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Quantum Entanglement: from to a

Einstein-Podolski-Rosen: An entangled wavefunction does not describe the physical reality
in a complete way

Schrodinger: For an entangled state the best possible knowledge of the whole does not
Include the best possible knowledge of its parts

Mermin: a correlation that contradicts the theory of elements of reality

Peres: a trick that guantum magicians use to produce phenomena that cannot be imitated
by classical magicians

Bell : a correlation that is stronger than any classical correlation

Bennett : a resource that enables quantum teleportation

Shor : a global structure of the wavefunction that allows for faster algorithms 2 %*

Ekert : a tool for secure communication Lz




“‘Entanglement is the characteristic trait of
quantum mechanics, the one that enforces its
entire departure from classical lines of thought”.

Quantum computation
Quantum teleportation
Dense coding
Quantum cryptography

Quantum error correction

_—

E. Schrodinger, Proe. Cambridge Philos. Soc. 31, 55 <<
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LOCCH#:1E
“local operations and classical communication”

JRiE#E/E: unitary dynamic actions, measurements, and all
other local manipulations
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A pure or mixed quantum state which is not separable is

called entangled. An entangled quantum state thus contains

non-classical correlations, which are also called quantum
correlations or EPR correlations.




Separable




Schrodinger in 1935 (or earlier)

"When two systems, ...... enter into temporary physical
interaction due to known forces between them, and ......
separate again, then they can no longer be described in the
same way as before, viz. by endowing each of them with a
representative of its own. I would not call that one but
rather the characteristic trait of quantum mechanics, the
one that enforces its entire departure from classical lines of
thought. By the interaction the two representatives [the

quantum states| have become entangled." P

Schrodinger (Cambridge Philosophical Society) ¢ e
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This strange property, that the joint state of a system can be
completely known, yet a subsystem be in mixed statespis. .
another hallmark of quantum entanglement. «{fq’ :
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Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EinsTEIN, B, PopoLsky anp N. RoseN, Insiitute for Advanced Study, Princeton, New Jersey
(Received March 25, 1935)

In a complete theory there ia an element rresponding
Jm:h on ]n:u thE

it with certa )

quantum mechani e of two physical quantities
described by non- commlltmh operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

NY serious consideration of a phy
theory must take into account the dis

tinction between the objective reality, whil
independent of any theory, and the physical
with which the theory operates. These
concepts are intended to correspond with the
cvb)e i i and by means of th-:se concepts

phy-;u 11 then

(n 1
the description given by the theor‘
It is only in the case in which posit

of the theory may be 11d to
cu.turv The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theory and human experience.
This experience, which alone enables us to make

quantum mechanic:
guantities cannot have simultaneous reality.
m of making predicti roing a system
nmde on duuther system tlmt

t the [
is not complete,

Whatever the meaning assigned to the term
complete, the following requirement for a com-
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reality.
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equal to u ) the val
then there exists ai

“ETHEZ AHERER ——E

Plausible Propositions of EPR

Einstein, Podolsky, and Rosen, Phys. Rev. 47, 7‘7721935)’9




Quantum states







Entangled states

" Non-local correlations among

the separated parts

" Failing to interpret with .
the LHV theory -

" Bell s theorem \ .
(test non-locality) |




Applications (basic resources)

‘ Teleported

Iwo classical bits
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-Shor's algorithm for factorization

-Grover's algorithm for database search
-Quantum simulations (Feymann,Lloyd)

Becoming key resources for present and future

I quantum informartion processing!
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superdense coding

Alice

00:7/ 01:Z

10X 11:3Y

Figure 2.3. The initial setup for superdense coding, with Alice and Bob each in possession of one half of an
entangled pair of qubits. Alice can use superdense coding to transmit two classical bits of information to Bob, using
only a single qubit of communication and this preshared entanglement.
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Decoherence

The separability problem:
one of the basic and emergent problem in present
and future quantum information processing

Is a quantum state entangled?

How entangled is it still after interacting

with a noisy environment?




