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一、量子纠错基本理论

（一)量子纠错的作用：保护信息免受噪声干扰

(二）量子纠错与经典纠错的区别

（1）量子态不可复制。经典信息：通过克隆
的方式，加入冗余信息来编码消息，例如
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一、量子纠错基本理论

例如经典码

如果发生错误的概率为P，加入纠错码后发生
错误的概率由 p           3p2-2p3

0

1

000

111
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量子信息：将单量子比特编码
α |0>+β |1>             α |000>+ β |111>
（原量子比特） （通过3个量子比特编码后）

注：量子比特的编码方式不是克隆而是直接制
造，比如上述量子态编码可以通过3光子纠缠来
实现。

（2）差错连续性。经典信息的错误是分立的，
而量子位态取值与一个二维的Hilbert空间的任
意态失，所以量子信息的错误可以是连续的。
比如在一个量子门的操作下一个量子位态应由

α |0>+ β |1>         α |0>+ βеφі |1> 
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但是由于误差，使得

α |0>+ βеφі |1>          α |0>+ βе і （φ+δ） |1>

虽然δ是一个小量，但依然是错误的量子态，随
着时间的推移，这些小量会积累起来变成大错。

（3）不可测量性。由于不可观测的量子特性，
使得纠错过程出现两个难题：

1是否出错？
2出现什么错误？
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Shor码

Shor码

比特反转

差错检验 恢复

相位反转

差错检验 恢复
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比特翻转量子码
方法1
P0= |000><000| + |111><111|无差错
P1= |100><100| + |011><011|第一比特翻转
P2= |010><010| + |101><101|第二比特翻转
P3= |001><001| + |110><110|第三比特翻转

例如第一比特翻转时，比特状态为：
α |100>+ β |011>

这时测量状态φ时，<φ|P1|φ>=1
测量并不会引起状态的改变，测量前后比特状态
都为α |100>+ β |011>，通过测量只得到了φ的
差错信息，并不会得知α，β的值
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方法2
由Z1 Z2与Z2 Z3 代替 P0 P1 P2 P3

Z1Z2测量目的是比较第1量子比特与第2量子比特

若1与2相同，则给出+1，若不同给出-1
Z2Z3测量目的是比较第2量子比特与第3量子比特
若2与3相同，则给出+1，若不同给出-1
由此，可以判断出错误类型，却不测量有关编

码后量子状态的幅值α，β
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纠单比特错误量子码

code states
Parity of pairs 12 and 23

Error syndrome

Even  Even

Odd  Even

Odd  Odd

Even  Odd
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Quantum error correction

ancilla
qubits

Single bit flip 
correction circuit

Error correctionSyndrome 
measurement

ancilla
qubits

Coherent version

From Caves
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相位翻转
由α |0>+β |1> α |0>−β |1>（相位翻转）
处理方式：将相位翻转转化为比特翻转

设

|1>

|−> |0> |+>

得出

|0L>=|000>    |0L>=|+++>
|1L>=|111>    |1L>=|−−−>
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Shor量子码：
三量子比特 相位翻转码与比特翻转码的组合

Shor码编码线路
Hadamard门可以实现|0>，
|1>基与|+>，|−>之间的
转换
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(四) Shor码推广--可对完全任意的差错进行保护
设噪声为{Ei},编码后的量子比特态为

噪声{Ei}作用后：

假设把纠错集中到一个单项式
量子状态Ei|ψ>可以写成
|ψ>，X1|ψ>，Z1|ψ>，X1Z1|ψ>的叠加
测量差错症状会将这个叠加结果
塌缩到上述4个状态之一
恢复过程由相应的逆运算而执行，
并成功恢复状态|ψ>，
这种方法对于所有运算元Ei都是正确的
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量子错误描述
A general quantum error is a superoperator that is of form:

   Ak  Ak
†

Examples of single-qubit errors:

