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Classical Computers
Alan Turing (1912 — 1954)

In 1936, Turing
published a paper
referring to an abstract
machine which moved
from one state to
another using a precise
finite set of rules (given
by a finite table)
depending on a.single
symbol it read frq%a, ’
tape
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Transistors

Moore’s Law - 2005

Per Die
101% o e
512M
10%- 256M
108- san128M itanium™ 2 Processor
16M Itanium ™ Processor

107 - 4M Pentium® 4 Processor
L ik 1M Pentium® lll Processor
106 256K Pentium®1l Processor

) Pentium® Processor
105 16K 486™ Processor
104 386™ Processor
iy 1K

3 ot
10°- 8008
102- 4004 # 1965 Data (Moore)

Memory

1
10 € Microprocessor
1 un | i | I I I I ] | ] I

1960 1965 1970 1975 1980 1985 1890 1995 2000 2005 2010

Source: Intel
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V\/'bat IS quantum information?

Quantum information is that kind of

information which is carried by quantum

systems from the preparation device to K
the measuring apparatus in a quantum
mechanical experiment.




“There is plenty of room at the bottom.” (Dec 29, 1959)

“It seems that the Iaws of physics present no barrier to
reducing the size of computers until bits are the size of
atoms, and quantum behavior holds dominant sway.”

i

from New Scientist 20114 %



Quantum Algorithms

Deutsch-Jozsa (D-J)
Proc. R. Soc. London A, 439, 553 (1992)

Grover's search algorithm
Phys. Rev. Lett., 79, 325 (1997)

Shor's algorithm for factoring large numbers
SIAM J. Comp., 26, 1484 (1997)

DY hantsen R. Jozsa L. K. Grover
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DiVincenzo’s Criteria

DiVincenzo, Fortschr. Phys. 48, 771 (2000)




DiVincenzo’s Criteria

Well defined extensible qubit array
Preparable in the “000...” state
Long decoherence time

Universal set of gate operations
Single quantum measurements
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Qubit Representations

Electron: number, spin, energy level
Nucleus: spin

Photon: number, polarization, time,
angular momentum, momentum (energy)

Flux (current)

Anything that can be quantized and
follows Schrodinger's equation




A Few Physical Experiments

IBM, Stanford, Berkeley, MIT, USTC
(solution NMR)

NEC (Josephson junction charge)

Delft (JJ flux)

NTT (JJ, quantum dot)

Tokyo U., USTC (quantum dot, optical lattice, ...
Keio U. (silicon NMR, quantum dot)

Caltech, Berkeley, Stanford (quantum dot)
Austria, USTC (linear optics)

Australia, NIST (ion trap)

Many others (cavity QED, Kane NMR, ...)n., .

N




Physical Realization
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Electron Spin Coherence in Hybrid Ferromagnet/GaAs Structures
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Quantum computation

Physical realization of a qubit
* lon traps and neutral atoms « Semiconductor charge qubit

e Single QD

>

 Photon based QC

(f
\t

» Superconducting qubit

* Spin qubit

Cooper pair box 01011)) Nuclear spin Electron spin

(liquid state NMR,
IKEL I 2
L’J

solid state NMR)
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* Aarhus * Melbourne

* Berkeley * MIT

* Caltech « NEC

« Cambridge * New South Wales
* College Park * NIST

* Delft * NRC

* DERA (U.K.) * Orsay

 Ecole normale supérieure » Oxford

» Geneva  Paris

« HP Labs (Palo Alto and Bristol) * Queensland
 Hitachi « Santa Barbara

* id Quantique « Stanford

« IBM Research (Yorktown Heights and * Toronto

Palo Alto) « USTC

* Innsbruck  Vienna

* Los Alamos National Labs » Waterloo

« McMaster * Yale ™
« MagiQ » many others... "¢

 Max Planck Institute-Munich




Demo: IBM Quantum Experience

Watch a demo of how to use the world's first quantum

computing platform delivered via the IBM Cloud.

