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® Quantum computation and quantum information by M.A.
Nielsen and I.L. Chuang, Cambridge University Press,
2010
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Description

This course is open to all graduate students and
undergraduates. The final grades are based on:

@ final exam (60%),
® homework and attendance of the class (20%),

@ a report about quantum information (20%, the
subject can be arbitrary, which is preferably
related to your current research project, recent
progress or your own ideas along one specific
area on theoretical or experimental quantum
information)
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It's a "'mystery”. THE mystery. We
don’t understand it, but we can tell
you how it works. (Feynman)
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“There’s plenty of
room at the bottom”

(Paul Benioff)

(C. Bennet (G. Brassard) ‘(David Deutsch)
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m (7] L = R Gt

5FLHE 2 1E4BTES. A FHHibert= AR THET RS

ZHilbertz= [ i —HIE X IA—EA MUFRRA [0), [1)

& FRERET (LAER. TAELR)

& SEFRUL OKFERML. BERKL)

& RFEH (AEH. BHFD)

¢ HrHE (BicmLE. BieaT)

& BN FENFMBTSUNTENRRE (BRI, BEZ2)

EFEN BFHATURLELIESMS )

1) = «|0) + 5|1, ’@’2 n ’6’2 .
A R B
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BT HORR I R A

& — BB TRRS: [0) & |1)
& TRZ LR, BT BT UL T (E RO T2

) =a|0)+ A1)

® —/NEHURF R PLRAE DY 2 4EHilbert 2% [ ) B4 2R &
@ ‘0) & ‘1> 1 orthonormal computational basis

lin

® &1 IR AT BERIRAS T LRI Y
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) =e”(cosa|0>+e¢ sm5|1>)

#r1EBloch Spherezk 7
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o =o;', Tr(c,)=0, O',j =0,, k=x,y,z
o.=0,=0.=ld o0,0,+0,0,=25_1d

[Gx’GyL— :[Gy’GZ]Jr :[Gz9o-x]+ = O

0,0,—0,0;, = 2151.J.k0'k
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Pauli%

Tr(o,0,)=20,

M TAE B2 & M

A=t
2

0
Cr;ET — (1
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3
Tr(A) Id + %Z Tr(Ac,)o,
k=1

1
0
Tf) = —i(|0)(1] - [1){0])

°) = o -mwal

) = 10)(1] 4+ [1)(0]



Paulifh &

fERfE= TR b

o.10) = 1) o, exchanges (bit flip)
oz|1) = |0)

oy|0) = 2|1) o, exchanges and introduces the phase £
0,|0) = +10) o, introduces the phase +1 (phase flip).
o,|1) = —|1).
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2 A % (Density Matrices)
4)=a|0)+ 1)
EEE a=(0|¢) LK B=(1]¢).
R et T 5125 0) A0 ) E 2
p(0) =|af” =[(0]¢)f
= (0[g)((0]¢)) = (0[#)(g]0)
= (0] ¢)(#[0) =7+ ((0] 6)(¢|0))

=77((0)(0[#)(¢])=Tr(0)(0]~)
K HLE Sp =[p)0] AR A5 19) KO

5 5 R B (density matrix)

Ly
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# BERE M (Density Matrices)

(i) pis positive: (@|ple) = 0.7 |¢) € Hqg (and thus Hermitian, p' = p)

(ii) trip| =1

(iii) p2 = p.

(iii*) tr[p?] = 1
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{(|¢1 2)(8).p,)s 0 )
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HNOHJLE A

p(0) =Y p-(ERTE
:sz' -TI’(IO)(O ¢z><¢l )
=T1r. p|0)X0]¢,){¢

=T7r(0)0|p)=1r(P,p)
TR 7% T A 25 P 4
p=2.pl|o )4
s R 2y 1 e T UL TS (R A PR R B
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oy

4 - N\
0)]) = [0}]0) _ S5O+ 1) = (010 + D)
\|1>|>:z|1>|1> - [%wmm] [\%<|o>+|1>>]

It is impossible to create identical copies of an arbitrary unknown quantum state!

Wootters and Zurek, Nature 299, 802 (1982)
Dieks, Phys. lett. A 92, 271 (1982)
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Ekert, PRL 67, 661 (1991)

Alice 010111 100 —

j% cve s F 4
‘@‘ ~ 4¥e4a
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Bennett & Brassard (1984)
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=R 7,
=T FRIPAL &S
S | @)y = al <)+ 3 )
gENt [P,
W)ios = [@F) @ (a] )3+ 8| [)s) +

P )2 @ (a] <)a =8| [)3) +
‘I’+>12 2 (a ])3 + J-’| “)3) +
V)2 @ (af [)s — 8| «)s)
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0 1 0+1
00, 01, 10 5% 11
000, 001, 010......

Shor& %

N HEPE /N = log N

N FIRZETHZITE S
300fRIKHE, 10235,
1500004,

K FAShor&EATHZITHEAL,
QE10104, 175!

N RSAEAFBZE!
R ERVERAR A TR

P.W. Shor

=N D Vaxas JL‘EA s =
=1 E S F18E

EFHITHESE T EN A LIS

ETFLEYs ININHRITHFEE, HWRBEIETE

M HHEE S oV ORERIE.

00+01+10+ 11 2N
000 + 001 +010 +......

i—1

Groverf¥ S &%
K iR
HE|—RET?

. R g3 NP
N BTHF NS
y N AJIRIEDESER .

270NN P T A

10004F — 444

L. K. Grover



Schmidt decomposition
(E R Wil s

ﬁf:_t‘:_‘éﬂ]—_zﬁ—é‘j§|“1>! |M2>, . |Mn> u&|([>1>, |(P2>, =y |(Pn>
13

)= /p.

1,)®|p,)

01, [92), s [@)N Try| DY D| HIATERS

72% .
R A A YL %%QCQl §2.5, M.A. Nielsen and I.L. Chuang



%/x%j f%g

1 0
S
]

1=0)0]+| 1)1

o, = 0)(0] — | 1X(1]

1 0} 1
0X01={y o]-50+2)

0 O
|1><1|=[0 1]—%(1 o3)
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p(L)=4p, +(1-=1)p,

A

(1) pis positive: (¢|ple) = 0,7 |¢) € H, (and thus Hermitian
(i) trip] =1

&

P = Z ripl

(=1

oA — A5 R R
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Tracet/E M i

FERERS f8 TG RAD

Iria, a, a,|=ay,+a,+a,

4 v
3

i Ir :xA+yB]: xTr[A]+ yTr[B]
Tr|AB|= Tr|BA]

Tr[ABC] = Tr[CAB]
Trlvaut|=1v]4]

Trla]=3% (o, l4le)  ExsRHF

I
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Tracet:AE
Tr(lw o)) = (olw)
A ESER
PPy = 2{-}-(}71' ‘iA>®<iA D(q ] ‘jﬁ?) ®<jB D

Trﬂ(pﬁ ®pB) = 4 ®Tr(p3)
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Tracet:{E
Y EAETE tr|e) (o] = (¥|9)
Yap) = 2_;ailia)|iB)
0ap = [aB)(bap| = Y _ailia)lis) ) aj(jal(jsl

1 M

HATFE]
tpoan = Y aicjlia)(al(isllin)

2,J
— Z le?'_CEj 14)(740i;
2,]

— Z i |*lia)(ial .