Density matrix of quantum states




Separability
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entangled?
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Mixed states
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Separability criterion for
multipartite pure state

if and only if

PAB..7z = Pa @ Pp D Py




A strong separability criterion
for mixed state

Positive partial transpositions(PPT)  [RECECEMAERESNEIEINEED)

An example of 2x2 state:
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Horodecki ef al. (PLA,1996)
2 ® 2,2 X 3 cases: PPT < Separable

Horodeckis, Phys. Lett. A 223,1 (1996)
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Necessary and Sufficient Condition for Separability

For any positive (P) but not completely positive (CP) map,

one should have [IA R AB](QAB) = ()

for any separable states.

A(Qgy) A(Qofiﬂ—l)
Aler) o AQia,1)

[ 14 ® Apl(Qap) =

Ay 10) -+ AQa,-14,-1)
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Majorization#| 35

If a state is separable then the inequalities

Np) <Np4), Ap)<A\(pp)

Holds.

Here RXIAlis a vector of eigenvalues of [ ;
and By are defined similarly.

Nielsen, M. A., and J. Kempe, 2001, Phys. Rev. Lett. 86, 5184




Reduction criterion

B AL
Af‘f—?d(@) =/ TI(Q) — @

% T A 43 A5
[14® A5 N(04p) =0

Wi, BiE

0a®1—-04=0

eI S5 TPPTHENI, {H /23 T-Majorization 4

B MCAEN], — &2 TR A
Cerf, N. J., C. Adami, and R. M. Gingrich, 1999, Phys. Rev. A 60, E}% k'
Horodecki, M., and P. Horodecki, 1999, Phys. Rev. A 59, 4206. ,};ﬁ\'i ;

Hiroshima, T., 2003, Phys. Rev. Lett. 91, 057902, e
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LOO(Local Orthogonal Observables)#|#&
Covariance matrix criterion
Local uncertainty relations#|¥z

Range criterion




Status for the separability problem before 2002

-Low rank

-Operational necessary

or sufficient conditions
(Lewenstein, Horodecki,

Albeverio, Fei et a/.,2000, 2001)

Bell inequalities (Bell, 1964)

Entanglement of formation for two qubits (Wootters,1998)

The reduction criterion (Horodecki, Cerf et a/. 1999)

Low rank cases (Lewenstein,Cirac,Horodecki, Albeverio, Fei et a/. 2000, 2001)
The necessary and sufficient criterion(Y.D. Zhang and C.Z. Li 2000,2001)

The majorization criterion (Nielsen and Kempe,2001)

Entanglement witnesses (Horodecki, Terhal, Lewenstein et a/.,1996,2000)
PPT extension (Doherty et a/.,2002)

separable=PPT

Q
Q
o
<o
Q
Q
Q
Q




Disadvantages:

Only a few are operational and computational, even they

are, most of them are weaker than PPT.
unable to distinguish bound entangled states (BES)

some of them are complicated




A Matrix Realignment Method
for Recognizing Entanglement

If Z is an mxm block matrix with block




The realignment criterion

necessary criterion for separability

"p""p“ T Kai Chen, Ling-An Wu, Quantum
Information and Computation 3,
193-202 (2003)

Recognizing entangled states

sufficient criterion for entanglement




| Examples



2. BES of 3x3 (weak inseparable PPT state)

Bennett et a/.,, PRL82 (1999) 5385
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Horodecki, PLA232,333(1997)
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000000 e o xloe
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fla.p) = max(0. log |57 ) L0000 s 0
O<a<l
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Brul3.Peres, PRA61,030301(R)(2000)

= |m.0 ‘,._.,0};0 0,0,0),
=10,a,0: 5,0,¢; 0,0,0),

= |n*,0,0: 0,—m*,0; £,0,0),
—10,5%,0: —a*,0,0; 0,d,0).




d. Entangled state in three-party system

Bi-separable with respect to Bennett ef al., PRL82,5385(1999)
A|BC,B|CA and C|AB

\0 1 4,1, +,0),

£) = 1/’\/_- (10) %= \1)_.
R:Zap — Zap

define

|([a ® Rpc)papcl|| = 1.086

Horodecki et al., Open Syst. Inf. Dyn. 13, 105 @OO@L"




The generalized partial transposition operations
(GPT operations)

Define the operations:

7. : A — row transposition of A

7. A — column transposition of A

1(4) — (”11 21|12 ”22)




