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Description

This course is open to all graduate students and
undergraduates. The final grades are based on:

final exam (60%),
homework and attendance of the class (20%),

a report about quantum information (20%, the
subject can be arbitrary, which is preferably

related to your current research project, recent
progress or your own ideas along one specific

area on theoretical or experimental quantug;
information)
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It's a "mystery”. THE mystery. We
don’t understand it, but we can tell
you how it works.




“There’s plenty of
room at the bottom”

Quantum Turing
machine

Quantum key
distribution
BB84
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o, exchanges (bit flip)

o, exchanges and introduces the phase =z

0. introduces the phase =1 (phase flip).
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(i) pis positive: (¢|plp) > 0.,V |p) € Hg (and thus Hermitian, p' = p)

(ii) tr(p| =1

(iii) p? = p.
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No-Cloning

It is iImpossible to create identical copies of an arbitrary unknown quantum state!

N L
Wootters and Zurek, Nature 299, 802 (1982) o S
Dieks, Phys. lett. A 92, 271 (1982)
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Bennett et al., PRL 73, 3801 (1993)
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Schmidt decomposition
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“‘Entanglement is the characteristic trait of
quantum mechanics, the one that enforces its
entire departure from classical lines of thought”.

L

Quantum computation

Quantum teleportation

Dense coding
Quantum cryptography

Quantum error correction
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E. Schrodinger, Proe. Cambridge Philos. Soc. 31, 555 (1




LOCCH#:1E
“local operations and classical communication”

JaEEE/E: unitary dynamic actions, measurements, and all
other local manipulations
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A pure or mixed quantum state which is not separable is

called entangled. An entangled quantum state thus contains
non-classical correlations, which are also called quantum
correlations or EPR correlations.
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00} (00] + [11){00[ + |00} (11| + [11)(11]
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This strange property, that the joint state of a system can be
completely known, yet a subsystem be in mixed statespyis. &
another hallmark of guantum entanglement. ) \&
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superdense coding

Alice

00:7 01: 7

10:X 11:iY

Figure 2.3, The initial setup for superdense coding, with Alice and Bob each in possession of one half of an
entangled pair of qubits. Alice can use superdense coding to transmit two classical bits of information to Bob, using
only a single qubit of communication and this preshared entanglement.

100) + |11}
2 S R0 ARG 0:w) ==

100} — |11]::.

01: ) —

110} +[01)

10 @ |2f) — .
1.\‘.-".-

T 01) — |1u}.
. I. 1.!' S —




SRR e Y

N
Secret

’ Communication \

Quantum Factorization
simulations (Shor)

% _ -
- N\ ~4
Database
search (Grover)

L —

B




Decoherence

The separability problem:
one of the basic and emergent problem in present
and future quantum information processing

Is a quantum state entangled?

How entangled is it still after interacting

with a noisy environment?




Density matrix of quantum states
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Mixed states

pasz = Y 00 &




Separability criterion for
multipartite pure state

if and only if

PaB..z = Pa @ Pp - Py




A strong separability criterion
for mixed state

Positive partial transpositions(PPT)  ButCoRaa N EARESEANERE)

An example of 2x2 state:
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Horodecki et al. (PLA,1996)
2®2 2X® 3cases: PPT <
Separable

Horodeckis, Phys. Lett. A 223,1 (1996)
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Necessary and Sufficient Condition for Separability

For any positive (P) but not completely positive (CP) map,

one should have [IA R AB](QAB) = ()

for any separable states.

A(Qgy) - A(Qoarﬂ—l)
Ao - A1 1)

114 ® Apl(@ap) =

A(Qdﬂ—'lo) A(Qdﬂ—'ldﬂ—l)




Majorization?| 5

If a state is separable then the inequalities

N(p) <N(ps), A(p) <N(pp)

Holds.

Here R¥9]is a vector of eigenvalues of [ ;
and BNEY] are defined similarly.

k..