CHETRI SRR A YL 2



Tracei‘;‘cl'% VE

—MIF 13T = —=(|0405) + [14lp))

7
S ANGED

Ir, (| N > <(1)+ ‘) =11y [% (| 0.403> & |1A13 >)(<OAOB | T <1-413 D]

1
=5(|0A><0A|®Tr(|03><08 D+|1A><0.4|®Tr(’13><03 ’)+|0_4><1A|®Tr(’03><13 ‘)+|1A><1A|®Tr(|13><13 D)

|
=5(|0A><0A | +|1A><1A |)

BEF&4iitPurification

0= pili)(i = 2.iV/Pilia) ®|ip)
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=&
| §)= Za|ﬁ>2|a|—

wER (L ETNE

JLRIE a = <)81' | ¢>
JLE a
B ANE mXMFESENS

V) = al0) + 81), |al? + 6] =1
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Von Neumannill| &=

Von Neumannill & & # a2l 1) —Fh 28y, 5%
L IEA {|wk>} U SRA T T TS

D)= |w,) ka} SRS RS |we)  f
Von Neumannilll &, W&

af =[v.|o) = .| o)D)
=Tr((w @) @y)=Tr(p, v | @)(@))
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Von Neumannill| &=

Blan=s X T =T A | @) =(al0)+ A]1))
SEHEARXT F2ER (j0)+ 1) [0)-1)) HIVon Neumann
M &= { NCEREND }
FERE (g a+ﬁ[\0> \1] a- [ —M]
J2

J2

A FATTA 15 (M 2‘1] ) TN \a+ﬁ\
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Von Neumannil| &
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(EERN(EED)
)

=1r

PEREFERAKE B




552 = (Projective measurements)
AR S MAEAE — 15 70
M = Z meE,,

Sy L__l T
W AE

P’m P n — P?'n 5772,.;72, Z-m Pm =/

AFERmETILRN  pom) = tr (Pro)

N
TT

RGBTy Lmim
p(m)
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552 = (Projective measurements)
AR MAEAE — 8 7 i

0 1 0 —i I 0
1701 0) 7 0,7 o -

&, = 01| +|1)(0)
=i | 0)(1|+i[ 1)(0)]

o, = 00| —| 11|
B — et e SR

V-0 =001+ 1,0, + 1303

FONEBEIRE U S R

AN
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‘Entanglement is the characteristic trait of
quantum mechanics, the one that enforces its
entire departure from classical lines of thought”.

Quantum computation

Quantum teleportation

Dense coding

Quantum cryptography

Quantum error correction

chERISRA A [ E. Schrodinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)



gl
;H
NS
h
=

AEB A B
P 7 P P
EIREE
;OAB — Zprﬂf -'(-}f . pr>0 Zpr =1
r=1 r
LOCCH:fE

“local operations and classical communication”

R #E/E: unitary dynamic actions, measurements, and all
other local manipulations

£ BLIR{F: exchange information via classical communication
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0 00) + [11)
W) = '

e |
! ¥

w... 5

A pure or mixed quantum state which is not separable is

called entangled. An entangled quantum state thus contains
non-classical correlations, which are also called quantum
correlations or EPR correlations.
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Pure state: Tensor Product

g %?\ ()
a o \ _ | apl c1
(@1)®(ﬁ1)_ a1 o ) <\/7 C2

wfl ) o \e )

Separable Entangled
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T2
)= (|UU} J:_|11:::) (:::0[1| T_:::11|)

.‘}

s’

Pl = try(p)
~trp(|00) (00]) + tra(|11)(00]) + trp(|00) (11]) + trp(|11)(11])
g
~|0)(0]{0]0) + |1)(0[(0[1) + |0} (1|(1|0) + [1)(1](1]1)
B 2

_ 100+ )]
- 2

o |~

This strange property, that the joint state of a system can be
completely known, yet a subsystem be in mixed states, is
another hallmark of quantum entanglement.
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Two or more systems: ‘_ _______ _.

astate |W) of the system can be in: 00),

01),

10),

11),

or:  ¢|00)+ B|01)+y|10)+5]11)

where ‘OO) — ‘O) X ‘0>

The system is entangled if

W) # |W)4 @ |W)p

Example: Bohm state ‘LIJ_> _ 1/\/5 (‘ ()1> _‘10>)

i.e. EPR (Einstein, Podolsky and Rosen) pair
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B T4 SR

superdense coding

00)+|11)
Alice 2
00:7 01:21 1qubit 1qubit > BOb
10:X 11:iY

Nl
e

i S
Il

Figure 2.3. The inital setup for superdense coding, with Alice and Bob each in possession of one half of an
entangled pair of qubits. Alice can use superdense coding to transmit two classical bits of information to Bob, using
only a single qubit of communication and this preshared entanglement.

ﬂ[] * I,'!-,I |{:":}::. + | 1 1:}
| |tll. L \“E

110} + |01

e
V2

o1 — [10)
11 : |1__-':_:: — —
FERZFRAKRE FRal V2




Quantum Factorization
simulations (Shor)
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Decoherence

environment

The separability problem:
one of the basic and emergent problem in present
and future quantum information processing

Is a quantum state entangled? <
How entangled is it still after interacting

with a noisy environment?



Density matrix of quantum states

A number of states|1);)  with respective probabiliticD);

define: 0= Z Di Wh) <7w/}z‘

wﬁecraell { Di, W)Z)} an ensemble of pure states,
p=0trp=1,p=p

Pure states: [)2 — p = ‘Q/Jz><1/)z‘
Mixed states: [)2 # [)
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Separability

entangled?

Pure states

Product states(separable):
‘LPAB> = ‘l//A>‘ WB>

density matrix Pis=Pi® Py p,=|v) (W

05 =|W), (V]

Examples:
Product state: W) =|00)

Entangled state:  |¥)=c,|00)+c[11) c¢g,cq # 0

PEMFERAKE PRl



Mixed states

Problem: there are infinite — Z ' ‘
possible decomposition, P 15 . q:P 45
l

does there exist decomposition

nEREiKeSqEmula © -




Separability criterion for
multipartite pure state

_if and only if
PAB..z = Pa @ P& &K Py
where

pa=T1rpc.. 2(Pap..z):
pp =1Trac.. z(pap.z)

Pz = TTA,B,M -,.Y()OAB~~Z):

EF'ﬂ?T_% e



A strong separability criterion
for mixed state

Positive partial transpositions(PPT) @ Peres PRL 77, 1413 (1996)
po= Y pipa@pg > 0B p™ = Y pilph)" @ pp >0
i )

4 | \
An example of 2x2 state: P Py P P
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TR W =[00)+|11)  HEEREREN
/2 0 0 1/2)
0 00 0
=0 00 0
172 0 0 1/2)

(172 0 0 0)
0 0 1/2 0
0 1/72 0 0
L0 0 0 1/2)

NAEIEEER . AHE{-1/2, 112, 1/2, 1/2}

TRk
=
ii
s
nh
-
|
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HEAR

Horodecki et al. (PLA,1996)
2®2,2® 3cases: PPT <

Separable
Horodeckis, Phys. Lett. A 223,1 (1996)

quz ELF%E Eﬁ%%/ujﬁy‘j

(m|(u|oBln)|v) = (m|(v]Q.apln)|m)

XN TF A A, N A— 2R,
A JE 1 AL 12
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B — 55 R
Necessary and Sufficient Condition for Separability

For any positive (P) but not completely positive (CP) map,

N:B(Hp) — B(H 41)
one should have [[A R AB](QAB) = ()

for any separable states.
/A(Qoo) o AQoa 1) \

[14 @ Apl(Qap) = (€10) D

\A(QdAl{}) A(QdAmAO/

Here Qf_;Em lleapl)®1
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Majorization#|#&

If a state is separable then the inequalities

Np) <Npa), MNp)<A(pp)

Holds.

Here A(p) is a vector of eigenvalues of p ;
Np,) and \(pp) are defined similarly.