The GPT Criterion

™ <1, VY C{ra,ca,rp,cp, - ,rz,cz}

Kai Chen, Ling-An Wu, \
Physics Letters A 306, 14-20 (2002)




The Generalized reduction criterion

||pr/BTyH S hGhbv \V/y C {rAacAarBaCB}a

S. Albeverio, K. Chen, S.M. Fei,
If 3a.b Phys. Rev. A 68, 062313 (2003)
—— ]~
paB Y| > hahpyit = p

Two special cases:
1. In the case of a=1 and b=0, or a=0 and b=1, this criterion reduces to the

reduction criterion (Horodecki, Cerf et al. 1999)
2. In the case of a=0 and b=0, this criterion reduces to the GPT criterion




1.

2.

When a=0, this criterion
detect all the BES for 0<c<1
while b=0 or b=2/3.

When a=1, it also detect all
BES 0<c<1 while b=-1/3 or
b=1.

(Horodecki, PLA232,333(1997))

FIG. 2. Depiction of & =max{|[p;; 710 rel||— fi_ k00 for a Horo-
decki 3 =3 bound entangled state as a function of  and ¢ when
=0 (the top figure) and =1 (the bottom figure ), respectively.

;4




Positive maps connected to entanglement witnesses (EW)

>——Z iy ® i), d=dimH,
vd i=0

AN /2
- Y1) 21 1] g
4%‘”;‘:‘ :

>




Universal construction of the withess operator

)

Chen, Ling-An Wu, Phys. Rev. A 69, 022312 (2004)




(Bennett et a/., PRL82, 5385 (1999))

TEILU{.__ItJ; = 1), ) =—% (o) = [1))[2).

l
|l\n — jl‘n)‘”‘
\.- 2

1. Realignment criterion recognize entanglement for p>88.97%

2.  An optimal witness can only recognize entanglement for p>94.88% (B.M.
Terhal, Phys. Lett. A 271 (2000) 319, O. Guhne et al., Phys. Rev. A 66,062305

(2002).)
3. An EW constructed from the realignment criterion gives p>88.41%

4. An PM obtained from EW constructed from p=0.3 gives p>6§7.44% :"\ s




1. Entanglement witness operators generated from the realignment
criterion and PPT criterion than the two criteria
to identify entanglement

2. Positive map (not completely positive) constructed from these
entanglement witnesses (EW) the EWs

1. Offer a more power operational method to recognize entanglement,
In particular, the bounded entanglement

2. Provide a powerful new method to detect entanglement, since the
entanglement witnesses are physical observables and maysDe

measured locally ;f: /2
£y Gives a new systematic way to obtain positive but non-CP mabsl »g:‘




Comparison of separability criteria

Generic quantum state
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@ The separability of a quantum state and quantitative character for
entanglement become two of the most basic problems in quantum
Information theory

@ Multipartite systems and higher dimensions make a richer structure but
with more complexity

@® The PPT criterion, realignment criterion, its generalizations and the

corresponding witness operators and positive maps significantly expand
our ability to recognize directly the entanglement

The final solution needs better ideas and is still full of challenge
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Entanglement witness (EW)
& L

Tr(Wo,p) =0

WO RIILI &, i 2

A MR _
SR AR T TN (1, (b5l W) 6) = 0

Terhal, B. M., 2000, Phys. Lett. A271, 319




Entanglement witness (EW)

Hahn-Banach theorem

Let S be a convex, compact set, and let p & S,
then there exists a hyper-plane that separates o from S

lllustration of the
separating axis
theorem.




Entanglement witnessf| 1

s Sfy

ARENT

d—1

V=2 lixjl @ liXil
i.j=0

(Pal( PV dp)=[(tha| pp)*=0

X R 5 2[R AT S 6 R 5 =2 1]




Entanglement witnessf| 1

iKclusters

—

)

C,) = — [1111)1234)

[41®* —(XXIZ + XXZI + IHZZ + IZXX + ZIXX + ZZIT)]
8,

ey

W =

W75 E A Segssettings B ]

XZ7Z and ZZXX

<W> [ fE R E HO AL )44 20 2




Choi-Jamiotkowski [F]#4)