Nielsen, M. A., and J. Kempe, 2001, Phys. Rev. Lett. 86, 5184




Reduction criterion
s i
A(0)=ITr(p)-
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Cerf et al., 1999; Horodecki and Horodecki, 1999




Entanglement witness (EW)
2 Lt

Tr(We4p) =0

WO RPN &, i

DA A UGS
STTAERS, NE AU E

Terhal, B. M., 2000, Phys. Lett. A 271, 319
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Entanglement witnessf
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A Matrix Realignment Method
for Recognizing Entanglement

If Z is an mxm block matrix with block




The realignment criterion

necessary ctriterion for separability

Kai Chen, Ling-An Wu, Quantum
Information and Computation 3,

Recognizing entangled states e(2003)
1Pl > 1

Sufficient criterion for entanglement




Examples

p = X )F |+ (1 -0 0 <




Positive maps connected to entanglement witnesses (EW)
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Good entanglement measures
Xﬂ‘—éj‘/\ /ujjo

‘> No increase under LOCC

. Continuity

E(p) — E(oc) —0 for |lo—oa||—0




A=Y

Good entanglement measures

. Convexity
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Entropy of Entanglement

E([))(@]) := S(tra|v)(¥]) = S(trp|¥)(¥])

=
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S(p) = —tr|plog, p|

Avon-Neumann entropy

N K ‘v’f \4 -
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E(o)=inf D, p,E(¢), 2 .p;i=1, p;=0

Uhlmann, 1998

% = Entanglement of
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Bennett, DiVincenzo, et al. 1996

= S(tre{|¥)(¥[}) »:fd -.




Two qubitsZl 28 &=

£ X 4iZS fflconcurrence

C=v2(1-Trp?)

CEPLNR il .0, /9Schmidt % 4

Hill and Wootters 1997
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Negativity

SNEREN || X || =trvXTX

8k Logarithmic Negativity

2] & Entanglement Monotones,{H & J5 & E ' .
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— Convex roof measures
VRS2 98 S =

E(p)=inf >, p,E(y), D.pi=1, p;=0

i

[

Entanglement cannot
Increase under local operations and classical

communication.
For any LOCC operation, we have

E(A(p)) = E(p)




Entanglement Witness Monotones

Entanglement Witness g% pe SEP  tr{Wp} >0

and

dp s.t. tr{Wp} < 0.
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HE 1Y Concurrence

C(p) = min p:C( aj;
{pilw:)} Z

) = 3 i i
2(Iyp) = 2(1 . Zm) = 4> i,

I“-,j'
where . /u; (i = 1, ..., m) are the Schmidt coefficients

Theorem.—For any m ® n(m = n) mixed quantum state
p. the concurrence C(p) satisfies

(max(l[p" I, IR (p)Il) — 1).

m(m — l)




Shannon entropy

Operationally as the minimum number of bits needed to
communicate a message produced by a classical
Statistical source associated to a random variable X.

The Shannon entropy of X quantifies how much
mformation we gain, on average, when we learn the

value of X.

COalhe entropy of X measures the amount of uncentainty
about X before we learn its value. AW




Shannon entropy
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%€ X binary entropy

Hyin(p) = —plogp — (1 — p)log(l — p)

concavity
H(gpu + (1 — q)pa) = qH(pu) + (1 — q)H(pa)
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Joint entropy

Conditional entropy

H(X|Y)= H(X,Y)— H(Y)
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Mutual information

H(X:Y)= HX)+ HY) - HX.Y)

Useful equality
H(X:Y)=H(X)— HX|Y)§
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Von Neumann entropy

Relative entropy

S(pllo) = tr(plog p) — tr(p log o)
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Von Neumann entropyFI3ll;
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The system after the measurement is at least as great as the
original entropy

S(p") = S(p)

with equality if and only if p = p.