Bit Flip X:      X0 = 1, X1 = 0

Phase Flip Z:  Z0 = 0, Z1 = -1

Complete dephasing:   ( + ZZ†)/2 (decoherence)

Rotation:  R0 = 0, R1 = ei1

Depolarizing channel :   ((1-p) +p/3(XX+YY+ZZ)
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Correcting Continuous Rotation

Let us rewrite continuous rotation
R0 = 0, R1 = ei1

R = (   )= ei/2(    )
= cos (/2) I - i sin (/2) Z

1   0

0  ei

e-i/2 0

0   ei/2

R
(k) = cos (/2) - i sin (/2) Z(k)

(R
(k) is R acting on the kth qubit.)

From Gottesman 
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Correcting Continuous Rotations

How does error correction affect a state with a continuous rotation on it?

R
(k) = cos (/2) - i sin (/2) Z(k)

cos (/2)I - i sin (/2) Z(k) Z(k)

Error syndrome

Measuring the error syndrome collapses the state:

Prob. cos2 (/2):  (no correction needed)

Prob. sin2 (/2): Z(k) (corrected with Z(k))

From Gottesman 
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Correcting All Single-Qubit Errors

Theorem: If a quantum error-correcting code (QECC) corrects errors A and B, it 
also corrects A + B.

Any 2x2 matrix can be written as I + X + Y + Z.

A general single-qubit error    Ak  Ak
† acts like a mixture of   Ak, 

and Ak is a 2x2 matrix.

Any QECC that corrects the single-qubit errors X, Y, and Z (plus I) corrects every 
single-qubit error.
Correcting all t-qubit X, Y, Z on t qubits (plus I) corrects all t-qubit errors.

From Gottesman 
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量子纠错一般性
假定：噪声是由量子运算E所描述，整个纠错方
法（纠错运算）由保迹量子运算R承担

量子纠错条件：令C为一个量子码，P为到C的
投影算子设E为具有运算元{Ei}的量子运算，则
纠正C上的E纠错运算R存在的充分必要条件为,
对某个复数Hermitian矩阵α成立

称为{Ei}组成一个可纠错的差错集合
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假设{Fj}为噪声Ei的线性组合，即对某个复数矩

阵mji有 那么纠错运算R也可以对噪声

F进行纠错。

如果用 表示码空间的一组标准正交基，则纠

错条件可以表示为:

是一个与k无关的厄米矩阵
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每个运算元{Ei}都可以被写成Pauli矩阵的线性
组合。所以只需要满足

便可以确定Shor码可以对单量子比特进行纠错

量子纠错的实质：如何构造码空间C以及相应
的纠错运算R
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Any QECC that corrects the single-qubit errors X, 
Y, and Z (plus I) corrects every single-qubit error.

Correcting all t-qubit X, Y, Z on t qubits (plus I) 
corrects all t-qubit errors.

This is a fundamental and deep fact about quantum 
error-correction, that by correcting just a discrete set 
of errors – the bit flip, phase flip, and combined bit–
phase flip, in this example – a quantum error-
correcting code is able to automatically correct an 
apparently much larger (continuous!) class of errors.

Discretization of the errors
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简并编码与Hamming界
优势：能够储存更多的信息

简并编码优势
劣势：某些经典纠错技术失效

Hamming界适用于非简并编码，但它映射出一
般界的可能性。举例来说：
有k个数目的量子比特，用非简并编码将k量子比
特编码为n量子比特，如果出现j个差错（j≤t,t为
差错数上限）总共有 种差错可能出现的位置，
每种差错又实际是三个Pauli矩阵线性作用的结果，
所以总共有3j个可能的差错，所以在t个量子比特
上出现的差错最多为 个。
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如果以非简并的方式对k个量子比特进行编码，
条件:(1)每个差错要对应一个正交的2k维子空间

(2)所有纠错子空间置于n个量子比特可利
用的整个2n 空间中。

建立不等式：

这就是量子Hamming界
如果用n个量子比特对一个量子比特进行编码，
则量子Hamming界为

当n≥5时等式成立，所以不存在用少于5个量子
比特对一个量子比特编码的非简并码
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[[n,k]] quantum error correcting code

measurement + correction

量子纠错过程
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纠缠纯化与量子纠错
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纠缠纯化与量子纠错
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纠缠纯化与量子纠错
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纠缠纯化与量子纠错
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量子码的构造
经典线性码
n by k generator matrix G  whose entries are all 
elements of Z2, that is, zeroes and ones.