@ Watch the video

= AL TArey

Quantum Computing on the Cloud

Hear from IBM experts about the new cloud-enabled

quantum computing platform.

@ Watch the video

IBM Quantum Computing Lab Tour

Explore a 360 degree look at the IBM Quantum Computing
Lab at the Thomas J Watson Research Center.

@ Watch the video
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#ER Tong breaks records for quantum computing performance »

A true quantum leap.

Introducing the first commmercial trapped ion quantum
computer. By manipulating individual atoms, it has the
potential to one day solve problems beyond the capabilities of
even the largest supercomputers.

Request Access

The World's Most Advanced Quantum Computer

Our quantum cores use lasers pointed at individual atomns to perform
longer, more sophisticated calculations with fewer errors than any
quantum computer yet built. In 2019, leading companies will start
investigating real-world problems in chemistry, medicine, finance,
logistics, and more using our systems.

PEREFRAKE B



Preliminary benchmark test results on lonQ hardware as of December 10, 2018.

Qubits

Qubits are the basic unit of information storage on a quantum computer. After they’re
initialized, logical operations—called gates—are performed on them.

Maximum loaded 160 qubits

Single-qubit gates performed on up to 79 qubits

Two-qubit gates performed on all pairs of up to 11 qubits

Error Rate

Gate fidelity is a measure of the accuracy of a single gate. Gates that manipulate one qubit
at a time are less complex and less error-prone than gates that operate on two qubits. The
following benchmarks were captured on a fully-connected 11-qubit configuration.
Average fidelities

Single-qubit gates >99%

Two-qubit gates >98%"

Best fidelities

Single-qubit gates 99.97%

Two-qubit gates 99.3%"

Minimum fidelities

Single-qubit gates >99%

Two-qubit gates >96%"

" not corrected for state preparation and measurement errors.

Benchmark: Bernstein-Vazirani Algorithm

The Bernstein-Vazirani Algorithm is a basic test of the ability of a quantum computer to
simultaneously evaluate possibilities that conventional computers must calculate one at a
time. The complexity of the test is determined by the maximum length in bits of an\oracle—

an arbitrary number the computer must determine. % i
10-qubit oracle success rate 73.0% £ N
Classical computer success rate ~0.2% % v




Technologies for QC

Liquid NMR

Solid-state NMR

Quantum dots

Superconducting Josephson junctions
lon trap

Optical lattice

All-optical
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Qubitology. States

1) = c0s(0/2)|0) + e'?sin(6/2)|1) = |n)

T =10 Direction of spin
(1 —11))/v2

(D) —ill))/v2
(D) +:[1)/v2

D+ [1)/v?2

From Caves

1
E(I + Oy T TyTly + O'znz)

1 . Pauli
2 representation




Qubitology. States

) = cos(6/2)|0) + e sin(6/2)|1) = |n)
Abstract “direction”

Polarization of a photon

(IR) +i[L))/V2

(R) +|L)/v2=|V)

Poincare sphere

From CaVes ,</.< '




Qubitology. States

¥) = cos(6/2)[0) + e sin(6/2)|1) = |n)

Abstract “direction”

(g9) —[e)/V2

(g) +ile))/v/2

FromGaves <z




Qubitology

Single-qubit states are points on the Bloch sphere.

Single-qubit operations (unitary operators) are
rotations of the Bloch sphere.

Single-qubit measurements are rotations followed
by a measurement in the computational basis
(measurement of z spin component).

