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Bit Flip X:
Phase Flip Z:

Complete dephasing:

Depolarizing channel :

Rotation:

(decoherence)




Correcting Continuous Rotation

Let us rewrite continuous rotation

Ry® [yy = cos (6/2) ly) - i sin (6/2) Z® |y)




Correcting Continuous Rotations
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Correcting All Single-Qubit Errors

If @ quantum error-correcting code (QECC) corrects errors A and B, it
also corrects oA + BB.

B OX + 7Y + 82

Any QECC that corrects the single-qubit errors X, Y, and Z (plus I) corrects every
single-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus I) corrects all t-qubit errors,.:%}
N a7

&7 “ .
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Figure 10.5. The packing of Hilbert spaces in quantum coding: (A) bad code, with non-orthogonal, deformed
resultant spaces, and (B) good code, with orthogonal (distinguishable), undeformed spaces.
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Discretization of the errors
Any QECC that corrects the single-qubit errors X,
Y, and Z (plus |) corrects every single-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus I)
corrects all t-qubit errors.

This Is a fundamental and deep fact about quantum
error-correction, that by correcting just a discrete set
of errors — the bit flip, phase flip, and combined bit—
phase flip, in this example — a quantum error-
correcting code Is able to automatically correct an
apparently much larger (continuous!) class of &’92{
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[[n,K]] quantum error correcting code
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g2 S = 125G

FIG. 3. One-way entanglement purification protocol (1-EPP). In
1-EPP there 1s only one stage: after unitary transformation U, and
measurement M, Alice sends her classical result to Bob, who uses
it 1 combination with his measurement result to control a final
transformation U;. The umdirectionality of communication allows
the final, maximally entangled state (*) to be separated both in

space and 1n time.
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FIG. 4. If the 1-EPP of Fig. 3 1s used as a module for creating
tume-separated EPR pairs (¥), then by using quantum teleportation
[5]. an arbitrary quantum state |£) may be recovered exactly after

U,. despite the presence of intervening noise. This 1s the desired

effect of a quantum error-correcting code (QECC).
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FIG. 14. A QECC can be transformed into a 1-EPP. Teleporting
(M, .U,) via a mixed state M defines the noisy channel y(M). If a
quantum error-correcting code {U, ,U,} can correct the errors in
this channel. the code and channel can be used to share pure en-

tanglement between Alice and Bob (*). This establishes inequality
(52), viz., V,D{(M)=Q(x(M)).
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FIG. 16. The one-way purification protocol of Fig. 4 may be
transformed into the quantum-error-correcting-code protocol shown
here. In a QECC, an arbitrary quantum state |£), along with some
qubits which are originally set to |0), are encoded in such a way by
U f that, after being subjected to errors Np . decoding U, followed
by measurement M, followed by final rotation U5, permits an exact
reconstruction of the original state |&).
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A code that encodes k bits in n bits (n>k) is called
an [n,k] code.

A general code encoding k bits in n bits requires
2« codewords of length n to specify the encoding.

A linear code C encodes k bits of information into
an n bit code space specified by an n by k
generator matrix G with elements in Z,,.

A linear code only requires kn bits to specify the
encode.




21 2 Y

We encode a k bits codeword x, into an
bits codeword c using a [n by K]
generator matrix G as follows:

Error correction for linear codes is done

using a [(n-k) by n] parity matrix. g

‘?'.f\’!
4&\*’ .
e




Parity Check i1 %

Parity check matrix H is such that:
Hc=0and HG=0

The receiver gets the codeword r, which
Incorporates an error e:

= C + ¢
Then, the syndrome s is given by:
s=Hr=He




Error Correction & Recovery

Once we detect the syndrome s, we can
find the error that occurred e.

Now we can correct the error as:
C=r-—e

And finally one can recover the original

message
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Gilbert—Varshamov
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Quantum Error Correction Codes are
characterized by the triplet [n,k,d], where:
n is the length of the resulting codeword.

K Is the number of qubits to be encoded.

i

!

d is the minimum distance.
Data redundancy implies n>k

A code with minimal distance d=2t+1 is

able to correct errors on up to t bits. P"”"‘f'i@

<~ ,</_< .