Nielsen, M. A., and J. Kempe, 2001, Phys. Rev. Lett. 86, 5184
PERIFERAKRE BFR



Reduction criterion

B
Ae(0)=ITr(e)-@
XA s NA
(14 A5(0ap) =0

i E, BifS

Pa®1—0,45=0
& JCHPRSSTPPTHEN, {HZ 5% T-Majorization#|4&
® FH N, —x & iRaif

Cerf et al., 1999: Horodecki and Horodecki, 1999
FRERERAKRE BFR



Entanglement witness (EW)

TE L
Tr(Wo4p) =0

WO R &, i

& 2/DH—NIARIEHE
® WFIEERE, BfA (gl W]ga)|dp) =0

-\--\""--.___._.-h-\- __'_,_,—'-___ T—
o Oent YET )
/ ~ \ T]‘_[LIT D .'-!TJ < U
|'l \ l|II

| |
ep /l -.-'%“'“--u.h

II
\ / T
\ _ / ,Il{-”" Q.ij _ 0
S _____f’;

RERESAR A B Terhal, B. M., 2000, Phys. Lett. A271, 319




Entanglement witnessf§| 1

S

d—1
V=2 i)l ® [i)Xi]

ij=0

(Pal( V]| dp)=[(a| pp)*=0
WV Pl pl=)

ot R 23 [ A0 SRR - 25 1]
P®H=2(I+V) and PO=3(I-V)

HAARFE-1

3
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Entanglement witnessf§| 1

fRclusterss

—

)

) = (10000)1234 + [0011)1934 + [1100)1934 — [1111)1534)
4 2
3pG
W [4% = (XXIZ + XXZI + 11ZZ + I1ZXX + ZIXX + ZZI1)]

2
TR E A~ sE 56 settings B ]

XXZ7Z and ZZXX

<W> {9 {E =R E H R R A2 2
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A Matrix Realignment Method
for Recognizing Entanglement

Define realignment operation:

If Z is an mxm block matrix with block

size nxn, vec(Zy,)'
(7 e 7Y :
o " vec(Z,,)"
L= - | — ;
Z T
\ Z . Z J vec( : i)
vec(me)T
A 2x2 example: _
A = [ai]

//711 P2 i P13 ,014\

|
\Pa1 Pa | Pszs Pua)
FERZFRAKRE FEl

vec(A) =




The realignment criterion

For any bipartite separable state, we have

H p H < 1 necessary criterion for separability

Here || | is the sum of all the singular values of o , or sum of the square

- ~=t Kai Chen, Ling-An Wu, Quantum
roots of eigenvalue for PO . Information and Computation 3,

Recognizing entangled states AE3 02 (2002

Sufficient criterion for entanglement
This criterion is strong enough to distinguish most of
+=x BES in the literature!



Examples

id=2 Wernerstate | = < ¥ (0 -0 &0 <<
(’_ki 0

4 0 -7 \

0 114-?.’ 0 0

P - 0 0 'le 0

£ is entangled iff 3
) \ T2 0 0 lT j

Locx <1 g P > 1

PERIFERA. \3 S



Positive maps connected to entanglement witnesses (EW)

Jamiotkowski isomorphisim

Wy=[I® AP} 1= | PGX D,
d—1

E|z)®|z) d=dimH 4

Horp d i=0
(i) ] =i \W\ j)

i 2

(ld,®AN)p=0 o 15

PEREFERAKE B
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Good entanglement measures
© XfF a7 B N0

@ No increase under LOCC
F(Arocc(o)) < E(o)

@ Continuity

E(o)— E(oc) —0 for |lo—ac||—0

[

PEREFERAKE BREl
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Good entanglement measures

@ Convexity

EMo+ (1—=XNo) < AE(o)+ (1 —N)E(0)

@ Normalization

E(P?) =logd

PEREFERAKE BREl
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& AL 2] 2

Entropy of Entanglement

E([))(@]) := S(tra|v)(¥]) = S(trp|¥)(¥])

5(p) = —tr|plog, p|

Avon-Neumann entropy

Xﬂ‘:‘:éiﬁ,j& Ep(p) and Eq(p) are identical

PEMFERAKE PRl




EXIRESHI=ETMERE &

E(¢)=inf X p,E(y). 2pi=1. p;=0

iy wRE e=Zpi) Uhimann, 1958
2U 2 f i FH 1) B &= Entanglement of
b Er(p) mf{Zp@ (6)(l) + p= D pilt) Wil}

g E([9)(¢]) = S(trpild){(4})

hERIEERA KRS B Bennett, DiVincenzo, et al. 1996




Two qubitsZ| 28 &

£ X 4 fflconcurrence

C=\2(1-Trp?

palll
(7

C()=2a,a, Hrha,a,)ySchmidtHEL

S

Hh
C= (o Oh=0,® oy

Hill and Wootters 1997
hERSHEAR AT B



Two qubitsZ| 28 &
E X

p=0p0 = \p\p
MyR-& & Hconcurrence

C(p) = max{0,\; — Ny — N3 — Ayj

HoA,, Ay, Ag, A 9B LI I8N HE A 1 55 7 H
M| Entanglement of Formation (EoF) A

1+ V1 - CQ(P))
2

Er(p) = H(

sEiloe H(x)=—x log, x— (1-x)logy(1—x)

Wootters 1998
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Negativity

gl |l
2

—

A\T[:J,Hjl . — |‘”

L || X c=trvXTX

gl & Logarithmic Negativity

En(p) :=log, ||p"®

3] /2 Entanglement Monotones,{H & J5 & 3 1™
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— Convex roof measures

RS NS

sl=1

=

< 5

E(Q):inpr;E(gb,-). EP;‘ZL pi=0

Monotonicity under LOCC: Entanglement cannot
Increase under local operations and classical

communication.

For any LOCC operation, we have

E(A(p)) = E(P) Alp) = E A;® Bi(p)A] ® B}

PEMFERAKE PRl



Entanglement Witness Monotones

Entanglement Witness

ra \ trWp >0 O\

[ trW p <0 @ K\J

'\.._\ I'.II \\""'-\-\___ - /J/.r'?

. >
ey ____’___,__.ff’/ SEP

Vpe SEP tr{Wp} >0
and

dp s.t.  tr{Wp} < 0.

E XS = Ei:(W) = max{0, —tr{Wp}}

PEMFERAKE PRl



2\ 98 B B R /N 1L
HEJ I IConcurrence
C(Ieb)) = 201 = Trp3)
= {mln Z p:C(|i))
2625 "
|€b> = Z x/E |fffbf>

C2(1) —2(1ZM)—4ZMJ

f{;

where . /u; (i = 1, ..., m) are the Schmidt coefficients

Theorem.—For any m ® n(m = n) mixed quantum state
p, the concurrence C(p) satisfies

4510

m(m —

2
Clp) = \/ 1.)'{max(llﬁ -

tERKREBemyS. Albeverio, S.M. Fei, Phys. Rev. Lett. 95 (2005) 040504



Shannon entropy

Operationally as the minimum number of bits needed to
communicate a message produced by a classical
statistical source associated to a random variable X.

® The Shannon entropy of X quantifies how much
information we gain, on average, when we learn the

value of X.

® The entropy of X measures the amount of uncertainty
about X before we learn its value.

PEREFERAKE BREl



Shannon entropy

A measure of our uncertainty before we learn the
value of X

A measure of how much information we have gained
after we learn the value of X.