Platform-independent description: o O
Hallmark of an information theory FAY~ -
FromiGaves <=~




Qubitology. Gates and quantum circuits
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Qubitology. Gates and quantum circuits

130"

130"

"%} Sl
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Qubitology. Gates and quantum circuits
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(C-NOT)’ =1 N\
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Qubitology. Gates and quantum circuits
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Qubitology. Gates and quantum circuits
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Qubitology. Gates and quantum circuits
C-NOT as parity check

a]00) + B[11)

From Caves




Qubitology. Gates and quantum circuits

Making Bell states using C-NOT

—(]00) +]11)) 1

1
5000) —[11))

1

E(IOD +110))
1

—501) —[10})

(10) +[1))[0)

AN
\Ll/
bit :”“b i

L([0) + (—1)°[1))[0) N

From€aves ><,.< "




Qubitology. Gates and quantum circuits

Making cat states using C-NOT

GHZ (cat) state

L (/000) + |111))

L(10) + [1))[00}

FromGaves <z
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measurement Projection onto |0) and |1)

wire carrving a single qubit

ubit & . :
1 (time goes left to right)

classical bit ——— wire carrying a single classical bit

n qubits s wire carrying 7 qubits




Decomposing single qubit operations

Arbitrary 2 X2 unitary matrix may be
decomposed as

where a, B, Y, and 0 are real-valued.




Swap gate

-

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful

circuit.

a,a P b)
a® (adb),adb)=|baodb)
b, (a @ b) @ b) = [b,a),




Control-U gate

Figure 1.8. Controlled-U gate.

D X

Figure 1.9. Two different representations for the controlled-NOT.
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Circuit for measurement

)

Figure 1.10. Quantum circuit symbol for measurement.

This operation converts a single qubit state

/> = gf0> + /1> into a probabilistic classical bit
M (distinguished from a qubit by drawing it as a
double-line wire), which is 0 with probability /a/,

or 1 with probability /5/. *»/




Out
(100) +|11))/v2 = | Bwo)

(|01) + |10))/v/2 = |Bor)
(100) — Bo) ‘/8.1’:’9)

( 01) — ,.i911>




Quantum teleportation

N
o

i

.

— )

1 i 1 )
|%0) 1) |Ua)  |13)

\
|4)

Figure 1.13. Quantum circuit for teleporting a qubit. The two top lines represent Alice’s system, while the bottom

line 1s Bob’s system. The meters represent measurement, and the double lines coming out of them carry classical

bits (recall that single lines denote qubits).

the Bell states




Measuring an operator

Suppose we have a single qubit operator U with eigenvalues
+1, so that U is both Hermitian and unitary, so it can be
regarded both as an observable and a quantum gate. Suppose
we wish to measure the observable U. That is, we desire to
obtain a measurement result indicating one of the two
eigenvalues, and leaving a post-measurement state which is the

/4
77

corresponding eigenvector. How can this be implementedby & 74

-

quantum circuit? Show that the following circuit implementé,ﬁa_- =
measurement of U. e
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Rotation operators

The Pauli matrices give rise to three useful classes of
unitary matrices when they are exponentiated, the

rotation operators about the x, y, and zaxes, defined by
the equations:

2]

— 4 % cos &
R.(O)=e WX/2 = cos =] —isin=X = L2
2(0) 5 7 —q 5111%

- 0Y/ 0 - cos? —sind
R.y(@) = g /2 = gos ;I —isin—=Y = 5 o

sSin5  COS 5

e

- YA v () —i0/2
R.(0) = e~ W4/2 = cos —] — isin A [ F

2 2 0 /2

E




Rotation operators

It n = (ny.ny.n;) 1s a real unit vector in three dimensions then we generalize the
previous definitions by defining a rotation by £ about the 7 axis by the equation

R;(0) = exp(—if 7 - G/2) = cos (g) I — isin (g) (ne X +n,Y +n,72),

where & denotes the three component vector (X, Y, Z) of Pauli matrices.

An arbitrary single qubit unitary operator can be written in the form
U = exp(ia)R;(0)

for some real numbers « and #, and a real three-dimensional unit vector 7.
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Quantum parallelism

Quantum parallelism is a fundamental feature of many
guantum algorithms. Heuristically, and at the risk of
over-simplifying, quantum parallelism allows quantum
computers to evaluate a function A x) for many different
values of x simultaneously.

