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Classical Computers
@® Alan Turing (1912 — 1954)

= In 1936, Turing
published a paper
referring to an abstract
machine which moved
from one state to
another using a precise
finite set of rules (given
by a finite table)
depending on a single
symbol it read from a
tape
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Transistors

Moore’s Law - 2005

Per Die
101% o e
512M
10%- 256M
108- san128M itanium™ 2 Processor
16M Itanium ™ Processor

107 - 4M Pentium® 4 Processor
L ik 1M Pentium® lll Processor
106 256K Pentium®1l Processor

) Pentium® Processor
105 16K 486™ Processor
104 386™ Processor
iy 1K

3 ot
10°- 8008
102- 4004 # 1965 Data (Moore)

Memory

1
10 € Microprocessor
1 un | i | I I I I ] | ] I

1960 1965 1970 1975 1980 1985 1890 1995 2000 2005 2010

Source: Intel
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What is quantum information?

i
= .
g b
o
Iy x

“Information is physical.” 1960s by Rolf Lanaauer
from IBM Research

Quantum information is that kind of
information which is carried by quantum
systems from the preparation device to
the measuring apparatus in a quantum
mechanical experiment. by R.F. Werner

from New Scientist 2011
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“There is plenty of room at the bottom.” (Dec 29, 1959)

“It seems that the Iaws of physics present no barrier to
reducing the size of computers until bits are the size of
atoms, and quantum behavior holds dominant sway.”

——Richard P. Feynman (1985)

Nobel prize 1965 from New Scientist 2011
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Quantum Algorithms

® Deutsch-Jozsa (D-J)
s Proc. R. Soc. London A, 439, 553 (1992)

@ Grover's search algorithm
= Phys. Rev. Lett., 79, 325 (1997)

@ Shor's algorithm for factoring large numbers
» SIAM J. Comp., 26, 1484 (1997)

- ..:

rERPDeKESEn R. Jozsa L. K. Grover P. W. Shor




Grover's Search

N =2" unordered items, we're looking for one item

Classically, would have to check
about N/2 items

N

Hard task!

By using Grover's algorithm,

N = D" items

N, N repetitions are sufficient!
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DiVincenzo’s Criteria

DiVincenzo, Fortschr. Phys. 48, 771 (2000)

1. Scalability: A scalable physical system with well characterized
parts, usually qubits.

2. Initialization: The ability to initialize the system in a simple
fiducial state.

3. Control: The ability to control the state of the computer using
sequences of elementary universal gates.

4. Stability: Decoherence times much longer than gate times,
together with the ability to suppress decoherence through error
correction and fault-tolerant computation.

5. Measurement: The ability to read out the state of the computer
In a convenient product basis.

PEMFERAKE PRl



DiVincenzo’s Criteria

1.

Well defined extensible qubit array

2. Preparable in the “000...” state

3. Long decoherence time

4. Universal set of gate operations

5. Single quantum measurements
Qubit initialization Execution of an

00000

Pl )
t'\/ S

Z
9
S

DR\
S f..}' &\
RERIEEA, . ol

algorithm--.

Read the result

Must be done within /%

decoherence time!
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Qubit Representations

Electron: number, spin, energy level
Nucleus: spin

Photon: number, polarization, time,
angular momentum, momentum (energy)

@® Flux (current)

#® Anything that can be quantized and
follows Schrodinger's equation

® @@
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A Few Physical Experiments

IBM, Stanford, Berkeley, MIT, USTC
(solution NMR)

NEC (Josephson junction charge)

Delft (JJ flux)

NTT (JJ, quantum dot)

Tokyo U., USTC (quantum dot, optical lattice, ...)
Keio U. (silicon NMR, quantum dot)

Caltech, Berkeley, Stanford (quantum dot)
Austria, USTC (linear optics)

Australia, NIST (ion trap)

Many others (cavity QED, Kane NMR, ...)

POPPOOOPOPOSO o
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Physical Realization

Cavity QED

- Mirmor surface
v L
[
Drobés lasar | | /, ‘\'-
! !/ \\
:,' Y dirror substrate
. .