H(X)=Hm,..., Pn) = — Z p. log p,
Shannon’s noiseless coding theorem:

It can be used to quantify the resources needed to store

information
FEREISAKRSE BFRE
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7€ X binary entropy
Hhm(p) = —p lugp — (1 —p) lug(l —p)

concavity
H(gpu + (1 — q@)pa) = qH(pu) + (1 — q)H(pa)
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Joint entropy

H(X,Y)=— Z})(J_ )log p(x, y)

LY

The joint entropy measures our total uncertainty about
the pair (X, Y ).

Conditional entropy

H(X|Y)= H(X,Y)— H(Y)

A measure of how uncertain we are, on average, about
the value of X, given that we know the value of Y.

PEREFERAKE B
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Mutual information
H(X:Y)= H(X)+ HY) - HX.Y)

Measuring how much information X and Y have in
COMMON.

Useful equality
H(X:Y)= H(X) - HX|Y)

hERISRAAS B
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Von Neumann entropy

5(p) = —tr|plog, p|

S(p) = — Z Az log A,

I

1. are the eigenvalues of p

Relative entropy
S(pllo) = tr(plog p) — tr(p log o)

PEREFERAKE B



Von Neumann entropy Il &

A projective measurement described by projectors P,

i
)\Jﬁ /)/ — Z P,[)P,

The system after the measurement is at least as great as the
original entropy

S(p") > S(p)

with equality if and only if p = p.

PEREFERAKE BREl



Entanglement distillation
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Entangled
source

=

Noisy channe
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Entanglement distillation

A certain number of maximally entangled EPR pairs is
manipulated by local operations and classical communication
and converted into pairs in some state. The asymptotic
conversion rate is known as the entanglement of formation.

Maximally
Entangled Pairs

FORMATION

DISTILLATION

O----0

2990
@@5@

Non Maximally
Entangled Pairs

Vlatko Vedral, Introduction
to Quantum Information
Science, Oxford University
Press, 2006

The converse of formation is the distillation of entanglement.
The asymptotic rate of conversion of pairs in the state into
maximally entangled states is known as the entanglement of

+JaRSUlRIOR.,
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One-way hashing distillation protocol

Bell diagonal states B;;,, are naturally parametrized
by the probability distribution of mixing p.

L (deldU {p}

The n copies of the two-qubit Bell diagonal state Bdiag
can be viewed as a classical mixture of strings of n Bell
states. Typically, there are only about 2nH(r}) such strings
that are likely to occur (Cover and Thomas, 1991).

PEREFERAKE BREl
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Two-way recurrence distillation protocol

Two-step procedure:

@ In the first step Alice and Bob take two pairs, and apply
locally a controlled NOT gate. Then they measure the
target pair in a bit basis. If the outcomes are different
they discard the source pair failure, otherwise they
keep it.

@ In the latter case, a second step can be applied: they
twirl the source pair to the Werner state.

Pl p F=Tr p|¢p*) (¢

F'(F) = If only F>1/2, the above

.2 D = recursive map converges
F=+ ;F( | - F) + 6(1 - F)° to 1 for a sufficiently large initial
number of copies.

PEREFERAKE BREl
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gl 2 2 5256

Alice Bob
Pair 1
a3 b3 )
PBS < ait . b1 » PBS
a4 Pair 2 b4
¢ P
i N
001 ¢ 1010
il 13 Classical " 1

TDuHcommunicationﬁ

o

. |
! i
wt“ﬂ‘?ﬂ!f?“"

Oab — F|¢+>ab<¢+| + (]- o F)' WH)ab(‘-Pﬁl

1

| ¢t )ab — \/z

(lH)a|H>b = |V>a| V)b)

- 1
|lp—)ab — EHH)]'V)b = IV>J|H>b)

Jian-Wei Pan et a/. Nature 423, 417 (2003)
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Bell A&7

|E(A1.B)) + E(A.B,) + E(A,.By) — E(A,,B>)

= *J

E(A;,B)) is the expectation value of the correlation
experimentAi,Bj.

I Tr(Beysup)| < 2

[;('HSH = Al X (Bl -1 B:) . & A3 X (Bl — Bj)

A,=a, -0, A,=a, o (similarly for B, and B,)

Quantum formalism predicts the Cirel son inequality
(Cirel’son, 1950)

DO |

|<B('HSH>QM| - |TI’(B(‘H5HP)| SPA'
FERERAXRE B



Bell N 52 2

Bell made two key assumptions:

1. Each measurement reveals an objective physical property of
the system. This means that the particle had some value of
this property before the measurement was made, just as in
classical physics. This value may be unknown to us (just as it
is in statistical mechanics), but it is certainly there.

2. A measurement made by Alice has no effect on a
measurement made by Bob and vice versa. This comes from
the theory of relativity, which requires that any signal has to
propagate at the (finite) speed of light.

PEMFERAKE PRl
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y ") =al00)+b|11)

y ) = a(00)+[11)) + (b —a)[11)

Sl Z 1EAE AN 4 B &1 45

‘“" ’L AB

U400}
U410)[1)

0)]0) ,
a|0)|1) + 3|1}|0)
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Mixed states may not violate Bell’s inequalities

The Werner states are defined as mixtures of Bell states,
where the degree of mixing is determined by a
parameter F (which really stands for “fidelity”):

. 1—F . . o
ow = FUT) (W7 | 4+ ——([WT)(¥T| + [@T) (7| + |&7) (@)
where 0 < F < 1. When F = 1/2, we can write it as
| L, e L Ik et
ow = (_ ( ‘\If ) (W | - |1I; (W |‘) -+ (_ ( |\If ) (W | + |([> ) (P “

S -
+ ()T + [@7)(27))

PEREFERAKE BREl
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Mixed states may not violate Bell’s inequalities

The Werner states for F=1/2 is separable.

An equal mixture of any two maximally entangled states
IS a separable state.

(1/2)(|OT)(DT| + [~ ) (D)
IS equivalent to
(1/2)(|00)(00|+ |11)(11])

The Werner states are entangled for F > 74,
The Werner states violates Bell’s inequalities when F > 0.78.

PEREFERAKE BREl



Bell A~ 55 k40 : two-qubit

An 2-qubit state can be written as

3 \
Q:%(1®1+r-a-®1+l®s-a'+ Ztnmdn@Cfm

n.m=1
Bousu=@-0@ b+b) . o+a -ox(b-F) - o
|(BCHSH}E1£2

One has

2/M(0) = {Brac)o = max |{Bersn).o

M(): = max (T8l + [ T,¢'N) = +

Here u and ii are the two largest eigenvalues of T',T ,

Horodecki, R.; Horodecki, P.; Horodecki, M.
Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition,

Physics Letters A, Volume 200, Issue 5, May 1995, Pages 340-344
PERZFRAKRE Fral



Bell’s theorem without inequalities

. 1
Wiguz = —=(]0) 4

V2

XA Xp® Xg
X4Q@Y5®Yg
Ya® Xp®YE

YARYr® X

V)cnz
V)cuz
U)cuz

V)cHz

LALBEE — —1.

TAYBYE = +1,
yaTpyr = -1,
yayprg = +l1.

0)5|0)g —1|1)a

Le|l)E)

— |[¥)cuz.
UicHZ,

V)aHZ.

U)aHZ.

But these relations are not mutually consistent!

PEMFERAKE BRI



Bell test

Correlation functions

E(a;,b))=(y |61, ®G-n,

V)
For a maximally entangled state |W> =(]OI> —|10>)/ J2

E(a;.b;) =—cos0,, =—cos(d —0))

T

With appropriate angles gla == 6°=0, ‘91b _ E, 92b _

o 2

PEREFERAKE BREl
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Bell test

E,\(607.0/) ==cos(6 ~0) =—cos = _%
E, (6, 6’2[’) =—cos(f, — 6’2[’) = —cos(—%j = —%
E, (0.,07) = —cos(0% — 0! = —cos(—%j _ _%
E, (0°,0") = —cos(0 —0°) = —cos(— 37”) _ %

E+E,+E,—FE, = _2\/5

One verifies that the CHSH inequality is violated!