The matrix G maps messages to their encoded 
equivalent. Thus the k bit message x is encoded as Gx
例如[6, 2] code
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37

经典线性码

A code that encodes k bits in n bits (n>k) is called 
an [n,k] code.
A general code encoding k bits in n bits requires 
2k codewords of length n to specify the encoding.
A linear code C encodes k bits of information into 
an n bit code space specified by an n by k
generator matrix G with elements in Z2.
A linear code only requires kn bits to specify the 
encode.
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38

线性编码

We encode a k bits codeword x, into a n 
bits codeword c using a [n by k] 
generator matrix G as follows:

Error correction for linear codes is done 
using a [(n-k) by n] parity matrix.
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39

Parity Check 过程

Parity check matrix H is such that: 
H c = 0  and H G = 0 

The receiver gets the codeword r, which 
incorporates an error e:

r = c + e
Then, the syndrome s is given by:

s = H r = H e
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40

Error Correction & Recovery

Once we detect the syndrome s, we can 
find the error that occurred e. 
Now we can correct the error as:

c = r – e
And finally one can recover the original 
message
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经典线性码
优势为节省资源：用n个比特编码k个比特
线性码：kn 个比特 刻画生成矩阵
一般码：n2k 个比特 刻画生成矩阵
奇偶检验矩阵：Hx=0   (H)为奇偶检验矩阵

H矩阵为(n-k)×n
H与G之间可进行相互转换，例如

n-k

n
奇偶检验矩阵使差错检测和恢复变得十分明显

H与G之间可进行相互转换

量子码的构造
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奇偶检验矩阵具体的运作方式
设 编码消息x         y=Gx
对y造成影响的噪声 e
出错后的码字 y’=y+e   (+为模二加)

Hy=0          Hy’=He
Hy’为差错症状。当没有差错出现的情况下为0

当差错出现在第j个比特时为Hej
假设最多只会出现一个比特的错误，则通过比较
Hy’与 Hej  的值，确定哪个比特需要被纠正。
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距离标示可执行线性纠错码
设 x和y为n比特的字，
则d(x,y)为差异位置数目 Hamming距离
举例：d((1,1,0,0),(0,1,0,1))=2
Wt(x)=d(x,0)为X中非零位置数目 Hamming权重

d(x,y)=Wt(x+y)
距离的重要性在于，对某个整数t，简单的通过解
码变坏的编码消息y’为满足d(y,y’)≤t的唯一码字y，
具有距离至少为2t+1的一个码就能纠正最多t个比
特上的差错。

Hamming距离
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Hamming码，可以纠正任意单比特错误
设r≥2为一个整数，H为一个矩阵
H矩阵列的长度为2r-1 （不全为0）
Hamming码 [ 2r-1 , 2r-r-1 ]
当r=3时， Hamming码 [7,4]码

这个码的距离为3，可以纠正任意单比特上的差
错。
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Gilbert–Varshamov界
对于大n，必存在对某个k防止t比特上差错的[n,k]
纠错码

其中 为二元Shannon熵
Gilbert–Varshamov界的重要性在于，k较小n较
大时，有好码存在

Gilbert–Varshamov界
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量子纠错码特征

Quantum Error Correction Codes are 
characterized by the triplet [n,k,d], where:
 n is the length of the resulting codeword.
 k is the number of qubits to be encoded.
 d is the minimum distance.