Ion trap

By

e '!'i-"q
Magnetic resonance 1Y L

Superconductor
RERSFRAKE B



Electron Spin Coherence in Hybrid Ferromagnet/GaAs Structures

iﬂ'p Grown i high-mobiity MBE maching
A .
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Quantum computation

Physical realization of a qubit

* lon traps and neutral atoms

« Superconducting qubit

Cooper pair box SQUID
|

Npairs|0) N pairs- 1)

()

« Semiconductor charge qubit

Single QD Double QD
K |0) 1)

* Spin qubit

Nuclear spin
(liquid state NMR,
solid state NMR)

Electron spin
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* Aarhus

» Berkeley

» Caltech

« Cambridge

 College Park

* Delft

- DERA (U.K.)

» Ecole normale supérieure
» Geneva

« HP Labs (Palo Alto and Bristol)
 Hitachi

* id Quantique

* IBM Research (Yorktown Heights and
Palo Alto)

* Innsbruck

* Los Alamos National Labs
 McMaster

* MagiQ

 Max Planck Institute-Munich

PEMFERAKE PRl
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* Melbourne

e MIT

* NEC

* New South Wales
e NIST

* NRC

* Orsay

» Oxford

» Paris

* Queensland

« Santa Barbara
« Stanford

e Toronto

« USTC

* \Vienna

» \Waterloo

* Yale

* many others...



Demo: IBM Quantum Experience

Watch a demo of how to use the world’s first quantum

computing platform delivered via the IBM Cloud.

@ Watch the video

PEMFERAKE BRI
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Quantum Computing on the Cloud

Hear from IBM experts about the new cloud-enabled

quantum computing platform.

@ Watch the video

IBM Quantum Computing Lab Tour

Explore a 360 degree look at the IBM Quantum Computing

Lab at the Thomas J Watson Research Center.

@ Watch the video
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HER Ion) breaks records for quantum computing performance »

A true quantum leap

Introducing the first commercial trapped ion quantum
computer. By manipulating individual atoms, it has the
potential to one day solve problems beyond the capabilities of
even the largest supercomputers.

Request Access

The World's Most Advanced Quantum Computer

Our quantum cores use lasers pointed at individual atoms to perform
longer, more sophisticated calculations with fewer errors than any
guantum computer yet built. In 2019, leading companies will start
investigating real-world problems in chemistry, medicine, finance,
logistics, and more using our systems.

PEMFERAKE PRl



Preliminary benchmark test results on IonQ hardware as of December 10, 2018.

Qubits

Qubits are the basic unit of information storage on a quantum computer. After they’re
initialized, logical operations—called gates—are performed on them.

Maximum loaded 160 qubits

Single-qubit gates performed on up to 79 qubits

Two-qubit gates performed on all pairs of up to 11 qubits

Error Rate

Gate fidelity is a measure of the accuracy of a single gate. Gates that manipulate one qubit
at a time are less complex and less error-prone than gates that operate on two qubits. The
following benchmarks were captured on a fully-connected 11-qubit configuration.
Average fidelities

Single-qubit gates >99%

Two-qubit gates >98%"

Best fidelities

Single-qubit gates 99.97%

Two-qubit gates 99.3%"

Minimum fidelities

Single-qubit gates >99%

Two-qubit gates >96%"

" not corrected for state preparation and measurement errors.

Benchmark: Bernstein-Vazirani Algorithm

The Bernstein-Vazirani Algorithm is a basic test of the ability of a quantum computer to
simultaneously evaluate possibilities that conventional computers must calculate one at a
time. The complexity of the test is determined by the maximum length in bits of an oracle—
an arbitrary number the computer must determine.

10-qubit oracle success rate 73.0%

Classical computer success rate ~0.2%

PEMFERAKE PRl



Technologies for QC

Liquid NMR

Solid-state NMR

Quantum dots

Superconducting Josephson junctions
lon trap

Optical lattice

All-optical

® P OPeeS
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Qubitology. States
[¢) = cos(0/2)|0) + €'?sin(0/2)|1) = |n)

T

Spin-1/2 particle 1) = |0) Direction of spin

% (1) = 1UN/V2
1y —ill)/v2
ﬁ (N +il1)/V2
(1) +110)/v2

1) =11)
From Caves
Bloch sphere
0O 1
1 T = ( ) = X
n)(n| = Z(I+ owne + oyny + o.n:) 1 0
% oy = (O _i) —Y
_ = _ Pauli oo i 0 )
- 2 (I +n U) representation 1 0
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Qubitology. States
[4) = cos(8/2)|0) + e*?sin(8/2)[1) = |n)

Abstract “direction”

Polarization of a photon
|[R) = |0)