£ X EW

Wy=[I® Al(P,

il
/

1 d—1

D) = E\D@J\I) d=dm H 4
\d;o

Jamiotkowski, 1972; Choi, 1982




References for the realignment criterion

Kai Chen, Ling-An Wu,

Quantum Information and Computation 3, 193-202 (2003);
Physics Letters A 306, 14-20 (2002);

Phys. Rev. A69, 022312 (2004);

S. Albeverio, K. Chen, S.M. Fei, Phys. Rev. A 68, 062313 (2003);
O. Rudolph, Quantum Information Processing 4, 219-239 (2005);

Horodecki, M., P. Horodecki, and R. Horodecki, Open Syst. Inf. Dyn.
13, 103 (2006).
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Good entanglement measures

| 'XTJ‘—_‘jA/\ u_»jjo

( » No increase under LOCC

. Continuity

E(p) — E(o) — 0 for

lo—ol|| — 0




Good entanglement measures

. Convexity




Bad!

o Additivity
o1 € Hat ® Hpi and o2 € Ha> @ Hp>. Then

Ep(o1 ®02) = Ep(o1) + Ep(02)

'+ The strong superadditivity

density matrix o over a quadripartite system Ha1 @ Ha2 @ Hp1 @ Hp2

7
P. W. Shor, Comm. Math. Phys. 246, 453—47/2 (2004); AT&T ,_,-;%a-a«;}‘:i: :
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> aaditivity of the minimum entropy output of a
qguantum channel;

> aaditivity of the Holevo capacity of a guantum
channel;

> additivity of the entanglement of formation;,

> Strong superadditivity of the entanglement of

formation.




b

U R =

Distillable Entanglement

lim
n— 2

IS the density operator corresponding to the maximally
entangled state vector in K dimensions,

B(K) = [ (4

IS a general trace preserving LOCC operation

VI e . At what rate may we obtain maximally entangled sta;_e,g’ .
(of two qubits) from an input supply of states of the form p. 3 ﬁaﬁ /
2

Plenio, M. B., and S. Virmani, 2006 <.




b

228 R R =

Entanglement Cost

Ec(p) :inf{r: lim [mfp( on qj(@(zm)))}

n— oo

]:)(g-3 77) is a suitable measure of distance

i.e. D(o,n) = tr|oc—n|

YIE& . For a given state p this measure quantifies the maximal

possible rate r at which one can convert blocks of 2-qubit maximally
entangled states into output states that approximate many copies Dk,
such that the approximations become vanishingly small in the limit of | W :
block sizes. Z

Plenio, M. B., and S. V|rman| 2006?
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Entropy of Entanglement

E(ly)(@)) := S(tra|v) () = S(trp|¥)(¥))

= —tr[plog, p|

AJvon-Neumann entropy

S K ‘v 'f e s b
XTJ‘ 6D éEE ,jp_? Ep(p) and Ex(p) are identical 4%ﬁ! S




E(o) =inf >, p,E(¢)),

T o->p) /),
1HY,

2V 2 B

[

2y L

Uhlmann, 1998

= Entanglement of Formation

o HHL

Ep(p) := mf{zpi ([thi ){¥i]) - Pzzpi\% ) (Wil

E(|4) %)

= S(trp{|y)(¥[})

Bennett, DiVincenzo, et al. 1996 ‘
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Two qubitsZ| 255 &

/J—\‘_é X éIE 745 Elg cConcurrence

C=1\2(1-Trp?)

() =200, BN SE R IS

>

»
‘\ 1k

S HE e
B C = (b

S. Hill and W.K. Wootters, Phys. Rev. Lett. 78, 5022-5025 (féi) -




Two qubitsZ| 255 &

FCRHL o, A, A A @Y BAIS I - HE 51 B &5 57 E

Ml Entanglement of Formation (EoF) N

W.K. Wootters, Phys. Rev. Lett. 80,
2245-2248 (1998)




Negativity

1X]| :=trvVXTX
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— Convex roof measures

Ve o A 2 28 i

E(p)=inf D, p.E(y), 2. p;=1, p,=0

[

Entanglement cannot increase
under local operations and classical communication.