PEREFERAKE BREl



Bohr-Einstein debates

Einstein:
I can't believe God plays
dice with the universe.

Bohr:
Albert, stop telling God

what to do.
chER SRR FRY
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What is QKD?

#® Quantum Key Distribution is simultaneous
generation of identical bit sequences In
two distinct locations with quantum
physical methods

@ Quantum technology guarantees
unconditional security

#® QKD enables the implementation of a
perfectly secure secret channel

106
PEREFERAKE BREl
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Quantum key distribution

A protocol that enables Alice and Bob to set up a
secure secret key, provided that they have:
® A quantum channel, where Eve can read and
modify messages
@® An authenticated classical channel, where
Eve can read messages, but cannot tamper
with them (the authenticated classical channel
can be simulated by Alice and Bob having a
very short classical secret key)

PEREFERAKE BREl
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The BB84 QKD protocol

Alice chooses (4 + 0)n random data bits.

. Alice chooses a random (4 + 0)n-bit string b. She encodes each data bit as

{10),|1)} if the corresponding bit of b is 0 or {|+),|—)} if bis 1

: Alice sends the resulting state to Bob.

Bob receives the (4 + 0)n qubits, announces this fact, and measures each
qubit in the X or Z basis at random.
Alice announces b.

: Alice and Bob discard any bits where Bob measured a different basis than

Alice prepared. With high probability, there are at least 2n bits left (if not,
abort the protocol). They keep 2n bits.

Alice selects a subset of n bits that will to serve as a check on Eve’s
interference, and tells Bob which bits she selected.

Alice and Bob announce and compare the values of the n check bits. If
more than an acceptable number disagree, they abort the protocol.

Alice and Bob perform information reconciliation and privacy amplifica-
tion on the remaining n bits to obtain m shared key bits.
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Distillation procedure of secure keys

real-time data acquisition
key sifting

error estimation

© © 0 ¢

error detection and correction
(reconciliation) one-way, two-way

@ privacy amplification

PEREFERAKE BREl



NIST QKD Protocol Stack

Session Key Mgr Eﬁ}‘ Mgr
R, m— ST refEMedT 470 Sy — -P{qﬂ:f]{]-m
’~ __________________ h ______________________________________________________________ ; -
L c c
c Cﬂg 2 L‘}.It ] =
I “8 i Correct Correct
I & Dhscard il & Ihscard
L e ation
Randomize Randomize
& Fartihon 2.3 & Partrtion

Operating System

Har Ouantum Feyv Stream
e Initial Sifting
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Correspondence between EDP and
BB84 (Gottesman-Lo’s proof)

EDP: Entanglement Distillation Protocol

2-way classical communications
CSS codes / BB84/six-state

bit-flip error detection “advantage distillation”
bit flip error correction === error correction
phase error correction ———= privacy amplification

IEEE Trans. Inf. Theor. 49 (2003) 457

PEMFERAKE PRl



Quantum Distribution of Keys

@® Produces raw classical key

@ Observed error rate indicates amount of
eavesdropper information and channel
noise

Error-correction is used to fix errors

@® Random hash function is used to distill
a smaller secret classical key

PEREFERAKE BREl



GLLP Formula for key generation rate

§2 1) 1-0, f(E,)-Hy(E,)+ O,-[1-H,(e)]

Error correction Privacy amplification

Q, is total # of detection events of signals.
E, is overall bit error rate of signals.

O is # of detection events due to single photon states.
e, is the bit error rate for single photon state.

f(e) = 1is the error correction efficiency.

To prove security, one needs to lower bound Q, and
upper bound e;.

GLLP: D. Gottesman, H.-K. Lo, N. Lutkenhaus, and J. Preskill, Quantum

Information and Computation. 4 (5) 2004 325-360, quant-ph/0212066
PEREFERAKE BRI



Combining Decoy with GLLP

A % T Osignar” J Esignar) - Hy (Egigna) + O, - [1 - H,y (€)]5

Error correction Privacy amplification

2 With the knowledge of yields {Y }, Alice can
choose a much higher average photon

number L1=0(1) .
@ Key generation rate R=0(N) ©

n : transmittance ~ 1073

PEREFERAKE BREl



QKD Protocols

@ Sifting —Unmatched Bases; “stray” or
“lost” qubits

@ Error Correction — Noise & Eaves-
dropping detected — Uses “cascade”
protocol — Reveals information to Eve
so need to track this.

@ Privacy Amplification — reduces Eve’s
knowledge obtained by previous EC

# Authentication — Continuous to avoid
man-in-middle attacks — not required
to initiate using shared keys
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BOUNDS ON THE BIT ERROR RATE
FOR BB84 AND THE SIX-STATE SCHEME

TABLE 1
BOUNDS ON THE BIT ERROR RATE FOR BB34 AND THE SIX-STATE SCHEME
USING ONE-WAY AND TWO-WAY CLASSICAL POST-PROCESSING. THE L. OWER
BOUNDS FOR TWO-WAY POST-PROCESSING. 13.9% FOR BB34 AND 20 4% FOR
THE SIX-STATE SCHEME. COME FROM THE CURRENT WORK

BB84

one-way two-way
Upperbound  14.6% 1/4
Lowerbound 11.0% 18.9%

Six-state Scheme

one-way (wo-way
Upper bound 1/6 1/3
Lowerbound 12.7%  26.4%

Daniel Gottesman and Hoi-Kwong Lo, Proof of Security of Quantum Key Distribution
With Two-Way Classical Communications, IEEE TRANSACTIONS ON INFORMATION

THEORY, MO, 49, 457-475 (2003)



Decoy-state quantum key distribution with
both source errors and statistical fluctuations

Xiang-Bin Wang, C.-Z. Peng, J. Zhang, L. Yang, Jian-Wei Pan
General theory of decoy-state quantum cryptography with source errors
Phys. Rev. A 77, 042311 (2008)

Xiang-Bin Wang, Lin Yang, Cheng-Zhi Peng, Jian-Wei Pan, Decoy-state
quantum key distribution with both source errors and statistical
fluctuations, New. J. Phys., 11, 075006 (2009)
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QUANTUM TELEPORTATION

Teleportation of unknown quantum state
encompasses the complete transfer of
information from one particle to another

Unknown quantum state EPR source
1
)= a0} + A1) | EPR — pair)=—/(00)+|11))

J2

Total state  |w)|EPR— pair)= %(a|000> +a|011)+ B100)+ B|111))

(00)+[11)) o)
(01)+]10)) P =

SR

- -

o)

(00)~[11))
(01)-]10))

RIS R AR [



QUANTUM TELEPORTATION

The joint state of three particles

)| EPR - pair) =
can be rephrased as follows:

|w>|EpR_pair>:\q>+>%(a|o>+ﬁ|1>)+|np+>i(ﬂyo>+ayl>)

ﬁ(a‘OOO%—a‘Ol1>+ﬁ‘100>+ﬁ‘111>)

|
o|07)7=lefo)- A1)+ [¥7) 7= Alo) )
Therefore Bell measurements on the first two particles would project the state of Bob's

particle into a variant of |y,) of the state |y)= «|0)+ B|1), where
|v,> = either |y> or o,|ly> or o,|y> or o.0,|y>

The unknown state |y) can therefore be obtained from |y,) by applying one of the four
operations

l,o,, Gy, Oy,

and the result of the Bell measurement provides two bits specifying which
of the above four operations should be applied.