(IR) —i|L))/V2 (IR) —|L))/v2 = i|H)
= e (V) — [H))/V2

(IR) +i|L))/v2
= TA(|V) + 1))/ V2
(IR) + |L)/V2 = V)

L) = [1)

Poincare sphere

From Caves
FERIFRAKRSE BRI



Qubitology. States
) = cos(0/2)|0) + €'?sin(0/2)|1) = |n)

Abstract “direction”

—o—|c) = |1)
—o—|g) = |0) lg) = |0)

% (lg) — le))/V2
(lg) —ile)) /2
ﬁ(m +ile))/V2
(lg) + [e)) /2

le) = [1)

Two-level atom

Bloch sphere

\ \ From Caves
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Qubitology

Single-qubit states are points on the Bloch sphere.

Single-qubit operations (unitary operators) are
rotations of the Bloch sphere.

Single-qubit measurements are rotations followed
by a measurement in the computational basis
(measurement of z spin component).

o = |0 =21 +n)

o= )P = 20 -n)

Platform-independent description:

Hallmark of an information theory

\ \ From Caves
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Qubitology. Gates and quantum circuits

z

Single-qubit gates Y

€T

180°

7 = (é _01) = 52 T‘: Phase flip
(~1)°]a)

1"

1
H — (1 1

1 -1 Hadamard

@) —1H — (10) + (=1)%|1))/v2

PEMFERAKE PRl
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Qubitology. Gates and quantum circuits

z

More single-qubit gates Y
x=(? M =nzm —Ffwo Bit fli
1 0 e P
la) — X+— |la®1l) = —H Z H—
X?=Y?=1I
130°
iy = (_01 é) = 7X /\'” - Phase-bit flip
@) —iY = (=1)* e 1)
= X—Z = Hr—Z—H—Z

From Caves
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Qubitology. Gates and quantum circuits

z

Control-target two-qubit gate Y

xr

Control Target
1 0 O O L
. O 1 0 O
CNOT = 0 0 0 1 0)
O 0 1 0
180°
= )@ I+ [1)(1|xX —
1) o
Control T B :L
Target — X — N
|a) a) ,
(C-NOT)* =1

\ \ From Caves
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Qubitology. Gates and quantum circuits

Universal set of quantum gates

@T (45-degree rotation about z)
® H (Hadamard)
@® C-NOT

From Caves
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Qubitology. Gates and quantum circuits

z

Another two-qubit gate "

xr

Control Target
1 0 O O L
O 1 O O
CPHASE = 10 0 1 o 0)
0O 0 0 -1 o0
= [0)0]®I+|1)(1|®Z T
1) <
Control |a) T |a) A I
Target |b) 7 (—1)2%|b) l
1 I Sy T ]
a5 — I H— —H] -

\ \ From Caves
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Qubitology. Gates and quantum circuits
C-NOT as parity check

) — )

Y) Y)
0) —D J“ T DY)

L/

C-NOT as measurement gate

0)
al0) + B[1) i { 1)
A2
0 QZ {0, po = |
) oM 1, p1=18°
|00) + 8]11)
REREERAKRE Bl From Caves




Qubitology. Gates and quantum circuits

Making Bell states using C-NOT

0) — H| i © o0y 1111 fe" sates
0) NI Boo) = ?uoomm)
—5(10) +11))/0) - : \?OOO) o
: Bor) = —=(101) +[10)
Bu) = —=(01) - 10))

77 |

— H
a) 1T i —5(10b) + (=1)*|1,6 ® 1)) = |Bus)
b} v

1 "ot || "o
L(10) + (~1)7[1))[0)

PEMFERAKE PRl
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Qubitology. Gates and quantum circuits

Making cat states using C-NOT

0) — H i ¢ GHZ (cat) state
0 & L (J000) + [111))
0) r 1 D

75(10) +[1))]00) | |-5(|00) + [11))|0)

\ From Caves
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) 25 LR T

Hadamard __ E — % i
Pauli-X | y |- [[1) {1)]
Pauli-y”  Jy |- {? o
Pauli-Z 7] “} —Ol-
Phase — 5| [{1) {:]
s T (o e
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LA 2 LU E T T]

1 0 0 07

0 1 0 0

controlled-NOT 00 0 1
0 0 1 0.