Entanglement distillation
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Entangled
source

purified
entanglement
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Noisy channel




Entanglement distillation

A certain number of maximally entangled EPR pairs is

manipulated by local operations and classical communication

and converted into pairs in some state. The asymptotic
conversion rate is known as the

FORMATION

DISTILLATION

Vlatko Vedral, Introduction
to Quantum Information

Science, Oxford University

Maximally Non Maximally Press, 2006
Entangled Pairs Entangled Pairs

maximally entangled states is known as the ﬁ\*’ f
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One-way hashing distillation protocol

Bell diagonal states B;;,, are naturally parametrized
by the probability distribution of mixing p.

ED(deiag) =1 - H({p})

The n copies of the two-qubit Bell diagonal state Bdiag
can be viewed as a classical mixture of strings of n Bell
states. Typically, there are only about 2nH(r}) such strings
that are likely to occur (Cover and Thomas, 1991).
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Two-way recurrence distillation protocol

Two-step procedure:

In the first step Alice and Bob take two pairs, and apply
locally a controlled NOT gate. Then they measure the
target pair in a bit basis. If the outcomes are different
they discard the source pair failure, otherwise they

keep it.

In the latter case, a second step can be applied: they
twirl the source pair to the Werner state.

F2 4 -35(1 _ F)? F="1r P| ¢+>(¢+‘

ol P ]f only F>1/2, the above
, 2 5 R recursive map converges’Soz. ¢ 48

Fo+ S F(L=F) + 6(1 - F)° to 1 for a sufficiently Iargefﬁ%c%l'r: :

3 _ : o |
number of copies. %0
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Jian-Wei Pan et a/. Nature 423, 417 (2003-5 ,</_<
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Bell N5 3

[E(A.By) + E(A1.B,) + E(A3.By) — E(Ay.By)| <2

E(A4;,B;) is the expectation value of the correlation
experimentAl.,Bj.

I Tr(Bensup)| < 2

Bepysu=A, @ (B +B,) + A, ® (B, - B,)

A,=a,; 0, A,=a, o (similarly for B, and B,)

Quantum formalism predicts the Cirel son inequality
(Cirel’son, 1980) Do

|<B('HSH>QM| = [Tr(Beysup)| < 2V2




Bell N5 3

[. Each measurement reveals an objective physical property of
the system. This means that the particle had some value of
this property before the measurement was made, just as in
classical physics. This value may be unknown to us (just as it
IS in Statistical mechanics), but it is certainly there.

2. A measurement made by Alice has no effect on a
measurement made by Bob and vice versa. This comes from
the theory of relativity, which requires that any signal has to
propagate at the (finite) speed of light.
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Mixed states may not violate Bell’s inequalities

The Werner states are defined as mixtures of Bell states,
where the degree of mixing is determined by a
parameter F (which really stands for “fidelity”):

WO | + (@) (DF] + | D) (D)

where 0 < F < 1. When F = 1/2, we can write it as

1. N y
§(|x11‘,>{\11 |+|\D+,>a._\11+|)+§(|\1! WP~ | 4 | D)

L, g
E(_|\If HET |+ [27)(P7))
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Mixed states may not violate Bell’s inequalities

The Werner states for F=1/2 is separable.

An equal mixture of any two maximally entangled states
IS a separable state.

(\1/‘) |(I)+}((I)+‘+|(I) ((I) |

IS equivalent to

(1/2)(]00) (00| + |11) (11])

The Werner states are entangled for F > 1%,
The Werner states violates Bell’s inequalities when F > 0. 78




Bell A~ 55 2056 two-qubit

An 2-qubit state can be written as

Q=%(1®I+r'0®1+1®3'0+ anma'n®a'm

n,m=1

o (b+b) - o+a-0x(h-b)- o

| (BCHSH}01 <2

One has

24/M( @) = (Bmax}o = glcﬁ |{Bcnsi) ol

M(e): = max(ITA" + |T81) = u+1

Here u and ui are the two largest eigenvalues of T',T ,

1
A
-

e

Horodecki, R.; Horodecki, P.; Horodecki, M. ‘\ A
Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient conditiog;
Physics Letters A, Volume 200, Issue 5, May 1995, Pages 340-344 '
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Bell’s theorem without inequalities
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Bell test

Correlation functions

For a maximally entangled state

With appropriate angles




Bell test

One verifies that the CHSH inequality is violated! T ‘

A v\\’;\




Bohr-Einstein debates

Einstein: . ,ﬁ% @: |
I can't believe God plays ., |
dice with the universe.