For any LOCC operation, we have

E(A(p)) = E(p)




PR T R 2 ZE

E X 2

Ep s(@) = inf D(p,0)

ocS

B=NESEEER=DN FEl D (p. o) = D(A(p),A(0))

Bl Ullrelative entropy of entanglement
S(e|o)=Tr p(log, 0 -log, o)

Er= inf Tro(log, 0 —log, o)
ocSEP

\. Vedral, "The role of relative entropy in quantum
information theory”, Rev. Mod. Phys. 74, 197 (2002)




Entanglement Witness Monotones

Entanglement Witness VpeSEP  tr{Wp} >0

and

dp s.t. tr{Wp} < 0.

"
o

[
A
Wz e
- S p
L i
. > -
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HE) 1Y) Concurrence

C(p) = min 2 C(|if;)
3 {pile) }ZI r/

Theorem.—For any m ® n(m = n) mixed quantum state
p. the concurrence C(p) satisfies

(max(l[p" I, IR (p)I) — 1).

m(m — 1)

K. Chen, S. Albeverio, S.M. Fei, Phys. Rev. Lett. 95 (2005) 040504 -




ALV NN e o=

Entanglement of Formation
pa = Trg(lg)wl)

m

S{pﬁ. Zauﬂloc«?luﬂ T HU.L)

E(p) = mm ). E(| i,
by Z,r (1)

0, A=1,
Hy[y(M)] + [1 = y(AM)]loga(m — 1), A € [1, 421

m

loga(m—1) (A — 1) + log,m, A€E [4{-”:}1 D, fﬂ]_,

m—2

R(A)=H -a[y(_f&] + [1 — y(A)Jloga(m — 1),

Y(A) = —=[vVA +(m — D(m — A 7

m? | - P A = max(||p"4]l, ||R(P ||) =
K. Chen, S. Albeverio, S.M. Fei, Phys. Rev. Lett. 95 (2005) 210501 4 ,, % ,.j 1
S.M. Fei, X. Li-Jost, Phys. Rev. A 73 (2006) 024302 <&




Ordering by Entanglement

There are many different types of entanglement,
and in one state we have more entanglement of one
type, while in the other state there is more entanglement

of some other type
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Three-tangle or residual tangle

HA:B:C) = {A:BC) - {AB) — H(AC)

Coffman et a/. 2000
where two-tangles on the right-hand side are squares of concurrence

Vi) (Vi) }

For a 2 X'n dimensional systems

i A2




Monogamy of Entanglement

For any tripartite state of systems A, B, C,
1f one has

E(A:B)+ E(A:C) = E(A:BC)

then E(A:B)) + E(A:By)+ ---+ E(A:By)
= E(A:BI ke Bl.\.) .

SSAEEN £ (A:B) + E,(A:C) < E,

'sq sq

(A:BC)

Koashi and Winter 2004




Monogamy of Entanglement

@) apci@|)
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Shannon entropy

Operationally as the minimum number of bits needed to
communicate a message produced by a classical
Statistical source associated to a random variable X.

The Shannon entropy of X quantifies how much
information we gain, on average, when we learn the
value of X.

The entropy of X measures the amount of uncertainty
about X before we learn its value. N S

&
.ﬁ'_
2 P Pa




Shannon entropy

A measure of our uncertainty before we learn the
value of X

A measure of how much information we have gained
after we learn the value of X.

It can be used to quantify the resources needed to Sto? @4.;
information =




BN e

yay

%€ X binary entropy

Hyin(p) = —plogp — (1 — p)log(1l — p)

concavity
H(gpu + (1 — @)pa) = qH(pu) + (1 — q)H(pa)




The relative entropy

plr) _

((1)

H(X) - Zp(i)log q(x)

H (p(z)||q(x)) = Zp ) log -

A good measure of distance between two distributions

H(p(x)||q(x)) = 0, with equality if and only if p(x) = ¢(x) for all =




I35 ) 28

Joint entropy

The joint entropy measures our total uncertainty about
the pair (X, Y ).

Conditional entropy

H(X|Y)= H(X,Y)— H(Y)

A measure of how uncertain we are, on average, a_‘gut
the value of X, given that we know the value of Y '74@]';5 .
==
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Mutual information

H(X:Y)= HX)+ HY) - HX.Y)

Measuring how much information X and Y have in
COmMmOon.