1 0 0 07

swap N 000 10

‘ 0 1 0 0

el 00 0 1

T 010 0

controlled-Z = 00 1 0
4 o 00 0 —1

1 0 0 07

controlled-phase T g L&A
IS ) 01 0

s 0 0 0 7
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Toffoli
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Fredkin (controlled-swap)
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measurement

qubit
classical bit

n qubits

PEMFERAKE BRI

) BT 2R B 3R 7~

— N Projection onto |0) and |1)

wire carrving a single qubit

(time goes left to right)

wire carrying a single classical bit

il wire carrying n qubits




Decomposing single qubit operations

Arbitrary 2 X2 unitary matrix may be
decomposed as

3 . oy a5
[ = gior | € wiE cosL —sin B |
= f) bt W i a o g ax 9
0 eiP/? sin+  cos < 0 e’/

where a, 3, y, and O are real-valued.
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Swap gate

LT
—1—9
il A,
AL/ ® Y

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful

circuit.

‘aa b) — |Q,a D b>
—s la® (adb),a®b) = |b,ad b)
%ba(a/@b)@b):‘baa)a
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Control-U gate

U

s
11T

Figure 1.8. Controlled-U gate.

— X

Figure 1.9. Two different representations for the controlled-NOT.
FEMFERARE pral
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Circuit for measurement

M
) —1 7N

Figure 1.10. Quantum circuit symbol for measurement.

This operation converts a single qubit state

Jw>= af0> + /1> into a probabilistic classical bit
M (distinguished from a qubit by drawing it as a
double-line wire), which is 0 with probability /a/,

or 1 with probability /8/.
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Bell5r24E

In Out

00) | (00) +[11))/v2 = |Bw)

01) | (01) +[10))/v2 = |Bun) T 1

10) | (00) —[11))/v2 = |Bio) 1 J=
11) | (j01) — [10))/V2 = | 1) Y N

Figure 1.12. Quantum circuit to create Bell states, and its input—ouput quantum ‘truth table’.

&y (=1)°| Lg)
\/f

Bay) =
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Quantum teleportation

V)

I

| M1y

H

1 Mo

| 500)

= ﬂ

\
|%0)

T
1)

Figure 1.13. Quantum circuit for teleporting a qubit. The two top lines represent Alice’s system, while the bottom

Xﬁfz Zﬂf]_ L |¢>

t 1 T
[¥2) sy [¥4)

line 1s Bob’s system. The meters represent measurement, and the double lines coming out of them carry classical

bits (recall that single lines denote qubits).

H

AN

AN

L/

EFI Iil’l' FTFIX/IN/\N—= PE/L

Y

Measurement in the basis of
the Bell states



Measuring an operator

|

0) Hr——H TN

‘ win> U ‘ wout >

Suppose we have a single qubit operator U with eigenvalues
+1, so that U is both Hermitian and unitary, so it can be
regarded both as an observable and a quantum gate. Suppose
we wish to measure the observable U. That is, we desire to
obtain a measurement result indicating one of the two
eigenvalues, and leaving a post-measurement state which is the
corresponding eigenvector. How can this be implemented by a
quantum circuit? Show that the following circuit implements a
meastikement of U.
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Rotation operators

The Pauli matrices give rise to three useful classes of
unitary matrices when they are exponentiated, the

rotation operators about the x, y, and zaxes, defined by
the equations:

0 9 [ cos? —isin®
R.(0) = e X/% = cos ;I—fsin —X = [ . PSIm ]

y4 V4 —1 S1n % COS ﬁj
| 0 v Ccos? —siné
b= o2 = gog—T —isin ¥ = .2 0’
2 2 | sin5  cos 3
[ =02 0
w _ gpgl_  W. L. B. | e
R.(0)=e oS ZI i sin 2Z 0 Li0/2 | -

Let x be a real number and A a matrix such that 42 = I Then

exp(tAx) = cos(x)] + i sin(z)A

FERIF i NAF Rl



Rotation operators

It n = (ng,n,.n;) is a real unit vector in three dimensions then we generalize the
previous definitions by defining a rotation by €/ about the 7 axis by the equation

i

R;(0) = exp(—i0 7 - 5/2) = cos (g) I —isin (g) (ne X +n,Y +n,72),

where & denotes the three component vector (X, Y. Z) of Pauli matrices.

An arbitrary single qubit unitary operator can be written in the form
U = exp(ia)R;(0)

for some real numbers o and €, and a real three-dimensional unit vector 7.

PEMFERAKE BRI
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Quantum parallelism

Quantum parallelism is a fundamental feature of many
quantum algorithms. Heuristically, and at the risk of
over-simplifying, quantum parallelism allows quantum
computers to evaluate a function Ax) for many different
values of x simultaneously.

