that a state |ψ⟩ of a composite system AB is a product state if and only if it

has Schmidt number 1. Prove that |ψ⟩ is a product state if and only if ρA (and thus

ρB) are pure states.

6. Prove that for any state ρAB we have

Tr[ρAB(OA ⊗ IB)] = Tr[TrB[ρAB]OA]

for all observables OA.That is, the partial trace is the reduced state on subsystem A.

7. (1) Can every projective measurement (also called projector valued measurement,

PVM) be phrased as a POVM? Either prove that this is always the case or show

a counterexample.

(2) Can every POVM be phrased as a PVM on the same Hilbert space? Argue the

answer, and give an illustrative example.

8. (1) What conditions should a good entanglement measures meet?

(2) Describe the definition of distillable entanglement and entanglement cost and

their relationship.
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(3) Write down the monogamy of entanglement and describe its physical meanings.

9. PPT (Positive Partial Transposition) criterion is a strong separability criterion for

quantum states, which is very convenient and practical for entanglement detection.

(1) Describe the PPT criterion and the realignment criterion.

(2) For the 2-qubit state ρ = p |ψ−⟩ ⟨ψ−| + (1 − p) I4 , where, 0 ≤ p ≤ 1, |ψ−⟩ =

|01⟩−|10⟩√
2

, calculate the lower bound of p for ρ to be an entangled state using PPT

criterion and realignment criterion respectively.

10. (1) For the 3-qubit W state |W3⟩ = 1√
3
(|100⟩+ |010⟩+ |001⟩), if one particle is lost,

what’s the reduced density matrix of the remaining two particles?

(2) For the n-qubit W state |Wn⟩ = 1√
n
(|10 · · · 0⟩ + |01 · · · 0⟩ + · · · + |00 · · · 1⟩), if

(n−2) particles are lost, what’s the reduced density matrix of the remaining two

particles? Use the PPT criterion to find out whether the remaining two particles

are entangled or not.

11. An entanglement witness(EW) is a functional which distinguishes a specific entangled

state from separable ones.

(1) Describe the definition of the Entanglement Witness (EW).

(2) For the mixed state ρ = p I8 + (1 − p)|GHZ⟩⟨GHZ| (0 ≤ p ≤ 1), calculate

p’s upper bound when ρ is an entangled state using the entanglement witness

W = 1
2I− |GHZ⟩⟨GHZ|.

12. Consider the density matrix ρw = r|ϕ+⟩⟨ϕ+|+ 1−r
4 I4, where |ϕ+⟩ = 1√

2
(|00⟩+ |11⟩)

is Bell state and 0 ≤ r ≤ 1. Calculate the concurrence of ρw.

13. For the 2-qubit state ρ = p|Ψ−⟩⟨Ψ−| + (1− p) I4 , where 0 ≤ p ≤ 1, |Ψ−⟩ = |01⟩−|10⟩√
2

,

calculate the EOF (Entanglement of Formation) of ρ.

14. (1) Prove that 0 ≤ S(ρ) ≤ logD, where D is the number of non-zero eigenvalues of

ρ.
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(2) Prove that for any two positive definite matrices A and B we have log(A⊗B) =

log(A)⊗ I + I ⊗ log(B).

15. (1) Prove the subadditivity of the von Neumann entropy

|S(A)− S(B)| ≤ S(A,B) ≤ S(A) + S(B).

(2) Prove the concavity of the von Neumann entropy

S(
∑
i

piρi) ≥
∑
i

piS(ρi).

(3) Suppose ABC is a composite quantum system. Prove that

S(A|B,C) ≤ S(A|B).

16. (1) Calculate the von Neumann entropy of the following density matrix,

(a) ρ1 =
1
2

1 0

0 1

, (b) ρ2 =

1 0

0 0

, (c) ρ3 =
1
2

1 1

1 1

, (d) ρ4 =
1
3

2 1

1 1

.

(2) Consider the states

|ψ1⟩ =
1√
2
(|0⟩A |0⟩B + |1⟩A |1⟩B),

|ψ2⟩ =
1√
2
|0⟩ (1

2
|0⟩+

√
3

2
|1⟩) + 1√

2
|1⟩ (

√
3

2
|0⟩+ 1

2
|1⟩).

Calculate the Von Neumann entropy of ρ1A and ρ2A .

17. Suppose {Pi} is a complete set of orthogonal projectors and ρ is a density operator.

Prove that the entropy of the state ρ′ ≡
∑

i PiρPi of the system after the measure-

ment is at least as great as the orignal entropy, S(ρ′) ≥ S(ρ), with equality if and

only if ρ = ρ′.

18. Consider a composed system A⊗ B ⊗ C with a shared state ρABC , we can define a

conditional version of the mutual information between A and B as

I(A : B|C) = S(A|C) + S(B|C)− S(AB|C) = S(A|C)− S(A|BC).
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Consider the so-called cat state shared by four qubits, that is defined as |ψ⟩ =

1√
2
(|0000⟩ + |1111⟩). Calculate the mutual information between qubits A and B

changes with the knowledge of the remaining qubits, namely: I(A : B), I(A :

B|C), I(A : B|CD).