Bohr:
~ Albert, stop telling God
- what to do.
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What is QKD?

IS simultaneous
generation of identical bit sequences Iin
two distinct locations with quantum
physical methods

Quantum technology guarantees

QKD enables the implementation of a
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Quantum key distribution

A protocol that enables Alice and Bob to set up a
secure secret key, provided that they have:

A , where Eve can read and
modify messages
An , Where

Eve can read messages, but cannot tamper
with them (the authenticated classical channel
can be simulated by Alice and Bob having a
very short classical secret key)
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The BB84 QKD protocol

: Alice chooses (4 + 0)n random data bits.
. Alice chooses a random (4 + 0)n-bit string b. She encodes each data bit as

{10),[1)} if the corresponding bit of b is 0 or {|+),|—)} if b is 1.

: Alice sends the resulting state to Bob.

Bob receives the (4 + 0)n qubits, announces this fact, and measures each
qubit in the X or Z basis at random.

. Alice announces b.
: Alice and Bob discard any bits where Bob measured a different basis than

Alice prepared. With high probability, there are at least 2n bits left (if not,
abort the protocol). They keep 2n bits.

: Alice selects a subset of n bits that will to serve as a check on Eve’s

interference, and tells Bob which bits she selected.

: Alice and Bob announce and compare the values of the n check bits. If

more than an acceptable number disagree, they abort the protocol.

: Alice and Bob perform information reconciliation and privacy amplifica-

tion on the remaining n bits to obtain m shared key bits.




ETHENE

100101000

001001110
019141100
"

o), =%(|<+>] o)), 10),)

1

%9 == (N DD 0),)
 BTREURMEE
: EF A HE —
—R—E, FEWH




Distillation procedure of secure keys




NIST QKD Protocol Stack
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Correspondence between EDP and
BB84 (Gottesman-Lo’s proof)

||




Quantum Distribution of Keys




GLLP Formula for key generation rate

Error correction Privacy amplification

To prove security, one needs to lower bound Q, and
upper bound e;.




Combining Decoy with GLLP

.+ With the knowledge of yields {Y}, Alice can
choose a much higher average photon

number1=0(1) .
'+ Key generation rate R=0(IN)

> v’f \4 s
M : transmittance ~ 103 ,;%qif;g :

| o




QKD Protocols

—Unmatched Bases; “stray” or
“lost” qubits

— Noise & Eaves-
dropping detected — Uses “cascade”
protocol — Reveals information to Eve
SO need to track this.

— reduces Eve’s
knowledge obtained by previous EC

— Continuous to avoid
man-in-middle attacks — not required

to initiate using shared keys R ~ P
S jﬁ;lj *_ﬁ- Al ,{_—;‘i %‘L o | ; ;




BOUNDS ON THE BIT ERROR RATE
FOR BB84 AND THE SIX-STATE SCHEME

TABLE 1
BOUNDS ON THE BIT ERROR RATE FOR BB34 AND THE SIX-STATE SCHEME
USING ONE-WAY AND TWO-WAY CLASSICAL POST-PROCESSING. |HE L OWER
BOUNDS FOR TWO-WAY POST-PROCESSING. 13.9% FOR BB34 AND 20 4% FOR
THE SIX-STATE SCHEME. COME FROM THE CURRENT WORK