Data redundancy implies n>k
A code with minimal distance d=2t+1 is 
able to correct errors on up to t bits.
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[[n,k]] quantum error correcting code

measurement + correction

量子纠错过程
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After encoding the code is subjected to noise, following which a 
syndrome measurement is performed to diagnose the type of 
error which occurred, that is, the error syndrome. Once this has 
been determined, a recovery operation is performed, to return 
the quantum system to the original state of the code. The basic 
picture is illustrated in Figure 10.5: different error syndromes 
correspond to undeformed and orthogonal subspaces of the total 
Hilbert space. The subspaces must be orthogonal, otherwise they 
couldn’t be reliably distinguished by the syndrome measurement. 
Furthermore, the different subspaces must be undeformed 
versions of the original code space, in the sense that the errors 
mapping to the different subspaces must take the (orthogonal) 
codewords to orthogonal states, in order to be able to recover 
from the error.

Basic framework for quantum error correction
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检测错误，而不是量子信息

Through the information from the error syndromes, one 
can determine whether there is an error and where it is:

E.g., measurements of Z1Z2 and Z2Z3 for 010 + 101
give syndrome 11, which means the second bit is different.  
Correct it with a X operation on the second qubit.  Note 
that the syndrome does not depend on  and .

We have learned about the error without learning about 
the data, so quantum superpositions are still alive!
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Calderbank–Shor–Steane codes
Suppose C1 and C2 are [n, k1] and [n, k2] classical linear codes such that C2 ⊂ C1 

and C1 and C2
⊥ both correct t errors. We will define an [n, k1 − k2] quantum code 

CSS(C1, C2) capable of correcting errors on t qubits, the CSS code of C1 over C2.

Suppose x ∈ C1 is any codeword in the code C1. Then we define the 
quantum state |x + C2> by
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Calderbank–Shor–Steane codes

Suppose the bit flip errors are described by an n bit vector e1 with 1s where
bit flips occurred, and 0s elsewhere, and the phase flip errors are described by an 
n bit vector e2 with 1s where phase flips occurred, and 0s elsewhere. If |x+C2> 
was the original state then the corrupted state is:

Introducing an ancilla and taking

one has

Bit flip errors detection and correction
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Calderbank–Shor–Steane codes

Error-detection for the bit flip errors is completed by measuring the ancilla to obtain 
the result H1e1 and discarding the ancilla, giving the state

Bit flip errors detection and correction

Knowing the error syndrome H1e1 we can infer the error e1 since C1 can correct up 
to t errors, which completes the error-detection. Recovery is performed simply by 
applying gates to the qubits at whichever positions in the error e1 a bit flip occurred, 
removing all the bit flip errors and giving the state
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Calderbank–Shor–Steane codes

To detect phase flip errors we apply Hadamard gates to each qubit, taking the 
state to

Phase flip errors detection and correction

where the sum is over all possible values for n bit z. Setting z ‘≡ z + e2, this 
state may be rewritten:
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Calderbank–Shor–Steane codes

The last formula looks just like a bit flip error described by the vector e2! As for the 
error-detection for bit flips we introduce an ancilla and reversibly apply the parity 
check matrix H2 for C2

⊥ to obtain H2e2, and correct the ‘bit flip error’ e2, obtaining 
the state

Phase flip errors detection and correction

The error-correction is completed by again applying Hadamard gates to each qubit. 
Since the Hadamard gate is self-inverse this takes us back to the state
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In the limit as n becomes large, an [n, k] quantum 
code protecting against errors on up to t qubits exists 
for some k such that 

Thus, good quantum error-correcting codes exist, 
provided one doesn’t try to pack too many qubits k 
into an n qubit code.

Quantum Gilbert–Varshamov bound
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The Pauli Group
The general Pauli group Gn on n qubits is defined to consist of all n-fold 
tensor products of up to n operators I, X, Y, or Z with overall phase ±1, ±i

Any pair M, N of Pauli operators either commutes (MN = NM) or 
anticommutes (MN = -NM).