Suppose Ax) : {0, 1} — {0, 1}is a function with a one-bit
domain and range.




A quantum computer

Yy ydf(x)

Figure 1.17. Quantum circuit for evaluating f(0) and f(1) simultaneously. U is the quantum circuit which takes
inputs like |z, y) to |z, y & f(x)).

V2




2

This procedure can easily be generalized to functions on an arbitrary
number of bits, by using a general operation known as the Hadamard
transform, or sometimes the Walsh—-Hadaamard transform. This operation
IS just 7 Hadamard gates acting in parallel on n qubits.

2

(]0) +y1>) (]0) + y1>) _ [00) +101) +[10) +[11)

V2 V2

Prepare the 17 + 1 qubit state 0>%7/0>, then apply the Hadamard
transform to the first 77 qubits, followed by the quantum circuit
Implementing U;. This produces the state




Quantum algorithms
Deutsch algorithm

H

H

1 t
[91) 42)

Figure 1.19. Quantum circuit implementing Deutsch’s algorithm.




Deutsch algorithm

f ."I II"-. — i Ill'ﬁ
20 ) “Jl /

- 10) + |l} |[l} — \1}
1) ol |- R . > . S S
1 V‘E _ ‘/E

A little thought shows that if we apply Uy to the state [2)(|0) — |1))/v/2 then we obtain
the state (—1)7®|2:)(|0) — |1))/v/2. Applying Uy to |1);) therefore leaves us with one of
two possibilities:

L [0+ 1) [U) — 1)

i .-"_
V2 V2

] if £(0) = f(1)

0) — [1) 0) — (1) T
. [' ] ] [' e ] if £(0) # f(1).




Deutsch algorithm

The final Hadamard gate on the first qubit thus gives us

v

_ ] if £(0) = f(1)
V 4

0) — 1)

£ [—,_

] if £(0) # f(1).

Realizing that f0) @ A1) is 0 if £0) = A1) and 1 otherwise, we can
rewrite this result concisely as

U3) = £|f(0) & f(1)) l 7

-

LEL




Deutsch algorithm

By measuring the first qubit we may determine A0) & A1). This is very
Interesting indeed: the quantum circuit has given us the ability to determine
a global property of fx), namely A0)®A1), using only one evaluation of Ax)!
This is faster than is possible with a classical apparatus, which would require
at least two evaluations.

Naively, one might think that the state /0>/{0)> + /1>/f1)> corresponds
rather closely to a probabilistic classical computer that evaluates A0) with
probability one-half, or 1) with probability one-half. The difference is that in
a classical computer these two alternatives forever exclude one another; in a
guantum computer it is possible for the two alternatives to interfere with
one another to yield some global property of the function f, by using
something like the Hadamard gate to recombine the different alternatives,
as was done in Deutsch’s algorithm. The essence of the design of many
guantum algorithms is that a clever choice of function and final
transformation allows efficient determination of useful global\informations,
about the function — information which cannot be attained qmggy_
classical computer. ;& 7




Deutsch-Jozsa algorithm

Alice, in Amsterdam, selects a number xfrom 0 to 27 —1,
and mails it in a letter to Bob, in Boston. Bob calculates
some function A x) and replies with the result, which is
either 0 or 1. Now, Bob has promised to use a function F
which is of one of two kinds; either Ax) is constant for all
values of x, or else A x) is balanced, that is, equal to 1 for
exactly half of all the possible x, and 0 for the other half.
Alice’s goal is to determine with certainty whether Bob has
chosen a constant or a balanced function, corresponding




Deutsch-Jozsa algorithm

f:{0,1}" —{0,1}




Deutsch-Jozsa algorithm

Yy ydf(x)

T T T T
|%0) 1) |1) |3)

Figure 1.20. Quantum circuit implementing the general Deutsch—Jozsa algorithm. The wire with a */” through it

represents a set of n qubits, similar to the common engineering notation.