Suppose Ax) : {0, 1} — {0, 1}is a function with a one-bit
domain and range.

A convenient way of computing this function on a quantum computer is to
consider a two qubit quantum computer which starts in the state /x, y>.
With an appropriate sequence of logic gates it is possible to transform this
state into /x, y @ Ax)>, where & indicates addition modulo 2; the first
register is called the ‘data’ register, and the second register the ‘target’
register. We give the transformation defined by the map /x, y>— /x, y
@A x)> a name, U,, and note that it is easily shown to be unitary.

PEMFERAKE PRl



A quantum computer

0)+1)
V2

U [¥)
0) —v  y&f(eHH—

Figure 1.17. Quantum circuit for evaluating f(0) and f(1) simultaneously. U is the quantum circuit which takes
inputs like |z, y) to |z, y & f(x)).

The resulting state is

0. £(0)) +[L, f(1))
/2

PEMFERAKE BRI



This procedure can easily be generallzed to functions on an arbitrary
number of bits, by using a general operation known as the Hadamard
transform, or sometimes the Walsh—-Hadamard transform. This operation

is just 7 Hadamard gates acting in parallel on n qubits.

(!0) +y1>> (]0) + H)) _ [00) +01) + [10) +[11)
/2 NG 2

1 ;
7z 21

Prepare the n + 1 qubit state 0>%7/0>, then apply the Hadamard
transform to the first 17 qubits, followed by the quantum circuit
implementing U,. This produces the state

1
7= 2 )lf@)

PEMFERAKE PRl



Quantum algorithms
Deutsch algorithm

Go) i) 0oy )

Figure 1.19. Quantum circuit implementing Deutsch’s algorithm.
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Deutsch algorithm

"l,-:'f‘”> — ‘01>

= [m;zw} [|o>ﬁ1>]

A little thought shows that if we apply Uy to the state [2)(|0) — |1))/v/2 then we obtain
the state (—1)7@|x)(|0) — |1))/v/2. Applying Uy to |¢) therefore leaves us with one of

two possibilities:
[0> — 1)

72

r“'

L[+

V2

] £ £0) = £(1)

‘l‘g> = 4
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Deutsch algorithm
The final Hadamard gate on the first qubit thus gives us

; ==

+|0)

0) —|1)]

/2

0) — (1)
+(1) [ & L

: L V2

if £(0) = f(1)
‘E?,> =

if £(0) # f(1).

Realizing that A0) @ A1) is 0 if £0) = A1) and 1 otherwise, we can
rewrite this result concisely as

(( . 0) — |1
3) = | f(0) B f(1)) [| / ,_| )]

V2
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Deutsch algorithm

By measuring the first qubit we may determine A0) & A1). This is very
interesting indeed: the quantum circuit has given us the ability to determine
a global property of x), namely A0)®A 1), using only one evaluation of A x)!
This is faster than is possible with a classical apparatus, which would require
at least two evaluations.

Naively, one might think that the state /0>/A{0)> + /1>/f1)> corresponds
rather closely to a probabilistic classical computer that evaluates A0) with
probability one-half, or A1) with probability one-half. The difference is that in
a classical computer these two alternatives forever exclude one another; in a
quantum computer it is possible for the two alternatives to interfere with
one another to yield some global property of the function f, by using
something like the Hadamard gate to recombine the different alternatives,
as was done in Deutsch’s algorithm. The essence of the design of many
quantum algorithms is that a clever choice of function and final
transformation allows efficient determination of useful global information
about the function — information which cannot be attained quickly on a

classical computer.

PEMFERAKE PRl



Deutsch-Jozsa algorithm

Alice, in Amsterdam, selects a number x from 0 to 27 — 1,
and mails it in a letter to Bob, in Boston. Bob calculates
some function A x) and replies with the result, which is
either 0 or 1. Now, Bob has promised to use a function £
which is of one of two kinds; either Ax) is constant for all
values of x, or else A x) is balanced, that is, equal to 1 for
exactly half of all the possible x, and 0 for the other half.
Alice’s goal is to determine with certainty whether Bob has
chosen a constant or a balanced function, corresponding
with him as little as possible. How fast can she succeed?

PEMFERAKE PRl



Deutsch-Jozsa algorithm
Boolean function f : {0,1}" — {0,1}

Promise: fis constant or balanced.

Task: Determine which.