BB84

one-way two-way

Upperbound  14.6% 1/4
Lowerbound 11.0% 18.9%

Six-state Scheme

one-way two-way
Upper bound 1/6 1/3
Lowerbound 12.7% 26.4%
Daniel Gottesman and Hoi-Kwong Lo, Proof of Security of Quantum Key Distribii QQ’
With Two-Way Classical Communications, IEEE TRANSACTIONS ON INFORMAZF o
THEORY, VOL. 49, 457-475 (2003) 2%
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Decoy-state quantum key distribution with
both source errors and statistical fluctuations

Xiang-Bin Wang, C.-Z. Peng, J. Zhang, L. Yang, Jian-Wei Pan
General theory of decoy-state quantum cryptography with source errors
Phys. Rev. A 77, 042311 (2008)

Xiang-Bin Wang, Lin Yang, Cheng-Zhi Peng, Jian-Wei Pan, Decoy-state
quantum key distribution with both source errors and statistical
fluctuations, New. J. Phys., 11, 075006 (2009)
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QUANTUM TELEPORTATION

Teleportation of unknown quantum state
encompasses the complete transfer of
iInformation from one particle to another

Unknown quantum state EPR source

Total state




QUANTUM TELEPORTATION

The joint state of three particles

can be rephrased as follows:

Therefore Bell measurements on the first two particles would project the state of Bob's
particle into a variant of |y,) of the state |y)= «|0)+ B|1), where

ly,> = either |y> or o,|y> or o,|ly> or o.0,|y>

The unknown state |y) can therefore be obtained from |y,) by applying one of the four
operations

5. 0., G,
and the result of the Bell measurement provides two bits specifying which
of the above four operations should be applied.

\ -
%;f’fu /
i f e -

Alice can send to Bob these two bits of classical information using a classical g_'f i 4
(by phone, email for example). e




Entanglement Swapping: Entangling

Photons That Never Interacted

\ Bell State

easurement

1 2

EPR-source 1 @ EPR-source II

FIG. 1. Prnciple of entanglement swapping. Two EPR
sources produce two pairs of entangled photons, pair 1-2
and pair 3-4. One photon from each pair (photons 2 and
3) 1s subjected to a Bell-state measurement. This results in
projecting the other two outgoing photons 1 and 4 onto an
entangled state. Change of the shading of the lines indicates
the change in the set of possible predictions that can be made.

Jian-Wei Pan et al., Phys. Rev. Lett. 80, 3891-3894 (1998)




Bell Measurement

o680

Beam Splitter

A,

UV-pulse

Polarizing
Beam Splitter

A2

EPR-source
4 1&TI

&

FIG. 2. Experimental setup. A UV pulse passing through a
nonlinear crystal creates pair 1-2 of entangled photons. Photon
2 iz directed to the beam splitter. After reflection. during its
second passage through the crystal the UV pulse creates a
second pair 3-4 of entangled photons. Photon 3 will also be
directed to the beam splitter. When photons 2 and 3 vield a
coincidence click at the two detectors behind the beam splitter.
they are projected into the |W ™~ ),; state. As a consequence
of thiz Bell-state measurement the two remaining photons 1
and 4 will also be projected into an entangled state. To
analyze their entanglement we look at coincidences between
detectors D]* and D,. and between detectors D; and D,, for
different polarization angles & . By rotating the A/2 plate in
front of the two-channel polarizer we can analyze photon 1
in any linear polarization basis. Note that. since the detection
of coincidences between detectors D, and D,. and D; and
D, are conditioned on the detection of the ¥~ state, we are
looking at fourfold coincidences. Narrow bandwidth filters (F)
are positioned in front of each detector.

=]
n
I

L
=

-
h
i

four-fold coincidences per 4000 sec.