The Pauli group spans the set of all n-qubit errors.

For a single quantum bit

that G1 is closed under multiplication, and thus forms a legitimate
group.

The Pauli Group Gn on n qubits is given by the n-fold tensor product 
of Pauli matrices.
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Quantum Error Correction Sonnet
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Stabilizer

Suppose S is a subgroup of Gn and define 
VS to be the set of n qubit states which are 
fixed by every element of S. 

VS is the vector space stabilized by S, and 
S is said to be the stabilizer of the space VS, 
since every element of VS is stable under 
the action of elements in S.
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Properties of a Stabilizer

The stabilizer is a group:

If M =  and N = , then MN = . 

The stabilizer is Abelian:

If M =  and N = , then

(MN-NM) = MN - NM = 0

(For Pauli matrices) MN = -NM
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Stabilizer 例子
The EPR state of two qubits

It is easy to verify that this state satisfies the 
identities

We say that the state |ψ> is stabilized  by the 
operators X1X2 and Z1Z2.
In addition, the state |ψ> is the unique quantum 
state (up to a global phase) which is stabilized by 
these operators X1X2 and Z1Z2.
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Stabilizer 例子
Such a state is unique, as it is the only one (up 
to a global phase) to be stabilized by both X1X2
and Z1Z2.

The basic idea of using the stabilizer group is to 
work with the stabilizer operators as group 
generators rather than with the states. 

The group theoretical formalism of the stabilizer 
codes offers a more compact description of the 
quantum error correction codes.
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For the classical repetition code, one can see the error 
syndromes

first two bits have even parity (an even number of 1’s), 
and similarly for the 2nd and 3rd bits, with correctly-
encoded state 000 or 111

One can rephrase this by observing that a codeword is a 
+1 eigenvector of ZZI and that a state with an error on 
the 1st or 2nd bit is a -1 eigenvector of ZZI.

For state with error on one of the first two bits: odd parity 
for the first two bits.

Stabilizer 例子
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典型的错误探测

For the three-qubit phase error correcting code, a 
codeword has eigenvalue +1 for XXI, whereas 
a state with a phase error on one of the first two 
qubits has eigenvalue -1 for XXI.

Measuring ZZ detects bit flip (X) errors, and 
measuring XX detects phase (Z) errors.

Measuring enough operators find locations of 
errors.
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Error Correction Conditions

Theorem: Let S be the stabilizer of the 
stabilizer code C(S). Suppose {Ei} is a set of 
operators in Gn such that:

for all j and k. Then, {Ei} is a correctable set 
of errors for the code C(S).

The normalizer of S, denoted N(S), which is defined to consist 
of all elements E of Gn such that EgE†∈ S for all g ∈ S.
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Error Detection
Suppose g1,…,gn-k is the set of generators for the 
stabilizer of an [n,k] stabilizer code, and that {Ej}
is the set of correctable errors for the code.
Error detection is performed by measuring the 
generators of the stabilizer in turn, to obtain the 
error syndrome, which consists of the results of 
the measurements 1,…,n-k. 
If the error E occurred then the error syndrome is 
given by l such that:
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Recovery (1)

In the case where E is the unique error 
operator having this syndrome, recovery 
is done by applying Et.
In the case where there there are two 
distinct errors E and E’ giving rise to the 
same error syndrome, it follows that:
EPEt = E’PE’t and then   EtE’PE’tE = P
and therefore EtE’ is part of S.
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Recovery (2)

Thus applying Et after the error E’ has 
occurred results in a successful recovery.

Thus, for each possible error syndrome we 
simply pick out a single error E with that 
syndrome, and apply Et to achieve 
recovery when that syndrome is observed.
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How to construct a quantum 
error correction code?