Deutsch-Jozsa algorithm

After the Hadamard transform on the query register and the Hadamard
gate on the answer register we have

=

Next, the function f is evaluated (by Bob) using U;: /x, y> — /x, y &
fx)>, giving




Deutsch-Jozsa algorithm




Deutsch-Jozsa algorithm
IR BTSSR, R

( 1)H~+f“ 2) T10) = |1
=33 O [0

Note that the amplitude for the state 0>¢7 is DYMGAVARIFA . |ct's look
at the two possible cases — 7 constant and 7 balanced — to discern what
happens. In the case where fis constant the amplitude for 0>&7is +1 or
=1, depending on the constant value Ax) takes. Because /¢s> is of unit
length it follows that all the other amplitudes must be zero, and an
observation will yield Os for all qubits in the query register. If 7is balanced
then the positive and negative contributions to the amplitude for 0>&7
cancel, leaving an amplitude of zero, and a measurement must yield a result
other than 0 on at least one qubit in the query register. Summarlzmgpuf Ali
measures all Os then the function is constant; otherwise the func’@f,&\q 15—
palanced. The Deutsch—Jozsa algorithm is summarized below. ez ST




Deutsch-Jozsa algorithm

Inputs: (1) A black box Uy which perfﬂrms the transformation

lz)|yy — |z)|ly @ f(x)), for x € {0,...,2" — 1} and f(x) € {0,1}. It is
promised that f(z) is either constant for all values of x, or else f(x) is balanced,
that 1s, equal to 1 for exactly half of all the possible 2, and 0 for the other half.

Outputs: 0 if and only if f is constant.

Runtime: One evaluation of Uf. Always succeeds.

Procedure:
1 |0> ?nl 1 > initialize state
2™ —1
7 g 1 Z |T> ‘O> — |1> create superposition using
: \/2—n : | \/E Hadamard gates

i —
3 —5 Z( l)f[I}ll.T [l >\/_| >] calculate function f using Ug

L MM\

1)z FOEH — |1
-+. Z Z - ) ‘ > [l > ‘ >] perform Hadamard transform

V2

5. — 2 measure to obtain final output =




Quantum interference in the
Deutsch-Jozsa algorithm

Quantum interference allows one to distinguish
the situation where half the amplitudes are +1
and half -1 from the situation where all the
amplitudes are +1 or -1 (this is the information
one wants) without having to determine all
amplitudes (this information CINEIRE
Inaccessible).




Variational guantfum algorithms

Variational quantum algorithms (VQAs) have
emerged as the leading strategy to obtain
guantum advantage on NISQ devices.
Accounting for all of the constraints imposed by
NISQ computers with a single strategy requires
an optimization-based or learning-based
approach, precisely what VQAs use. VQAs are
arguably the gquantum analogue of highly
successful machine-learning methods, such as
neural networks. Moreover, VQAs leverage the
toolbox of classical optimization, since they use
parameterized quantum circuits to be run on the
guantum computer, and then outsource the
parameter optimization to a classical optimizer.
This approach has the added advantage of
keeping the quantum circuit depth shallow and
hence mitigating noise, in contrast to quantum
algorithms developed for the fault-tolerant era

2
(}
% [}

Error correction

Dynamical simulations

«e

Quantum
chemistry

Finding ~  Variational quantum
ground states

&

algorithms
Condensed

matter

Combinatorial
optimization

Mathematical
applications

Systems of . \\
equations % Factoring \[/\./'
Principal
components

P
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G
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Generative
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New frontiers

Quantum Quantum
information metrology
Quantum
foundations

Fig. 1| Applications of variational quantum algorithms. Many applications have been
envisaged for variational quantum algorithms. Here we show some of the key
applications that are discussed in this Review.
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Variational quantum algorithms, M. Cerezo, Andrew Arrasmith, Ryan % 457
Simon C. Benjamin, Suguru Endo, Keisuke Fuijii, Jarrod R. McClean dK@stke
Mitarai, Xiao Yuan, Lukasz Cincio & Patrick J. Coles, Nature ReVIeWS*P%ySIG$<
3 625—644 (2021)




Variational guantum algorithms

Key points

* Variational quantum algorithms (VQAs) are the leading proposal for achieving
quantum advantage using near-term quantum computers.