Alice can send to Bob these two bits of classical information using a classical channel

(by phone, email for example).
PERIFRAKRE Bl



Entanglement Swapping: Entangling
Photons That Never Interacted

\ Bell State /

Measurement

1 2/'\3 44

EPR-source 1 @ EPR-source II

FIG. 1. Prnciple of entanglement swapping. Two EPR
sources produce two pairs of entangled photons, pair 1-2
and pair 3-4. One photon from each pair (photons 2 and
3) 1s subjected to a Bell-state measurement. This results in
projecting the other two outgoing photons 1 and 4 onto an
entangled state. Change of the shading of the lines indicates
the change in the set of possible predictions that can be made.

\ \ Jian-Wei Pan et al., Phys. Rev. Lett. 80, 3891-3894 (1998)
FERIFERAKRE R



Entanglement Swapping: Entangling Photons That
Never Interacted

Bell Measurement

Told

Beam Splitter

A,

UV-pulse

Polarizing

NZ Beam Splitter

EPR-source
4 1&1I

g

FIG. 2. Experimental setup. A UV pulse passing through a
nonlinear crystal creates pair 1-2 of entangled photons. Photon
2 iz directed to the beam splitter. After reflection. during its
second passage through the crystal the UV pulse creates a
second pair 3-4 of entangled photons. Photon 3 will also be
directed to the beam splitter. When photons 2 and 3 vield a
coincidence click at the two detectors behind the beam splitter.
they are projected into the |W ™~ ),; state. As a consequence
of thiz Bell-state measurement the two remaining photons 1
and 4 will also be projected into an entangled state. To
analyze their entanglement we look at coincidences between
detectors D, and D,. and between detectors D; and D,. for
different polarization angles & . By rotating the A/2 plate in
front of the two-channel polarizer we can analyze photon 1
in any linear polarization basis. Note that. since the detection
of coincidences between detectors D, and D,. and D; and
D4 are conditioned on the detection of the ¥~ state. we are
looking at fourfold coincidences. Narrow bandwidth filters (F)
are positioned in front of each detector.

é 175+ |
D7 D, DD,
% 150+
3 125
0
2 100-
g
=
9 757
8
= 50+
o
T 25- s
= Visibility 0.65
& Li I | ] ]
0 45 90 135 180
O (degrees)

FIG. 3. Entanglement verification. Fouwrfold coincidences,
resulting from twofold coincidence DI1"D4 and D1 D4
conditioned on the twofold coincidences of the Bell-state
measurement, when varying the polarizer angle ®. The two
complementary sine curves with a wvisibility of 0.65 * 0.02
demonstrate that photons 1 and 4 are polarization entangled.

Jian-Wei Pan et a/., Phys. Rev. Lett. 80, 3891-3894 (1998)
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Entanglement Swapping) & 4 5

Bell State
Measurement

EPR-source I |l EPR-source II

’ 4

o
F
"

FIG. 1. Prnciple of entanglement swapping. Two EPR
sources produce two pairs of entangled photons, pair 1-2
and pair 3-4. Omne photon from each pair (photons 2 and

3) is subjected to a Bell-state measurement.
projecting the other two outgoing photons 1

This results in
and 4 onfo an

entangled state. Change of the shading of the lines indicates
the change in the set of possible predictions that can be made.
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Nicolas Gisin et al., Quantum cryptography
Rev. Mod. Phys. 74, 145-195 (2002).

V. Scarani et al., The security of practical quantum key

distribution
Rev. Mod. Phys. 81, 1301-1350 (2009).

Deoy QKD

W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003),

X.-B. Wang, Phys. Rev. Lett. 94, 230503 (20095).

H.-K. Lo, X.-F. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504
(2005);

X.-F. Ma, B. Qi, Y. Zhao and H.-K. Lo, Practical decoy state for
quantum key distribution. Phys. Rev. A, 72,012326 (2005).
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0)1, [000)
D [111)

code states

Odd Even

Parity of pairs 12 and 23

Z/QZQIand IR ZQ 4
Error syndrome

4) = a|000) + B|111)

«|010) 4 8|101)
Odd Odd

«|001) + B|110) Even Odd
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Quantum error correction  Singlebitflip
correction circuit

+— Xa(l—l—b)
y S xab «|000) 4+ 3|111)
] X(1—|—a)b
a
ancilla 0) TO— (M) . .
qubits b
0) S—D—(M) .
Syndrome Error correction
measurement
Coherent version 1. o
*+—o D «|000) + 3|111)
* %
a
ancilla 0) +&— et —
qubits b
0) B—PHO—e k@:
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A general quantum error is a superoperator that is of form:

P — 2 Ak P Ak-l-
Examples of single-qubit errors:
Bit Flip X: X 1[0) = [1), X[1) = |0)

Phase Flip Z: Z[0y = |0y, Z[1) = - 1)

Complete dephasing: p — (p + ZpZ")/2 (decoherence)
Depolarizing channel : p — ((1-p)p +p/3(XpX+YpY+ZpZ)

Rotation: R,[0) = [0), R, [1) = e®|1)
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Correcting All Single-Qubit Errors

Theorem: If a quantum error-correcting code (QECC) corrects errors A and B, it
also corrects oA + BB.

Any 2x2 matrix can be written as ol + BX + yY + 8Z.

A general single-qubit error p — 2 A, p Al acts like a mixture of |ly) — A ly),
and A, is a 2x2 matrix.

Any QECC that corrects the single-qubit errors X, Y, and Z (plus I) corrects every
single-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus I) corrects all t-qubit errors.

RERESEEAR A R From Gottesman
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Discretization of the errors

Any QECC that corrects the single-qubit errors X,
Y, and Z (plus |) corrects every single-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus I)
corrects all t-qubit errors.

This is a fundamental and deep fact about quantum
error-correction, that by correcting just a discrete set
of errors — the bit flip, phase flip, and combined bit—
phase flip, in this example — a quantum error-
correcting code is able to automatically correct an
apparently much larger (continuous!) class of errors.
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[[n,k]] quantum error correcting code

measurement + correction

k

) —— & =N —— D ©)
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2 G

#®\We encode a k bits codeword x, into a n
bits codeword c using a [n by K]
generator matrix G as follows:

c=Gex

@® Error correction for linear codes is done
using a [(n-k) by n] parity matrix.

142
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Parity Check i £

@ Parity check matrix H is such that:
Hc=0 and HG=0

The receiver gets the codeword r, which
incorporates an error e:

r=c+e
Then, the syndrome s is given by:
s=Hr=He

143
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Error Correction & Recovery

#® Once we detect the syndrome s, we can
find the error that occurred e.

#®Now we can correct the error as:
cC=r-e
#® And finally one can recover the original
message

144
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® Quantum Error Correction Codes are
characterized by the triplet [n,k,d], where:

= N is the length of the resulting codeword.

= K is the number of qubits to be encoded.

m d Is the minimum distance.

@ Data redundancy implies n>k

@ A code with minimal distance d=2t+1 is
able to correct errors on up to t bits.
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[[n,k]] quantum error correcting code

measurement + correction

k
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Basic framework for quantum error correction

After encoding the code is subjected to noise, following which a
syndrome measurement is performed to diagnose the type of
error which occurred, that is, the error syndrome. Once this has
been determined, a recovery operation is performed, to return
the quantum system to the original state of the code. The basic
picture is illustrated in Figure 10.5: different error syndromes
correspond to undeformed and orthogonal subspaces of the total
Hilbert space. The subspaces must be orthogonal, otherwise they
couldn t be reliably distinguished by the syndrome measurement.
Furthermore, the different subspaces must be undeformed
versions of the original code space, in the sense that the errors
mapping to the different subspaces must take the (orthogonal)
codewords to orthogonal states, in order to be able to recover
from the error.
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Through the information from the error syndromes, one
can determine whether there is an error and where it is:

E.g., measurements of Z,Z, and Z,Z, for o [010) + [101)
give syndrome 11, which means the second bit is different.
Correct it with a X operation on the second qubit. Note
that the syndrome does not depend on o and .