An [n,k,d] quantum error correction code C(S) is the 
vector space VS stabilized by a subgroup S of Gn
such that              and S has n-k independent and 
commuting generators:

and logical states stabilized by:

which can correct a set of correctable error
operators {Ei} in Gn such that, for all j and k:

SI 
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Design Goals for QECCs
Several requiremens:

High rate (high value of both k/n and d/n).

Efficient decoding (for a general QECC, 
determining the exact error can take 
exponentially long in n).

Efficient encoding (all stabilizer codes can be 
encoded using O(n2) operations, but O(n) is 
better).

Specific error models (we can sometimes be 
more efficient if don’t insist on correcting all t-
qubit errors).

Many symmetries (useful for fault-tolerance and 
sometimes other constructions).

Other application-specific properties From Gottesman 
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The three qubit bit flip code

Error-detection and correction
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The three qubit bit flip code
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The nine qubit Shor code
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The nine qubit Shor code

g1,g2,…,g8 generate a group, the stabilizer of the code, 
consisting of all Pauli operators M with the property that M
=  for all encoded states .
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The five qubit code
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CSS Codes
Define a quantum error-correcting code by choosing two classical linear 
codes C1 and C2, and replacing the parity check matrix of C1 with Z’s 
and the parity check matrix of C2 with X’s.

C1: [7,4,3] Hamming

C2: [7,3,4] Hamming

[[7,1,3]] QECC
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Calderbank-Shor-Steane Codes

CSS codes are a subclass of stabilizer codes.
They construct quantum error correction codes 
from classical linear codes.
As a general rule, to detect X errors, CSS take a 
classical parity check matrix P, replaces 1 by Z
and I’s elsewhere. 
To detect Z errors, replace X’s instead of Z’s in 
the matrix.
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If C1 and C2 are orthogonal then we can 
combine these two codes. This means 
that the dual code of each code must be 
a subset of the other code.

Combining a C1[n,k1,d1] with a C2[n,k2,d2]
yields a CSS(C1,C2)[n,|k1-k2|,d3] with d3 = 
min{d1,d2}.

CSS codes
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The 7-qubit Steane code is the most 
popular CSS code. 

It is created with a classical Hamming 
code [7,4,3] which is self dual.

The matrix C1 is taken as the classical 
parity check matrix H.

The matrix C2 is taken as the transposed 
of its generator GT.

CSS codes and the seven qubit code
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CSS codes and the seven qubit code

Define a check matrix with the form

The 7-qubit Steane code is the most popular CSS 
code. 

It is created with a classical Hamming code [7,4,3] 
which is self dual.

The matrix C1 is taken as the classical parity check 
matrix H.
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More about Stabilizer

The stabilizer is a group:

The stabilizer is Abelian:

Given any Abelian group S of Pauli operators, 
define a code space T(S) = { s.t. M = 
 M  S}.  Then T(S) encodes k logical qubits in 
n physical qubits when S has n-k generators (so 
size 2n-k).
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Stabilizer Elements Detect Errors

Suppose M  S and Pauli error E anticommutes with M.  
Then:

M (E) = - EM = - E,

so E has eigenvalue -1 for M.

Conversely, if M and E commute for all M  S,

M (E) = EM = E  M  S,

so E has eigenvalue +1 for all M in the stabilizer.

The eigenvalue of an operator M from the stabilizer detects 
errors which anticommute with M.

From Gottesman 
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Distance of a Stabilizer Code

Let S be a stabilizer, and let T(S) be the corresponding 
QECC. Define

N(S) = {N  Pn s.t. MN=NM  M  S}.

Then the distance d of T(S) is the weight of the smallest 
Pauli operator N in N(S) \ S.

The code detects any error not in N(S) \ S (i.e., errors which 
commute with the stabilizer are not detected). 

Why minus S?  “Errors” in S leave all codewords fixed, so 
are not really errors. (Degenerate QECC.)

From Gottesman 
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Error Syndromes and Stabilizers

To correct errors, we must accumulate enough 
information about the error to figure out which 
one occurred.