Useful equality
H(X:Y)=H(X)— HX|Y) -




Shannon/@§ i) 2= 25 14 5

(1) HX.Y)=HY.X), HX:Y)=H({Y : X).

(2) HY|X) = 0and thus H(X :Y) < H(Y), with equality if and only if ¥ i1s a
function of X | Y = f(X).

(3) H(X) < H(X.Y), with equality if and only if Y is a function of X .

(4) Subadditivity: H(X.Y) < H(X) + H(Y') with equality if and only if X
and Y are independent random variables.

(5) HY|X) < H(Y) and thus H(X :Y) > 0, with equality in each if and only
if X and Y are independent random variables.

(6) Strong subadditivity: H(X. Y. Z)+ HY )< HX.Y)+ H(Y, Z), with

equality if and only if Z — Y — X forms a Markov chain.

(7) Conditioning reduces entropy: H(X|Y.Z) < H(X|Y).
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Von Neumann entropy

A, are the eigenvalues of p

Relative entropy

S(pl|lo) = t(plog p) — tr(plogo)

\. Vedral, "The role of relative entropy in quantum
information theory”, Rev. Mod. Phys. 74, 197 (2002)




VYon Neumann entropy%lli‘f Ji

The entropy 1s non-negative. The entropy 1s zero if and only if the state 1s
pure.

In a d-dimensional Hilbert space the entropy is at most log d. The entropy is
equal to logd if and only if the system is in the completely mixed state I /d.
Suppose a composite system AB is in a pure state. Then S(A) = S(B).
Suppose p; are probabilities, and the states p; have support on orthogonal
subspaces. Then

S (Z pip?) = H(p:) + ) _ piS(p:).

(5) Joint entropy theorem: Suppose p; are probabilities, |7) are orthogonal

states for a system A, and p; is any set of density operators for another
system, B. Then

S (Z pilt) (2| ® pi) = H(p;) + ZpéS(pé).
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Von Neumann entropy il

UES]

The system after the measurement is at least as great as the
original entropy

S(p") = S(p)

with equality if and only if p = p. ”'ﬁ*‘ f




Subadditivity and concavity

MEERN S(A. B) < S(A) + S(B)
S(A, B) = |S(A) — S(B)|

concavity

Note that equallw holds if and onIy if all the states p; fQR, |
which p; > 0 are identical; that is, the entropy is a strictly 4&\!‘;5 :
concave function of its inputs. e
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Von Neumann entropy B £

ke 15 B 2 W R 1

S(A)+ S(B) < S5(A,C)+ S(B,C)
S(A,B,C)+ S(B) <S(A,B)+ 5(B,C)

i
2

h




Yon Neumann entropyﬁg‘ﬁﬁ

(entropy) > (£ (p log /)‘)

(relative entropy) (pllo) = —b(/)) — tr(plog o)
(conditional entropy) S(/ = S(A.B) — S(B)
(mutual information) S = S(A)+ S(B)— S(A. B)

(1) Conditioning reduces entropy: Suppose ABC' is a composite quantum
system. Then S(A|B.C) < S(A|B).

(2) Discarding quantum systems never increases mutual information:
Suppose ABC' is a composite quantum system. Then
S(A:B) < S(A:B, ().

(3) Quantum operations never increase mutual information: Suppose
AB 1s a composite quantum system and £ is a trace-preserving quantum
operation on system B. Let S(A: B) denote the mutual information between ,//
systems A and B before &£ is applied to system B, and S(A": B’) the mutual 7

information after £ is applied to system B. Then S(A":B’) < S(A:B). 3
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Von Neumann entropy & E

Subadditivity of the conditional entropy

S(A, B|C, D) < S(A|C) + S(B|D)

S(A. <
S(A|B,C) < S(A|B) + S(A|C)

Monotonicity of the relative entropy

where p*® and 0" be any two density matrices of @ . 7
composite system AB. 7
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Distillable entanglement

Distillable entanglement: The asymptotic yield of arbitrarily
pure singlets that can be prepared locally from mixed state
by entanglement purification protocols (EPPs) involving

one-way or two-way communication between Alice and Bob.