We have learned about the error without learning about
the data, so quantum superpositions are still alive!
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The Pauli Group

The general Pauli group G,, on n qubits is defined to consist of all n-fold
tensor products of up to n operators |, X, Y, or Z with overall phase =1, *i

For a single quantum bit
GG = {if. il X, X 1Y, Y, £ 4, iiZ}

that G, is closed under multiplication, and thus forms a legitimate
group.

Any pair M, N of Pauli operators either commutes (MN = NM) or
anticommutes (MN = -NM).

The Pauli Group G,, on n qubits is given by the n-fold tensor product
of Pauli matrices.

The Pauli group spans the set of all n-qubit errors.
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Stabilizer

Suppose S is a subgroup of G, and define
V5 to be the set of n qubit states which are

fixed by every element of S.

Vs is the vector space stabilized by S, and
S is said to be the stabilizer of the space Vg,
since every element of Vs is stable under

the action of elements in S.
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Properties of a Stabilizer

The stabilizer is a group:
If M ly) = ly) and N [y) = ly), then MN [y) = |y).

The stabilizer is Abelian:
If M ly) = [w)and N [y = |y), then

(MN-NM) [y} = MN ) - NM |y) = 0

(For Pauli matrices) ===»> MN =-NM
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Stabilizer 15l +F

The EPR state of two qubits

« _ |00y +11)
‘{> - \/E
It is easy to verify that this state satisfies the
identities
XiXoY) = [v)
2| Y) = )

We say that the state |@> is stabilized by the
operators X, X, and Z,Z,

In addition, the state |@> is the unique quantum
state (up to a global phase) which is stabilized by
these operators X, X, and Z,2..
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Stabilizer 151+

@ Such a state is unique, as it is the only one (up
to a global phase) to be stabilized by both X, X,
and Z,Z,.

@ The basic idea of using the stabilizer group is to
work with the stabilizer operators as group
generators rather than with the states.

® The group theoretical formalism of the stabilizer
codes offers a more compact description of the
guantum error correction codes.
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Stabilizer 15l +F

For the classical repetition code, one can see the error
syndromes

first two bits have even parity (an even number of 1's),
and similarly for the 2nd and 3rd bits, with correctly-
encoded state 000 or 111

For state with error on one of the first two bits: odd parity
for the first two bits.

One can rephrase this by observing that a codeword is a
+1 eigenvector of Z&®Z&®I| and that a state with an error on
the 1st or 2nd bit is a -1 eigenvector of Z&®Z&I.
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For the three-qubit phase error correcting code, a
codeword has eigenvalue +1 for X®&X®&I, whereas

a state with a phase error on one of the first two
qgubits has eigenvalue -1 for X&®&X®&I.

Measuring Z&®Z detects bit flip (X) errors, and
measuring X®X detects phase (Z) errors.

Measuring enough operators find locations of
errors.
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Error Correction Conditions

Theorem: Let S be the stabilizer of the
stabilizer code C(S). Suppose {E;} is a set of
operators in Gn such that:

E'E, ¢ N(S)-S

for all j and k. Then, {E;} is a correctable set
of errors for the code C(S).

The normalizer of S, denoted N(S), which is defined to consist
of all elements E of G, such that EgE’& Sforallg € S.
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Error Detection

® Suppose g,,...,9,. is the set of generators for the
stabilizer of an [n,k] stabilizer code, and that {E}
IS the set of correctable errors for the code.

@ Error detection is performed by measuring the
generators of the stabilizer in turn, to obtain the
error syndrome, which consists of the results of
the measurements f3,,...,B, -

#® If the error E occurred then the error syndrome is
given by B, such that:

EngT = 5,8,
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Recovery (1)

#|n the case where E is the unique error
operator having this syndrome, recovery
is done by applying E'.

®In the case where there there are two

distinct errors E and E’ giving rise to the
same error syndrome, it follows that:

EPE' =

E'PE"

and then E'E'PE'E=P

and therefore |

PEREFERAKE BREl
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Recovery (2)

F’ has

F' after the error |

@® Thus applying |

occurred results in a successful recovery.

#® Thus, for each possible error syndrome we
simply pick out a single error E with that
syndrome, and apply E' to achieve
recovery when that syndrome is observed.

PEREFERAKE BREl



The three qubit bit flip code

Consider the familiar three qubit bit flip code spanned by the states |000) and [111), with
stabilizer generated by 2,7, and Z,73. By inspection we see that every possible product
of two elements from the error set {1, X;, X5, X3} — I, X;, Xo, X5, X1Xo, X7 X5, X5 X5
— anti-commutes with at least one of the generators of the stabilizer (except for I, which
is in S), and thus by Theorem 10.8 the set {I, X, X,, X3} forms a correctable set of
errors for the three qubit bit flip code with stabilizer (Z,7,, Z,753).

Error-detection and correction

/14, | £245 | Error type Action
=1 41 no error no action
+1 —1 | bit 3 thipped | thp bit 3
—1 +1 | bit I thpped | thlip bit 1
—1 —1 | bit 2 thipped | thip bit 2
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The three qubit bit flip code

PEMFERAKE PRl

&1
&2
X
Z

/
/
X
/

N NN

/
/
X
/

164



The nine qubit Shor code

Name Operator

01 ZAHTITETT L
9> ITZZTTIILI I
g3 111 /ZZ1111
04 IT1T1I1ZZ111
I TITTTITTIZZ]
Je ITITTTITIAA
g7 XXXXXXII11
gs ITITXXXXXX
VA XXXXXXXXX
X LLLIZZZZZZ

(1000) + |111))(|000) + [111))(|000) + [111))

~(000) — [111))(|000) — [111))(|000) — [111))
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The nine qubit Shor code

Name Operator

0 ZZITITIII
g2 FZEZT T EL EI
g3 111 ZZ1111
04 ITITZZIIT1
5 T TTTETEZ AL
U6 I1111111Z27

97 XXXXXXITI
s I T T XXXXXX
/ XXXXXXXXX

X LLLLLLLZZ

2,2, ...,25 generate a group, the stabilizer of the code,
consisting of all Pauli operators M with the property that M y)
= |y) for all encoded states |wy).
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More about Stabilizer

The stabilizer is a group:

The stabilizer is Abelian:

Given any Abelian group S of Pauli operators,
define a code space T(S) = { ly) s.t. M |w) = |w)
vV M e S}. Then T(S) encodes k logical qubits in
n physical qubits when S has n-k generators (so
size 2nK),
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Stabilizer Elements Detect Errors

Suppose M € S and Pauli error E anticommutes with M.

Then:

M (E ly)) = - EM |y) = - E ly),

so E lw) has eigenvalue -1 for M.

Conversely, if M and E commute for all M € S,

M (E

so E |y)

W) =EM)=Ely) VMeS,

nas eigenvalue +1 for all M in the stabilizer.

The eigenvalue of an operator M from the stabilizer detects
errors which anticommute with M.

PEMFERAKE PRl
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Error Syndromes and Stabilizers

To correct errors, we must accumulate enough
information about the error to figure out which
one occurred.

The error syndrome is the list of eigenvalues of
the generators of S: If the error E commutes
with M € S, then M has eigenvalue +1; if E and
M anticommute, M has eigenvalue -1.