=R

[[n,K]] quantum error correcting code
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After encoding the code is subjected to noise, following which a
syndrome measurement is performed to diagnose the type of
error which occurred, that is, the error syndrome. Once this has
been determined, a recovery operation is performed, to return
the quantum system to the original state of the code. The basic
picture is illustrated in Figure 10.5: different error syndromes
correspond to undeformed and orthogonal subspaces of the total
Hilbert space. The subspaces must be orthogonal, otherwise they
couldn t be reliably distinguished by the syndrome measurement.
Furthermore, the different subspaces must be undeformed
versions of the original code space, in the sense that the errors
mapping to the different subspaces must take the (orthogonal)
codewords to orthogonal states, in order to be able to reco% -

from the error. };ﬁ* ‘
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We have learned about the error without learning about
the data, so quantum superpositions are still alive! < # &=




Calderbank—Shor—Steane codes

Suppose C; and C, are [n, k;] and [n, k,] classical linear codes such that C2 c C1
and C; and C,+ both correct t errors. We will define an [n, k; — k,] quantum code

CSS(C,, C,) capable of correcting errors on t qubits, the CSS code of C, over C,

The quantum code CSS(C', () is defined to be the vector space spanned by
the states |z + () for all x € (. The number of cosets of C; in C is |C]/|C5] so
the dimension of CSS(C,(5) is |Cy|/|C,| = 2817%2 and therefore CSS(Cy, C}) is an

[n, k1 — k] quantum code.

3 eV a2 4 -~

e



Calderbank—Shor—-Steane codes
Bit flip errors detection and correction

Suppose the bit flip errors are described by an n bit vector e, with 1s where
bit flips occurred, and 0s elsewhere, and the phase flip errors are described by an

n bit vector e, with 1s where phase flips occurred, and Os elsewhere. If [x+C,>

was the original state then the corrupted state is:

S S ey )

uEC"

Introducing an ancilla and taking
lz+y+e)|H(x+y+e) =|x+y+e)He)

one has

( 1)\ =ty)e lx+y+e)|Her)




Calderbank—Shor—Steane codes
Bit flip errors detection and correction

Error-detection for the bit flip errors is completed by measuring the ancilla to obtain
the result H,e, and discarding the ancilla, giving the state

—D)Cr +y + o)

Knowing the error syndrome H;e, we can infer the error el since C, can correct up
Lo t errors, which completes the error-detection. Recovery is performed simply by
applying gates to the qubits at whichever positions in the error e, a bit flip occurred,
removing all the bit flip errors and giving the state




Calderbank—Shor—Steane codes

Phase flip errors detection and correction
To detect phase flip errors we apply Hadamard gates to each qubit, taking the

state to

WZZ(

e u{_ C"
Supposing 2’ € (_?EL it 1S easy
to see that ZUFC ()i = , while if 2’ & C5- then Z-y:;;cf.](_l)y'z! = 0. Thus the

state may be rewritten:

}ﬂr|( Z (_l)lH #

.,.r,‘_{' J_




Calderbank—Shor—Steane codes
Phase flip errors detection and correction

The last formula looks just like a bit flip error described by the vector e,! As for the
error-detection for bit flips we introduce an ancilla and reversibly apply the parity
check matrix H, for C,+ to obtain H,e,, and correct the 'bit flip error’ e,, obtaining
the state

The error-correction is completed by again applying Hadamard gates to each qubit.
Since the Hadamard gate is self-inverse this takes us back to the state




Quantum Gilbert—\VVarshamov bound

In the limit as n becomes large, an [n, K] quantum
code protecting against errors on up to t qubits exists
for some k such that

Thus, good quantum error-correcting codes exist,
provided one doesn't try to pack too many qubits k
Into an n qubit code.
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The Pauli Group

For a single quantum bit

Gy =4, Ll , X, i X Y, LY, £ 7, +i7 )

that G, Is closed under multiplication, and thus forms a legitimate
group.

Any pair M, N of Pauli operators either commutes (MN = NM) or
anticommutes (MN = -NM).




Quantum Error Correction Sonnet

We cannot clone, perforce; instead, we split
Coherence to protect it from that wrong
That would destroy our valued quantum bit
And make our computation take too long.

Correct a flip and phase — that will suffice.
If in our code another ervor’s bred,

We simply measure it, then God plays dice,
Collapsing it to X or Y or zed.

We start with noisy seven, nine, or five

And end with perfect one. To better spot

Those flaws we must avoid, we first must strive
1o find which ones commute and which do not.

With group and eigenstate, we ve learned to fix
Your quantum ervors with our quantum tricks.
— ‘Quantum Error Correction Sonnet’, by Daniel Gottesman




Stabilizer

vector space stabilized




Properties of a Stabilizer

The stabilizer is a group:

The stabilizer is Abelian:




Stabilizer 15l

The EPR state of two qubits

.\ _ [00) +]11)
¥) = /2

Z15|0) = )

stabilized




Stabilizer 15l




Stabilizer 15l

first two bits have even parity

correctly-
encoded state 000 or 111

odd parity
for the first two bits.

a codeword is a
+1 eigenvector of Z&®ZXI
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Measuring Z&®Z detects bit flip (X) errors, and
measuring X&®X detects phase (Z) errors.