* VQAs have been developed for a wide range of applications, including finding ground
states of molecules, simulating dynamics of quantum systems and solving linear
systems of equations.

* VQAs share a common structure, where a task is encoded into a parameterized cost
function that is evaluated using a quantum computer, and a classical optimizer trains
the parameters in the VQA.

* The adaptive nature of VQAs is well suited to handle the constraints of near-term
quantum computers.

* Trainability, accuracy and efficiency are three challenges that arise when applying
VQA:s to large-scale applications, and strategies are currently being developed to
address these challenges.

Variational quantum algorithms, M. Cerezo, Andrew Arras -Ryan
Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, v’f:— =

3

McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio & Patrlcllzc“““"
Coles, Nature Reviews Physics 3, 625—-644 (2021) v



Measurement in quantum circuits

Principle of deferred measurement:

Principle of implicit measurement:




Measurement in quantum circuits

Measurement is generally considered to be an
irreversible operation, destroying quantum information
and replacing it with classical information.

In certain carefully designed cases, however, this need
not be true.

Ciln order for a measurement to be reversible, it must
reveal no information about the quantum state belng

measured! g




Summary of the quantum circuit

model of computation

(1) Classical resources: A quantum computer consists of two parts, a classical part

(

)

and a quantum part. In principle, there i1s no need for the classical part of the
computer, but in practice certain tasks may be made much easier if parts of the
computation can be done classically. For example, many schemes for quantum
error-correction (Chapter 10) are likely to involve classical computations in order to
maximize efficiency. While classical computations can always be done, in principle,
on a quantum computer, it may be more convenient to perform the calculations on
a classical computer.

A suitable state space: A quantum circuit operates on some number, 1, of qubits.
The state space 1s thus a 2"-dimensional complex Hilbert space. Product states of
the form |xy,...,z,), where x; = 0,1, are known as computational basis states of

z) denotes a computational basis state, where x is the number

the computer.
whose binary representation 1s rj ... I,.




Summary of the quantum circuit

model of computation

(3) Ability to prepare states in the computational basis: It is assumed that any
computational basis state |xy,...,xI,) can be prepared in at most n steps.

(4) Ability to perform quantum gates: Gates can be applied to any subset of qubits
as desired, and a universal family of gates can be implemented. For example, it
should be possible to apply the CNOT gate to any pair of qubits in the quantum
computer. The Hadamard, phase, CNOT and 7 /8 gates form a family of gates from
which any unitary operation can be approximated, and thus 1s a universal set of
gates. Other universal families exist.

(5) Ability to perform measurements in the computational basis:
Measurements may be performed in the computational basis of one or more of the

qubits 1in the computer.
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One way quantum computing
Graph states
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One way quantum computing
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One way guantum computing
using cluster- and graph states

A cluster state is a

information flow

N ——

collection of qubits that are t T I
entangled via nearest- BT N NI
| S B T U R O
neighbour CZ gates NP S
! quantum gate
(rectangular lattice). 2 s o s S -

roN N R S T A
i . : FIG. 1. Quantum computation by measuring two-state parti-
H0r|20nta| ||n kS dete Fmine cles on a lattice. Before the measurements the qubits are in the

cluster state |®}- of (1). Circles @ symbolize measurements of

t ne | nfo rm at| on f I oW, W h | |e ., vertical arrows are measurements of o, while tilted arrows
4 refer to measurements in the x-y plane.
the vertical links furnish

the two-qubit gates.