Classical: Roughly 2¥1 +1 function calls are required to be certain.

Quantum: Only 1 function call is needed.

PEMFERAKE PRl



Deutsch-Jozsa algorithm

‘0> 7& HON | — z 7 N | —
Uy
1) H—Y ydf(z)

T T T i
|%0) 1) |1) |3)

Figure 1.20. Quantum circuit implementing the general Deutsch—Jozsa algorithm. The wire with a */” through it

represents a set of n qubits, similar to the common engineering notation.

o) = [0)%"[1)
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Deutsch-Jozsa algorithm

After the Hadamard transform on the query register and the Hadamard
gate on the answer register we have

0) —|1)
= ¥ ool

16{01}” -

Next, the function f is evaluated (by Bob) using U;: /x, y> — /X, y &
Rx)>, giving

f (=) T10) — 1)
) =
12) Z v o

PEMFERAKE PRl



Deutsch-Jozsa algorithm

gilit ;= N
Hlz) = 3 (=1)*|2)/ V2
PATH
N e e
H®n|$1; . jgjﬂ> - ZZI:M’ZH( 1) - 2?1 |Zl? — ?Zn>

2. (=1D)"%2)
2-'n_.

H®™|x)

where x * zis the bitwise inner product of xand z modulo 2.
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Deutsch-Jozsa algorithm
IR LTSGR, BATE—b

) +H@]2) T10) = [1)°

vy
[43) = LL o /2

Note that the amplitude for the state 0>¢7 is > (—1)/")/2" | Let’s look
at the two possible cases — 7 constant and 7 balanced — to discern what
happens. In the case where fis constant the amplitude for 0>%7is +1 or
—1, depending on the constant value Ax) takes. Because /¢s> is of unit
length it follows that all the other amplitudes must be zero, and an
observation will yield Os for all qubits in the query register. If fis balanced
then the positive and negative contributions to the amplitude for 0>&7
cancel, leaving an amplitude of zero, and a measurement must yield a result
other than 0 on at least one qubit in the query register. Summarizing, if Alice
measures all 0s then the function is constant; otherwise the function is
halanced..The Deutsch—-Jozsa algorithm is summarized below.




Deutsch-Jozsa algorithm

Inputs: (1) A black box Uy which performs the transformation

lz)|yy — |z)|ly @ f(x)), for x € {0,...,2" — 1} and f(x) € {0,1}. It is
promised that f(z) is either constant for all values of x, or else f(x) is balanced,
that 1s, equal to 1 for exactly half of all the possible 2, and 0 for the other half.

Outputs: 0 if and only if f is constant.

Runtime: One evaluation of Uf. Always succeeds.

Procedure:
L. ]0>vn 1> initialize state
2 E : ‘O — | 1> create superposition using
,-’7“ —~ :; Hadamard gates
X—
oy [10) = . _
% — —1 f{I}_iIf calculate function f using U
f
1 2 L

-+. — E Z [ \/5 >] perform Hadamard transform

— 2 measure to obtain final output =

N



Quantum interference in the
Deutsch-Jozsa algorithm

Quantum interference allows one to distinguish
the situation where half the amplitudes are +1
and half -1 from the situation where all the
amplitudes are +1 or -1 (this is the information
one wants) without having to determine all
amplitudes (this information remains
inaccessible).

PEMFERAKE PRl



Variational guantum algorithms

Variational quantum algorithms (VQAs) have
emerged as the leading strategy to obtain
guantum advantage on NISQ devices.
Accounting for all of the constraints imposed by
NISQ computers with a single strategy requires
an optimization-based or learning-based
approach, precisely what VQAs use. VQAs are
arguably the quantum analogue of highly
successful machine-learning methods, such as
neural networks. Moreover, VQAs leverage the
toolbox of classical optimization, since they use
parameterized quantum circuits to be run on the
guantum computer, and then outsource the
parameter optimization to a classical optimizer.
This approach has the added advantage of
keeping the quantum circuit depth shallow and
hence mitigating noise, in contrast to quantum
algorithms developed for the fault-tolerant era

o A

O @ g bor010| DL
< \) 110001] ] E
Dynamical simulations % S Compilation
Error correction
@
@)
Quantum & ©
chemistry & Classifiers

Variational quantum

algorithms — Machine learning ~{

New frontiers

Quantum
information

Quantum
foundations

Finding on
ground states
Condensed {:} J

matter
Mathematical
applications

% Factoring w

Principal
components

Generative
models

Combinatorial
optimization

Quantum
metrology

Systems of
equations

Fig. 1| Applications of variational quantum algorithms. Many applications have been
envisaged for variational quantum algorithms. Here we show some of the key
applications that are discussed in this Review.