BN\ i _Fl 2 e—
: NB :_h_-I; U, % I

L L L -

FIG. 3. One-way entanglement purification protocol (1-EPP). In
1-EPP there is only one stage: after unitary transformation U, and
measurement M, Alice sends her classical result to Bob, who uses
it in combination with his measurement result to control a final Bennett C. H D‘
transformation U;. The unidirectionality of communication allows DIVIﬂCGﬂZO J. A Sl'ﬁ‘
the final, maximally entangled state (*) to be separated both in and W. K. Wootters

space and in time. Phys Rev. A 54, 3824 <




Distillable entanglement

maximally

classical g entangled
communication—7 }f =

FIG. 2. Entanglement purification protocol involving two-way
classical communication (2-EPP). In the basic step of 2-EPP. Alice
and Bob subject the bipartite mixed state to two local unitary trans-
formations U; and U,. They then measure some of their particles
M., and interchange the results of these measurements (classical
data transmission indicated by double lines). After a number of
stages., such a protocol can produce a pure., near-maximally-
entangled state (indicated by *’s).

Bennett, C. H., D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters;
1996, Phys. Rev. A 54, 3824.
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Entanglement distillation

A certain number of maximally entangled EPR pairs is manipulated
by local operations and classical communication and converted into
pairs in some state. The asymptotic conversion rate is known as the

FORMATION

DISTILLATION

Vlatko Vedral, Introduction
to Quantum Information

Maximally Non Maximally Science, Oxford University
Entangled Pairs Entangled Pairs Press, 2006

The converse of formation is the distillation of entanglement 3 - £

The asymptotic rate of conversion of pairs in the state into maxz%ally
entancled states is known as the

'/




Distillation scheme

FIG. 2. Providing a noiseless channel via distillation: a) Alice wants to send the message |4} to Bob. b) Bob receives o

mnstead, as the channel 15 nosy. ¢) Alice sends one subsystem of a maximally entangled state through the nowisy channel to
Bob, and repeats this with a second pa.i1 They employ a distillation protocol. d) Alice and Bob have created a maximally
o nta.ne;ln-d singlet which they can use as a noiseless teleportation channel.
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One-way hashing distillation protocol

Bell diagonal states B;;,, are naturally parametrized
by the probability distribution of mixing p.

ED(deiag) =1 - H({p})

The n copies of the two-qubit Bell diagonal state B;,, can
be viewed as a classical mixture of strings of n Bell states.
Typically, there are only about 2"H(&r}) such strings that
are likely to occur (Cover and Thomas, 1991).

»
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Two-way recurrence distillation protocol

Two-step procedure:

F'(F)=

In the first step Alice and Bob take two pairs, and apply

loca
targ

lly a controlled NOT gate. Then they measure the
et pair in a bit basis. If the outcomes are different

they discard the source pair failure, otherwise they
keep it.

Int

ne latter case, a second step can be applied: they

twir

. 2 5 R ;?f&‘t,,
F~+ :’F(l - )+ 6(1 - F)” to 1 for a sufficiently Iarge;f’rfa?cﬁﬂil :

the source pair to the Werner state.

F=Tr p|¢" )]

If only F>1/2, the above_
recursive map converges'

2 1 2
F‘+6(1—F)

number of copies. <
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b = F|I® ), (P |+ (1 — PV ), (¥ |

|45i>ab = $(|H>;,|H)b = |V>;1|V)b)

" 1
I‘-'p_ )ab — _2(|H>‘1|V>b i |V>;1|H>[))

Jian-Wei Pan et a/. Nature 410, 1067 (2()051) :
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Entanglement distillation
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Distillability

Can we distill MES using LOCC?

PPT states cannot be distilled. Thus, there are bound entangled
states.

(Horodecki 97)

There seems to be NPT states that cannot be distilled.

(DiVincezo et al., Dur et al., 2000) From €"§ ,./;( }




Distillability

All entangled two-qubit states are distillable

distillable

distillable

Idea: find A, B such that they project
onto c2- c2 withp * < 0

there is a strong evidence that they are not distillable: for any finite N, aII
projections ontd c2- c2 have p"'* > 0

From Cirac * 7




What 1s known?

In general

2xN (Horodecki 97, Dur et a/. 2000)
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