Visibility 0.65
0 45 90 135 180
O (degrees)

FIG. 3. Entanglement verification. Fouwrfold coincidences,
resulting from twofold coincidence DI'D4 and D1 D4
conditioned on the twofold coincidences of the Bell-state
measurement, when varying the polarizer angle ®. The two
complementary sine curves with a wvisibility of 0.65 * 0.02
demonstrate that photons 1 and 4 are polarization entangled.
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el

Bell State
easurement

EPR-source I |l EPR-source II

FIG. 1. Prnciple of entanglement swapping. Two EPR
sources produce two pairs of entangled photons, pair 1-2
and pair 3-4. Omne photon from each pair (photons 2 and
3) is subjected to a Bell-state measurement. This results in
projecting the other two outgoing photons 1 and 4 onto an
entangled state. Change of the shading of the lines indicates
the change in the set of possible predictions that can be made.
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Nicolas Gisin et al., Quantum cryptography
Rev. Mod. Phys. 74, 145-195 (2002).

Vo Scarani et al., The security of practical qguantum key

distribution
Rev. Mod. Phys. 81, 1301-1350 (2009).

Deoy QKD

WESYCHwang, Phys. Rev. Lett. 91, 067901 (2003),
KB Wang, Phys. Rev. Lett. 94, 230503 (20095).
KR0S X =F. Wla, and K. Chen, Phys. Rev. Lett. 94, 230504
(2005);
XEERIVE; B. Qi, Y. Zhao and H.-K. Lo, Practical decoy SHRe TG4
gEantumekey distribution. Phys. Rev. A, 72,012326 (200 zz
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Quantum error correction  Singlebitflip
correction circuit
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Coherent version
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10 10>4B |[1> = a |0>—B |1> G ERFE)
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Bit Flip X:
Phase Flip Z:

Complete dephasing:

Depolarizing channel :

Rotation:

(decoherence)




Correcting All Single-Qubit Errors

If @ quantum error-correcting code (QECC) corrects errors A and B, it
also corrects oA + BB.

B OX + 7Y + 82

Any QECC that corrects the single-qubit errors X, Y, and Z (plus I) corrects every
single-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus I) corrects all t-qubit errors,.:%}
N a7

&7 “ .
%“"’
o A
7 ? 4 a
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. e :
From Gbfttesiman
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Discretization of the errors
Any QECC that corrects the single-qubit errors X,
Y, and Z (plus |) corrects every single-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus I)
corrects all t-qubit errors.

This Is a fundamental and deep fact about quantum
error-correction, that by correcting just a discrete set
of errors — the bit flip, phase flip, and combined bit—
phase flip, in this example — a quantum error-
correcting code Is able to automatically correct an
apparently much larger (continuous!) class of &’92{

=



[[n,K]] quantum error correcting code

1%
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21 2 Y

We encode a k bits codeword x, into an
bits codeword c using a [n by K]
generator matrix G as follows:

Error correction for linear codes is done

using a [(n-k) by n] parity matrix. g

‘?'.f\’!
4&\*’ .
L




Parity Check i1 %

Parity check matrix H is such that:
Hc=0and HG=0

The receiver gets the codeword r, which
Incorporates an error e:

= C + ¢
Then, the syndrome s is given by:
s=Hr=He




Error Correction & Recovery

Once we detect the syndrome s, we can
find the error that occurred e.

Now we can correct the error as:
C=r-—e

And finally one can recover the original

message
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Quantum Error Correction Codes are
characterized by the triplet [n,k,d], where:
n is the length of the resulting codeword.

K Is the number of qubits to be encoded.

i

!

d is the minimum distance.
Data redundancy implies n>k

A code with minimal distance d=2t+1 is

able to correct errors on up to t bits. P"”"‘f'i@

<~ ,</_< .
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[[n,K]] quantum error correcting code
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After encoding the code is subjected to noise, following which a
syndrome measurement is performed to diagnose the type of
error which occurred, that is, the error syndrome. Once this has
been determined, a recovery operation is performed, to return
the quantum system to the original state of the code. The basic
picture is illustrated in Figure 10.5: different error syndromes
correspond to undeformed and orthogonal subspaces of the total
Hilbert space. The subspaces must be orthogonal, otherwise they
couldn t be reliably distinguished by the syndrome measurement.
Furthermore, the different subspaces must be undeformed
versions of the original code space, in the sense that the errors
mapping to the different subspaces must take the (orthogonal)
codewords to orthogonal states, in order to be able to reco% -

from the error. };ﬁ* ‘
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We have learned about the error without learning about
the data, so quantum superpositions are still alive! < # &=




The Pauli Group

For a single quantum bit

Gy =4, Ll , X, i X Y, LY, £ 7, +i7 )

that G, Is closed under multiplication, and thus forms a legitimate
group.