Variational quantum algorithms, M. Cerezo, Andrew Arrasmith, Ryan Babbush,
Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke

TERFARNZ B 5 oo 614 (0021)

Mitarai, Xiao Yuan, Lukasz Cincio & Patrick J. Coles, Nature Reviews Physics



Variational guantum algorithms

Key points

e Variational quantum algorithms (VQA:s) are the leading proposal for achieving
quantum advantage using near-term quantum computers.

* VQAs have been developed for a wide range of applications, including finding ground

states of molecules, simulating dynamics of quantum systems and solving linear
systems of equations.

* VQAs share a common structure, where a task is encoded into a parameterized cost
function that is evaluated using a quantum computer, and a classical optimizer trains
the parameters in the VQA.

* The adaptive nature of VQAs is well suited to handle the constraints of near-term
quantum computers.

* Trainability, accuracy and efficiency are three challenges that arise when applying

VQA:s to large-scale applications, and strategies are currently being developed to
address these challenges.

Variational quantum algorithms, M. Cerezo, Andrew Arrasmith, Ryan

Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fuijii, Jarrod R.

McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio & Patrick J.
FERFRAKRE Bl Coles, Nature Reviews Physics 3, 625-644 (2021)



Measurement in quantum circuits

Principle of deferred measurement. Measurements can
always be moved from an intermediate stage of a quantum
circuit to the end of the circuit; if the measurement results
are used at any stage of the circuit then the classically
controlled operations can be replaced by conditional
guantum operations.

Principle of implicit measurement: Without loss of
generality, any unterminated quantum wires (qubits which
are not measured) at the end of a quantum circuit may be
assumed to be measured.

PEMFERAKE PRl



Measurement in quantum circuits

® Measurement is generally considered to be an
irreversible operation, destroying quantum information
and replacing it with classical information.

@ In certain carefully designed cases, however, this need
not be true.

@ In order for a measurement to be reversible, it must
reveal no information about the quantum state being
measured!

PEREFERAKE BREl



Summary of the quantum circuit
model of computation

(1) Classical resources: A quantum computer consists of two parts, a classical part
and a quantum part. In principle, there i1s no need for the classical part of the
computer, but in practice certain tasks may be made much easier if parts of the
computation can be done classically. For example, many schemes for quantum
error-correction (Chapter 10) are likely to involve classical computations in order to
maximize efficiency. While classical computations can always be done, 1n principle,
on a quantum computer, it may be more convenient to perform the calculations on
a classical computer.

(2) A suitable state space: A quantum circuit operates on some number, n, of qubits.
The state space 1s thus a 2"-dimensional complex Hilbert space. Product states of
the form |xy,...,z,), where x; = 0,1, are known as computational basis states of

the computer. |z) denotes a computational basis state, where x 1s the number

whose binary representation 1s rj ... I,.

PEREFERAKE B



Summary of the quantum circuit
model of computation

(3) Ability to prepare states in the computational basis: It is assumed that any
computational basis state |xy,...,xI,) can be prepared in at most n steps.

(4) Ability to perform quantum gates: Gates can be applied to any subset of qubits
as desired, and a universal family of gates can be implemented. For example, it
should be possible to apply the CNOT gate to any pair of qubits in the quantum
computer. The Hadamard, phase, CNOT and 7 /8 gates form a family of gates from
which any unitary operation can be approximated, and thus 1s a universal set of
gates. Other universal families exist.

—
i
—

Ability to perform measurements in the computational basis:
Measurements may be performed in the computational basis of one or more of the
qubits 1n the computer.

PEREFERAKE B
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One way quantum computing

Graph states

4-qubit GHZ graph state
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One way quantum computing
Graph states I:I

2 X 2 cluster state
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One way quantum computing
using cluster- and graph states

A cluster state is a

information flow

collection of qubits that are t

entangled via nearest- s
neighbour CZ gates N T
(rectangular lattice). p [,

(I S N B

. . . FIG. 1. Quantum computation by measuring two-state parti-
HOI‘IZOntal ||n kS dete Fmine cles on a lattice. Before the measurements the qubits are in the

cluster state |®}- of (1). Circles @ symbolize measurements of

I i I 7., vertical arrows are measurements of .. while tilted arrows
the information flow, while | «: 7

refer to measurements in the x-y plane.

the vertical links furnish
the two-qubit gates.