Source: Raussendorf & Briegel PRL 86, 5188‘,{@301) -
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One way quantum computing
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Kai Chen et al., Experimental Realization of One-Way Quantum “\}f-
Computing W|th Two-Photon Four-Qubit Cluster States. 4 ‘3’ :
Phys. Rev. Lett., 99, 120503 (2007). 2




One way quantum computing
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FIG. 37 (color online). Few-qubit cluster states and the quantum
circuits they implement. For each three-qubit and four-qubit cluster,
its quantum state (|®y3), [Ppipa)s 1Prs), | Py), or [$P4)) and the
computation carried out in the one-way quantum computer model is
shown. Adapted from Walther, Resch, Rudolph et al., 2005.

Experimental one-way quantum
computing, P. Walther, K. J. Resch,
T. Rudolph, E. Schenck, H.
Weinfurter, V. Vedral, M
Aspelmeyer & A. Zeilinger

Nature 434, 169—-1/6 (2005)

Jian-Wei Pan et al., Mulﬁpbot
entanglement and mterferqﬁ L
Rev. Mod. Phys. 84, 777- 83&(201%).7
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Quantum algorithms: an overview

Table 1. Some computational complexity classes of importance in quantum computation

Class Informal definition

P Can be solved by a deterministic classical computer in polynomial time

BPP Can be solved by a probabilistic classical computer in polynomial time

BQP Can be solved by a quantum computer in polynomial time

NP Solution can be checked by a deterministic classical computer in polynomial time
QMA Solution can be checked by a quantum computer in polynomial time

Abbreviation: QMA, Quantum Merlin-Arthur.
‘Polynomial time’ is short for ‘in time polynomial in the input size'

Table 2. Some problems which can be expressed as hidden subgroup problems

Problem Group Complexity Cryptosystem
Factorisation zZ Polynomial’ RSA

Discrete log Zy 1% Zp_y Polynomial'' Diffie-Hellman, DSA, ...
Elliptic curve discrete log Elliptic curve Polynomial®? ECDH, ECDSA, ...
Principal ideal R Polynomial® Buchmann-Williams
Shortest lattice vector Dihedral group Subexponential®*°? NTRU, Ajtai-Dwork, ...
Graph isomorphism Symmetric group Exponential —

The table lists the time complexity of the best quantum algorithms known for the HSPs and the cryptosystems that are (or would be) broken by polynomial-
time algorithms.

Ashley Montanaro, npj Quantum Information (2016) 2, 15023




Quantum algorithms: an overview

Table 3. Some proof-of-concept experimental implementations of quantum algorithms

Algorithm Technology Problem solved

Shor's algorithm Bulk optics™® Factorisation of 21

Grover’s algorithm NMR®’ Unstructured search, N=8

Quantum annealing D-Wave 2X>® Ising model on a ‘Chimera’ graph with 1097 vertices
HHL algorithm Bulk optics,”®°° NMR'? 2 x 2 system of linear equations

Abbreviations: HHL, Harrow, Hassidim and Lloyd; NMR, nuclear magnetic resonance.
Table only includes some ‘largest’ problem instances solved thus far.

Measuring quantum speedup

What does it mean to say that a quantum computer solves a problem more quickly
than a classical computer? As is typical in computational complexity theory, we will
generally consider asymptotic scaling of complexity measures such as runtime or
space usage with problem size, rather than individual problems of a fixed size. In
poth the classical and quantum settings, we measure runtime by the number of
elementary operations used by an algorithm. In the case of quantum computation,
this can be measured using the quantum circuit model, where a quantum circuit is
a sequence of elementary quantum operations called quantum gates, each
applied to a small number of qubits (quantum bits). To Compare the performanc
of algorithms, we use computer science style notation O(f(n)), which: ‘P?o -*-7;;;
Interpreted as ‘asymptotically upper-bounded by f(n)'. %ﬂ >

Ashley Montanaro, npj Quantum Information (2016) 2, 1 5023$<
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