Any pair M, N of Pauli operators either commutes (MN = NM) or
anticommutes (MN = -NM).




Stabilizer

vector space stabilized




Properties of a Stabilizer

The stabilizer is a group:

The stabilizer is Abelian:




Stabilizer 15l

The EPR state of two qubits

.\ _ [00) +]11)
¥) = /2

Z15|0) = )

stabilized




Stabilizer 15l




Stabilizer 15l

first two bits have even parity

correctly-
encoded state 000 or 111

odd parity
for the first two bits.

a codeword is a
+1 eigenvector of Z&®ZXI
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Measuring Z&®Z detects bit flip (X) errors, and
measuring X&®X detects phase (Z) errors.




Error Correction Conditions

Theorem: Let S be the stabilizer of the
stabilizer code C(S). Suppose {E} is a set of
operators in Gn such that:

for all | and k. Then, {E;} is a correctable set
of errors for the code C(S).

The normalizer of S, denoted N(S), which is defined to\éx?g;i =

of all elements E of G, such that EgEt & Sforallg € S. f*;? =




Error Detection

Suppose g,,...,9,., IS the set of generators for the
stabilizer of an [n,k] stabilizer code, and that {E}
IS the set of correctable errors for the code.

Error detection is performed by measuring the
generators of the stabilizer in turn, to obtain the
error syndrome, which consists of the results of
the measurements f3,,...,B, -

If the error E occurred then the error syndrome is
given by B, such that:




Recovery (1)

In the case where E is the unique error
operator having this syndrome, recovery

is done by applying E'.

In the case where there there are two
distinct errors E and E’ giving rise to the
same error syndrome, it follows that:
EPE'= E'PE"™ and then E'E'PE'E =P
and therefore E'E’ is part of S.

4} ..."_:: )

‘_é




Recovery (2)

Thus applying E' after the error E’ has
occurred results in a successful recovery.

Thus, for each possible error syndrome we
simply pick out a single error £ with that
syndrome, and apply E' to achieve
recovery when that syndrome is observed.

:k’\ i
‘?'.f \” ¥
4&:" :
.




The three qubit bit flip code

Consider the familiar three qubit bit flip code spanned by the states |000) and [111), with
stabilizer generated by 2,7, and Z,73. By inspection we see that every possible product
of two elements from the error set {1, X;, X5, X3} — I, X;, Xo, X5, X1Xo, X7 X5, X5 X5

— anti-commutes with at least one of the generators of the stabilizer (except for I, which
is in S), and thus by Theorem 10.8 the set {I, X, X,, X3} forms a correctable set of
errors for the three qubit bit flip code with stabilizer (Z,2,, Z,73).

Error-detection and correction

Error type Action

no error no action

bit 3 flipped | flip bit 3
bit 1 flipped | tlip bit 1
bit 2 flipped | flip bit 2




The three qubit bit flip code




The nine qubit Shor code

Operator

ZZTT1TTI111
tLLL EEL T 1
111221111
111122111
111111271
1111111727

LLLLLLLZZ

(/000) + [111))(|000) + |111))(|000) + [111))

10
0) — [07) 72
by (000~ [1T000) 111 000) — [111) P




The nine qubit Shor code

Operator

ZZTT1TTI111
tLLL EEL T 1
111221111
111122111
111111271
1111111727

BN WA

stabilizer




More about Stabilizer

The stabilizer is a group:

The stabilizer is Abelian:

T(S) = { hy) s.t. M ly) = hy)
vV M € S}. Then T(S) encodes k logical qubits in
n physical qubits when S has n-k generators (so

size 2"K).