Source: Raussendorf & Briegel PRL 86, 5188 (2001)
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One way quantum computing

a D (a.p)=(x,n)
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Kai Chen et al., Experimental Realization of One-Way Quantum
Computing with Two-Photon Four-Qubit Cluster States.

Phys. Rev. Lett., 99, 120503 (2007).
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One way quantum computing

|mec|suremeni| | readouil

Linear® cluster
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FIG. 37 (color online). Few-qubit cluster states and the quantum
circuits they implement. For each three-qubit and four-qubit cluster,
its quantum state (|®y3), [Ppipa)s 1Prs), | Py), or [$P4)) and the
computation carried out in the one-way quantum computer model is

shown. Adapted from Walther, Resch, Rudolph et al., 2005.
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Experimental one-way quantum
computing, P. Walther, K. J. Resch,
T. Rudolph, E. Schenck, H.
Weinfurter, V. Vedral, M.
Aspelmeyer & A. Zeilinger

Nature 434, 169—-1/6 (2005)

Jian-Wei Pan et al., Multiphoton
entanglement and interferometry
Rev. Mod. Phys. 84, 777-838 (2012).
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Quantum algorithms: an overview

Table 1. Some computational complexity classes of importance in quantum computation

Class Informal definition

P Can be solved by a deterministic classical computer in polynomial time

BPP Can be solved by a probabilistic classical computer in polynomial time

BQP Can be solved by a quantum computer in polynomial time

NP Solution can be checked by a deterministic classical computer in polynomial time
QMA Solution can be checked by a quantum computer in polynomial time

Abbreviation: QMA, Quantum Merlin-Arthur.
‘Polynomial time’ is short for ‘in time polynomial in the input size'

Table 2. Some problems which can be expressed as hidden subgroup problems

Problem Group Complexity Cryptosystem
Factorisation Z Polynomial’ RSA

Discrete log Zy 1% Zp Polynomial'’ Diffie-Hellman, DSA, ...
Elliptic curve discrete log Elliptic curve Polynomial®? ECDH, ECDSA,...
Principal ideal R Polynomial® Buchmann-Williams
Shortest lattice vector Dihedral group Subexponential®*®> NTRU, Ajtai-Dwork, ...
Graph isomorphism Symmetric group Exponential —

The table lists the time complexity of the best quantum algorithms known for the HSPs and the cryptosystems that are (or would be) broken by polynomial-
time algorithms.

Ashley Montanaro, npj Quantum Information (2016) 2, 15023
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Quantum algorithms:

an overview

Table 3. Some proof-of-concept experimental implementations of quantum algorithms

Algorithm Technology Problem solved

Shor's algorithm Bulk optics™® Factorisation of 21

Grover’s algorithm NMR®’ Unstructured search, N=8

Quantum annealing D-Wave 2X3® Ising model on a ‘Chimera’ graph with 1097 vertices
HHL algorithm Bulk optics,”®?° NMR'%° 2 x 2 system of linear equations

Abbreviations: HHL, Harrow, Hassidim and Lloyd; NMR, nuclear magnetic resonance.
Table only includes some ‘largest’ problem instances solved thus far.

What does it mean to say that a quantum computer solves a problem more quickly
than a classical computer? As is typical in computational complexity theory, we will
generally consider asymptotic scaling of complexity measures such as runtime or
space usage with problem size, rather than individual problems of a fixed size. In
both the classical and quantum settings, we measure runtime by the number of
elementary operations used by an algorithm. In the case of quantum computation,
this can be measured using the quantum circuit model, where a quantum circuit is
a sequence of elementary quantum operations called quantum gates, each
applied to a small number of qubits (quantum bits). To compare the performance
of algorithms, we use computer science style notation O(f(n)), which should be
interpreted as ‘asymptotically upper-bounded by f(n)'.

hERERAAE Y. Ashley Montanaro, npj Quantum Information (2016) 2, 15023




Quantum Algorithm Zoo

Stephen Jordan

Microsoft Quantum

https://quantumalgorithmzoo.org/

Quantum Algorithm Zoo H X ki
https://www.qgtumist.com/quantum-algorithm-zoo
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#® Quantum computation and quantum
information by M.A. Nielsen and I.L.
Chuang

Chapters 1,4,5,6
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