The error syndrome is the list of eigenvalues of 
the generators of S: If the error E commutes 
with M  S, then M has eigenvalue +1; if E and 
M anticommute, M has eigenvalue -1.

We can then correct a set of possible errors if 
they all have distinct error syndromes.

From Gottesman 
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Stabilizer Codes Correct Errors

A stabilizer code with distance d corrects (d-1)/2 errors 
(i.e., to correct t errors, we need d = 2t+1):

E and F act the same, so we need not distinguish.

Theorem: The code corrects errors for which E†F  N(S) \ S 
for all possible pairs of errors (E, F).

E and F have same error syndrome

E and F commute with same elements of S

E†F  N(S)

E†F  S E†F =  F = E

From Gottesman 
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Stabilizer Codes Summary

Choose an Abelian subgroup of the Pauli 
group.  This will be the stabilizer S of the 
QECC.

The codewords: { s.t. M =   M  S}

If S has r generators on n qubits, the QECC 
has k = n-r encoded qubits.

The codes corrects errors if E†F  N(S) \ S 
for all pairs (E, F) of possible errors.  The 
distance d is the minimum weight of N(S) \ S.

From Gottesman 
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Summary: Stabilizer Codes

We can describe a quantum stabilizer code 
by giving its stabilizer, an Abelian subgroup 
of the Pauli group.

By looking at the stabilizer, we can learn all 
of the most interesting properties of a QECC, 
including the set of errors it can correct.

One interesting and useful class of stabilizer 
codes is the family of CSS codes, derived 
from two classical codes.  The 7-qubit code 
is the smallest example.

From Gottesman 
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Application: 5-Qubit Code

We can generate good codes by picking an appropriate 
stabilizer.  For instance:

X  Z  Z  X  I

I  X  Z  Z  X

X  I  X  Z  Z

Z  X  I  X  Z

n = 5 physical qubits

- 4 generators of S

k = 1 encoded qubit

Distance d of this code is 3.

Notation: [[n,k,d]] for a QECC encoding k logical qubits in n 
physical qubits with distance d.  The five-qubit code is a 
non-degenerate [[5,1,3]] QECC.

From Gottesman 
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The Gottesman-Knill Theorem
Theorem: Suppose a quantum computation is 

performed which involves only the following 
elements: state preparations in the computational 
basis, Hadamard gates, phase gates, controlled-
NOT gates, Pauli gates, and measurements of 
observables in the Pauli group (which includes 
measurement in the computational basis as a 
special case), together with the possibility of 
classical control conditioned on the outcome of 
such measurements. Such a computation may be 
efficiently simulated on a classical computer.
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Quantum Computing Simulations

The Gottesman-Knill theorem shows that some 
quantum computations involving highly entangled 
states may be simulated efficiently (in polynomial 
time complexity) on classical computers. 

These computations include quantum teleportation 
and superdense coding.

However, not all types of entanglement can be 
described efficiently with the stabilizer formalism.



中国科学技术大学 陈凯

Universal quantum computation?

In order to perform truly universal quantum 
computation, even a single gate outside of N(G) can 
be sufficient. For instance, the Toffoli gate (a three-
qubit gate which flips the third qubit iff both of the 
first two qubits are |1>) along with N(G) suffices for 
universal computation.

The set of U such that UAU† ∈ G for all A ∈ G is the 
normalizer N(G) of G in U(n).

Also for the single-qubit π/8 rotation gate
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Summary of QECCs
Quantum error-correcting codes exist which can 
correct very general types of errors on quantum 
systems.

A systematic theory of QECCs allows us to build 
many interesting quantum codes.

Quantum error correction can be formalized in terms 
of quantum states and projectors, stabilizer 
subspaces or the stabilizer group.

All these formalizations are equivalent.

The theory of quantum error correction is quite 
elegant and simple.

The implementation is really a nontrivial task.
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