Error Correction Conditions

Theorem: Let S be the stabilizer of the
stabilizer code C(S). Suppose {E} is a set of
operators in G, such that:

for all | and k. Then, {E;} is a correctable set
of errors for the code C(S).

The normalizer of S, denoted N(S), which is defined to\éx?g;i =

of all elements E of G, such that EgEt & Sforallg € S. f*;? =




Error Detection

Suppose g,,...,9,., IS the set of generators for the
stabilizer of an [n,k] stabilizer code, and that {E}
IS the set of correctable errors for the code.

Error detection is performed by measuring the
generators of the stabilizer in turn, to obtain the
error syndrome, which consists of the results of
the measurements f3,,...,B, -

If the error E occurred then the error syndrome is
given by B, such that:




Recovery (1)

In the case where E is the unique error
operator having this syndrome, recovery

is done by applying E'.

In the case where there there are two
distinct errors E and E’ giving rise to the
same error syndrome, it follows that:
EPE'= E'PE"™ and then E'E'PE'E =P
and therefore E'E’ is part of S.

4} ..."_:: )

‘_é




Recovery (2)

Thus applying E' after the error E’ has
occurred results in a successful recovery.

Thus, for each possible error syndrome we
simply pick out a single error £ with that
syndrome, and apply E' to achieve
recovery when that syndrome is observed.

:k’\ i
‘?'.f \” ¥
4&:" :
.




How to construct a quantum
error correction code?

An [n,k,d] quantum error correction code C(S) is the
vector space Vs stabilized by a subgroup S of G,
such that and S has n-k independent and
commuting generators:

and logical states stabilized by:

which can correct a set of correctable error

operators {E;} in G, such that, for all j and k: "‘*,

‘ ”'f‘«"! '




Design Goals for QECCs

High rate k/n d/n
Efficient decoding

Efficient encoding
Specific error models

Many symmetries 1o

7y

v e WA

A » 4

%‘*"’“
WA

Other application-specific properties From Gb&??‘}ﬁ'?“ '




The three qubit bit flip code

Consider the familiar three qubit bit flip code spanned by the states |000) and [111), with
stabilizer generated by 2,7, and Z,73. By inspection we see that every possible product
of two elements from the error set {1, X;, X5, X3} — I, X;, Xo, X5, X1Xo, X7 X5, X5 X5

— anti-commutes with at least one of the generators of the stabilizer (except for I, which
is in S), and thus by Theorem 10.8 the set {I, X, X,, X3} forms a correctable set of
errors for the three qubit bit flip code with stabilizer (Z,2,, Z,73).

Error-detection and correction

Error type Action

no error no action

bit 3 flipped | flip bit 3
bit 1 flipped | tlip bit 1
bit 2 flipped | flip bit 2




The three qubit bit flip code




The nine qubit Shor code

Operator

ZZTT1TTI111
tLLL EEL T 1
111221111
111122111
111111271
1111111727

LLLLLLLZZ

(/000) + [111))(|000) + |111))(|000) + [111))

10
0) — [07) 72
by (000~ [1T000) 111 000) — [111) P




The nine qubit Shor code

Operator

ZZTT1TTI111
tLLL EEL T 1
111221111
111122111
111111271
1111111727

BN WA

stabilizer




The five qubit code

1
4

0,) = “00000)-+|10010>-+|01001)-+|10100>

+(01010) — [11011) — [00110) — |11000)
— [11101) — [00011) — [11110) — |01111)

-\10001)-—|01100>-—|10111>-+|00101>]

1) = % D11111>-+|01101>-+|10110>-+|01011>
+[10101) — 00100 — [11001) — [00111)
100010 — [11100) — |00001) — |10000)
-\01110>-—|10011>-—|01000>-+|11010>]

Name | Operator
0 XZ/7X1

) IXZZX

73 XIXZ7
04 /X1IXZ
Z ALLLL L
X XXXXX




CSS Codes

classical linear
codes C, and C,

/,1,3 ECC
IR Operator

I 171X r)&Z s
T XXT TXX C,: [7,4,3] Hamming
XIXIXIX
111 /2727
1 ZZ1 127 C,: [7,3,4] Hamming
Z1Z717Z17

+/0001111) + [1011010) + |0111100) + \1101(][)1}}

[|1111111 +10101010) + [1001100) + [0011001)

+/1110000) + [0100101) + [1000011) + |00101 10}}



Calderbank-Shor-Steane Codes

CSS codes are a subclass of stabilizer codes.