Stabilizer Elements Detect Errors

E lw) has eigenvalue -1 for M

E ly) has eigenvalue +1 for all M in the stabilizer.

The eigenvalue of an operator M from the stabilizer d\é"%% 4
errors which anticommute with M. :

From Goftesmén '




Error Syndromes and Stabilizers

error syndrome is the list of eigenvalues of
the generators of S

’ - s’
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Stabilizer Codes Summary

stabilizer

{hyyst.Mly) = ly) VM e S}

K = n-r encoded qubits
BlE = N(S)\S

distance d minimum weight of N(S) %S,
) \Z
g

! a - -
From Gbfttesiman




Summary: Stabilizer Codes




Summary of QECCs

Quantum error-correcting codes exist which can
correct very general types of errors on quantum
systems.

A systematic theory of QECCs allows us to build
many interesting quantum codes.

Quantum error correction can be formalized in terms
of quantum states and projectors, stabilizer
subspaces or the stabilizer group.

All these formalizations are equivalent.

The theory of quantum error correction is quite
elegant and simple.

C' The implementation is really a nontrivial task. * !4‘%




DiVincenzo’s Criteria

DiVincenzo, Fortschr. Phys. 48, 771 (2000)




Qubitology. States

1) = c0s(0/2)|0) + e'?sin(6/2)|1) = |n)

T =10 Direction of spin
(1 —11))/v2

(D) —ill))/v2
(D) +:[1)/v2

D+ [1)/v?2

From Caves
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2 representation




Qubitology. Gates and quantum circuits
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Qubitology. Gates and quantum circuits

130"

130"
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Qubitology. Gates and quantum circuits

-
7
e

130"

(C-NOT)’ =1 N\

>

FromGaves <z




Qubitology. Gates and quantum circuits
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Qubitology. Gates and quantum circuits
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g S A
> >

> -

From€aves—<.




Qubitology. Gates and quantum circuits
C-NOT as parity check

a]00) + B[11)

From Caves




Qubitology. Gates and quantum circuits

Making Bell states using C-NOT

—(]00) +]11)) 1

1
5000) —[11))

1

E(IOD +110))
1

—501) —[10})

(10) +[1))[0)

AN
\Ll/
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L([0) + (—1)°[1))[0) N
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Qubitology. Gates and quantum circuits

Making cat states using C-NOT

GHZ (cat) state

L (/000) + |111))

L(10) + [1))[00}

FromGaves <z
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Decomposing single qubit operations

Arbitrary 2 X2 unitary matrix may be
decomposed as

where a, B, Y, and 0 are real-valued.




Swap gate

-

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful

circuit.

a,a P b)
a® (adb),adb)=|baodb)
b, (a @ b) @ b) = [b,a),




Control-U gate

Figure 1.8. Controlled-U gate.

D X

Figure 1.9. Two different representations for the controlled-NOT.




Circuit for measurement

)

Figure 1.10. Quantum circuit symbol for measurement.

This operation converts a single qubit state

/> = gf0> + /1> into a probabilistic classical bit
M (distinguished from a qubit by drawing it as a
double-line wire), which is 0 with probability /a/,

or 1 with probability /5/. *»/




Out
(100) +|11))/v2 = | Bwo)

(|01) + |10))/v/2 = |Bor)
(100) — Bo) ‘/8.1’:’9)

( 01) — ,.i911>




Quantum teleportation

N
o

i

.

— )

1 i 1 )
|%0) 1) |Ua)  |13)

\
|4)

Figure 1.13. Quantum circuit for teleporting a qubit. The two top lines represent Alice’s system, while the bottom

line 1s Bob’s system. The meters represent measurement, and the double lines coming out of them carry classical

bits (recall that single lines denote qubits).

the Bell states
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Quantum computation and quantum information by M.A.
Nielsen and |I.L. Chuang, Cambridge University Press,

2010
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