We can then correct a set of possible errors if
they all have distinct error syndromes.
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Stabilizer Codes Summary

Choose an Abelian subgroup of the Pauli
group. This will be the stabilizer S of the
QECC.

The codewords: {ly) s.t. Mly) = [y) VM e S}

If S has r generators on n qubits, the QECC
has k = n-r encoded qubits.

The codes corrects errors if ETF ¢ N(S)\' S
for all pairs (E, F) of possible errors. The
distance d is the minimum weight of N(S) \ S.

From Gottesman
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Summary: Stabilizer Codes

@ We can describe a quantum stabilizer code
by giving its stabilizer, an Abelian subgroup
of the Pauli group.

@ By looking at the stabilizer, we can learn all
of the most interesting properties of a QECC,
including the set of errors it can correct.

@ One interesting and useful class of stabilizer
codes is the family of CSS codes, derived
from two classical codes. The 7-qubit code
Is the smallest example.
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Summary of QECCs

@ Quantum error-correcting codes exist which can
correct very general types of errors on quantum
systems.

® A systematic theory of QECCs allows us to build
many interesting quantum codes.

@ Quantum error correction can be formalized in terms
of quantum states and projectors, stabilizer
subspaces or the stabilizer group.

@ All these formalizations are equivalent.

#® The theory of quantum error correction is quite
elegant and simple.

@ The implementation is really a nontrivial task.
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DiVincenzo’s Criteria

DiVincenzo, Fortschr. Phys. 48, 771 (2000)

1. Scalability: A scalable physical system with well characterized
parts, usually qubits.

2. Initialization: The ability to initialize the system in a simple
fiducial state.

3. Control: The ability to control the state of the computer using
sequences of elementary universal gates.

4. Stability: Decoherence times much longer than gate times,
together with the ability to suppress decoherence through error
correction and fault-tolerant computation.

5. Measurement: The ability to read out the state of the computer
In a convenient product basis.
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Qubitology. States
[¢) = cos(0/2)|0) + €'?sin(0/2)|1) = |n)

T

Spin-1/2 particle 1) = |0) Direction of spin

% (1) = 1UN/V2
1y —ill)/v2
ﬁ (N +il1)/V2
(1) +110)/v2

1) =11)
From Caves
Bloch sphere
0O 1
1 T = ( ) = X
n)(n| = Z(I+ owne + oyny + o.n:) 1 0
% oy = (O _i) —Y
_ = _ Pauli oo i 0 )
- 2 (I +n U) representation 1 0
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Qubitology. Gates and quantum circuits

z

Single-qubit gates Y

€T

180°

7 = (é _01) = 52 T‘: Phase flip
(~1)°]a)

1"

1
H — (1 1

1 -1 Hadamard

@) —1H — (10) + (=1)%|1))/v2
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Qubitology. Gates and quantum circuits

z

More single-qubit gates Y
x=(? M =nzm —Ffwo Bit fli
1 0 e P
la) — X+— |la®1l) = —H Z H—
X?=Y?=1I
130°
iy = (_01 é) = zX /\'” - Phase-bit flip
@) —iY = (=1)* e 1)
= X—Z = Hr—Z—H—Z

From Caves
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Qubitology. Gates and quantum circuits

z

Control-target two-qubit gate Y

xr

Control Target
1 0 O O L
. O 1 0 O
CNOT = 0 0 0 1 0)
O 0 1 0
180°
= )@ I+ [1)(1|xX —
1) o
Control T B :L
Target — X — N
|a) a) ,
(C-NOT)* =1

\ \ From Caves
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Qubitology. Gates and quantum circuits

Universal set of quantum gates

@T (45-degree rotation about z)
® H (Hadamard)
@® C-NOT

From Caves
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Qubitology. Gates and quantum circuits

z

Another two-qubit gate "

xr

Control Target
1 0 O O L
O 1 O O
CPHASE = 10 0 1 o 0)
0O 0 0 -1 o0
= [0)0]®I+|1)(1|®Z T
1) <
Control |a) T |a) A I
Target |b) 7 (—1)2%|b) l
1 I Sy T ]
a5 — I H— —H] -

\ \ From Caves
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Qubitology. Gates and quantum circuits
C-NOT as parity check

) — )

Y) Y)
0) —D J“ T DY)

L/

C-NOT as measurement gate

0)
al0) + B[1) i { 1)
A2
0 QZ {0, po = |
) oM 1, p1=18°
|00) + 8]11)
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Qubitology. Gates and quantum circuits

Making Bell states using C-NOT

0) — H| i © o0y 1111 fe" sates
0) NI Boo) = ?uoomm)
—5(10) +11))/0) - : \?OOO) o
: Bor) = —=(101) +[10)
Bu) = —=(01) - 10))

77 |

— H
a) 1T i —5(10b) + (=1)*|1,6 ® 1)) = |Bus)
b} v

1 "ot || "o
L(10) + (~1)7[1))[0)
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Qubitology. Gates and quantum circuits

Making cat states using C-NOT

0) — H i ¢ GHZ (cat) state
0 & L (J000) + [111))
0) r 1 D

75(10) +[1))]00) | |-5(|00) + [11))|0)

\ From Caves
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) 25 LR T

Hadamard __ E — % i
Pauli-X | y |- [[1) {1)]
Pauli-y”  Jy |- {? o
Pauli-Z 7] “} —Ol-
Phase — 5| [{1) {:]
s T (o e
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LA 2 LU E T T]

1 0 0 07

0 1 0 0

controlled-NOT 00 0 1
0 0 1 0.

1 0 0 07

swap N 000 10

‘ 0 1 0 0

el 00 0 1

T 010 0

controlled-Z = 00 1 0
4 o 00 0 —1

1 0 0 07

controlled-phase T g L&A
IS ) 01 0

s 0 0 0 7
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Decomposing single qubit operations

Arbitrary 2 X2 unitary matrix may be
decomposed as

3 . oy a5
[ = gior | € wiE cosL —sin B |
= f) bt W i a o g ax 9
0 eiP/? sin+  cos < 0 e’/

where a, 3, y, and O are real-valued.
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Swap gate

LT
—1—9
il A,
AL/ ® Y

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful

circuit.

‘aa b) — |Q,a D b>
—s la® (adb),a®b) = |b,ad b)
%ba(a/@b)@b):‘baa)a
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Control-U gate

U

s
11T

Figure 1.8. Controlled-U gate.

— X

Figure 1.9. Two different representations for the controlled-NOT.
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Circuit for measurement

M
) —1 7N

Figure 1.10. Quantum circuit symbol for measurement.

This operation converts a single qubit state

Jw>= af0> + /1> into a probabilistic classical bit
M (distinguished from a qubit by drawing it as a
double-line wire), which is 0 with probability /a/,

or 1 with probability /8/.
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Bell5r24E

In Out

00) | (00) +[11))/v2 = |Bw)

01) | (01) +[10))/v2 = |Bun) T 1

10) | (00) —[11))/v2 = |Bio) 1 J=
11) | (j01) — [10))/V2 = | 1) Y N

Figure 1.12. Quantum circuit to create Bell states, and its input—ouput quantum ‘truth table’.

&y (=1)°| Lg)
\/f

Bay) =
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Quantum teleportation

V)

I

| M1y

H

1 Mo

| 500)

= ﬂ

\
|%0)

T
1)

Figure 1.13. Quantum circuit for teleporting a qubit. The two top lines represent Alice’s system, while the bottom

Xﬁfz Zﬂf]_ L |¢>

t 1 T
[¥2) sy [¥4)

line 1s Bob’s system. The meters represent measurement, and the double lines coming out of them carry classical

bits (recall that single lines denote qubits).
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