They construct quantum error correction codes
from classical linear codes.

As a general rule, to detect X errors, CSS take a
classical parity check matrix P, replaces 1 by Z
and I's elsewhere.

To detect Z errors, replace X’s instead of Z's in
the matrix.




CSS codes

If C, and C, are orthogonal then we can
combine these two codes. This means
that the dual code of each code must be
a subset of the other code.

Combining a C,[n,k,,d.] with a C,[n,k,,d,]
yields a CSS(C,,C,)[n,|k,-k,|,d;] with d; =
min{d,,d,}.



CSS codes and the seven qubit code

The 7-qubit Steane code is the most
popular CSS code.

It Is created with a classical Hamming
code [7,4,3] which is self dual.

The matrix C, is taken as the classical
parity check matrix H.

~ The matrix C, is taken as the transposed_
of its generator GT. A

’ : ‘._—_'.H',. ~Vl)
§ :

¥

-




CSS codes and the seven qubit code

Define a check matrix with the form

{ HCEH) | 0 ]

0 | HCY)

The 7-qubit Steane code is the most popular CSS
code.

It IS created with a classical Hamming code [7,4,3]
which is self dual.

The matrix C, is taken as the classical parlty Chegh>
I

matrix H. Lz ,</_< !




More about Stabilizer

The stabilizer is a group:

The stabilizer is Abelian:

T(S) = { hy) s.t. M ly) = hy)
vV M € S}. Then T(S) encodes k logical qubits in
n physical qubits when S has n-k generators (so

size 2"K).




Stabilizer Elements Detect Errors

E lw) has eigenvalue -1 for M

E ly) has eigenvalue +1 for all M in the stabilizer.

The eigenvalue of an operator M from the stabilizer d\é"%% 4
errors which anticommute with M. :
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Distance of a Stabilizer Code

N(S) = {N € P, s.t. MN=NM V M e S}.

distance d

detects any error not in N(S) \' S




Error Syndromes and Stabilizers

error syndrome is the list of eigenvalues of
the generators of S
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Stabilizer Codes Correct Errors

Theorem: The code corrects errors for which ETF ¢ N(S)\' S
for all possible pairs of errors (E, F).
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A stabilizer code with distance d corrects | (d-1)/2 erfor&s"
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Stabilizer Codes Summary

stabilizer

{hyyst.Mly) = ly) VM e S}

K = n-r encoded qubits
BlE = N(S)\S

distance d minimum weight of N(S) %S,
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Summary: Stabilizer Codes




Application: 5-Qubit Code

non-degenerate [[5,1,3]] ;4 7z
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'.;' -~ <, & o '
From Gbfttesiman




£ T4 EARIER
LEtsdiE = Y

2B EEYFsRiRE 15, Shork
= T IxZIE
EA S5 E T 455

= FELE (LM%M, CSSHE)
#= 7 FH5(Stabilizer Codes)

o e A




The Gottesman-Knill Theorem

Theorem: Suppose a quantum computation is
performed which involves only the following
elements: state preparations in the computational
pbasis, Hadamard gates, phase gates, controlled-
NOT gates, Pauli gates, and measurements of
observables in the Pauli group (which includes
measurement in the computational basis as a
special case), together with the possibility of
classical control conditioned on the outcome of
such measurements. Such a computation may be
efficiently simulated on a classical computerypy,
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Quantum Computing Simulations

The Gottesman-Knill theorem shows that some
guantum computations involving highly entangled
states may be simulated efficiently (in polynomial
time complexity) on classical computers.

These computations include quantum teleportation
and superdense coding.

However, not all types of entanglement can be
described efficiently with the stabilizer formalism.




Universal quantum computation?

In order to perform truly universal quantum
computation, even a single gate outside of N(G) can
be sufficient. For instance, the Toffoli gate (a three-
gubit gate which flips the third qubit iff both of the
first two qubits are [1>) along with N(G) suffices for
universal computation.

The set of U such that UAUT € G for all A € G is the
normalizer N(G) of G in U(n).

Also for the single-qubit 11/8 rotation gate /N




Summary of QECCs

Quantum error-correcting codes exist which can
correct very general types of errors on quantum
systems.

A systematic theory of QECCs allows us to build
many interesting quantum codes.

Quantum error correction can be formalized in terms
of quantum states and projectors, stabilizer
subspaces or the stabilizer group.

All these formalizations are equivalent.

The theory of quantum error correction is quite
elegant and simple.

C' The implementation is really a nontrivial task. * !4‘%
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