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Abstract—Estimation of distribution algorithms (EDAs) are
widely used in stochastic optimization. Impressive experimental
results have been reported in the literature. However, little work
has been done on analyzing the computation time of EDAs in
relation to the problem size. It is still unclear how well EDAs
(with a finite population size larger than two) will scale up when
the dimension of the optimization problem (problem size) goes
up. This paper studies the computational time complexity of a
simple EDA, i.e., the univariate marginal distribution algorithm
(UMDA), in order to gain more insight into EDAs complex-
ity. First, we discuss how to measure the computational time
complexity of EDAs. A classification of problem hardness based
on our discussions is then given. Second, we prove a theorem
related to problem hardness and the probability conditions of
EDAs. Third, we propose a novel approach to analyzing the
computational time complexity of UMDA using discrete dynamic
systems and Chernoff bounds. Following this approach, we are
able to derive a number of results on the first hitting time of
UMDA on a well-known unimodal pseudo-boolean function, i.e.,
the LeadingOnes problem, and another problem derived from
LeadingOnes, named BVLeadingOnes. Although both problems
are unimodal, our analysis shows that LeadingOnes is easy for
the UMDA, while BVLeadingOnes is hard for the UMDA. Finally,
in order to address the key issue of what problem characteristics
make a problem hard for UMDA, we discuss in depth the idea of
“margins” (or relaxation). We prove theoretically that the UMDA
with margins can solve the BVLeadingOnes problem efficiently.

Index Terms—Computational time complexity, estimation of
distribution algorithms, first hitting time, heuristic optimization,
univariate marginal distribution algorithms.
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I. Introduction

ESTIMATION of distribution algorithms (EDAs) [25],
[28] are population-based stochastic algorithms that in-

corporate learning into optimization. Unlike evolutionary algo-
rithms (EAs) that rely on variation operators to produce off-
spring, EDAs create offspring through sampling a probabilistic
model that has been learned so far in the optimization process.
Obviously, the performance of an EDA depends on how well
we have learned the probabilistic model that tries to estimate
the distribution of the optimal solutions. The general procedure
of EDAs can be summarized in Table I. In recent years, many
variants of EDAs have been proposed. On one hand, they
have been shown experimentally to outperform other existing
algorithms on many benchmark test functions. On the other
hand, there were also experimental observations that showed
EDAs did not scale well to large problems. In spite of a large
number of experimental studies, theoretical analysis of EDAs
has been few, especially on the computational time complexity
of EDAs.

The importance of the time complexity of EDAs was rec-
ognized by several researchers. Mühlenbein and Schlierkamp-
Voosen [31] studied the convergence time of constant se-
lection intensity algorithms on the OneMax function. Later,
Mühlenbein [27] studied the response to selection equation of
the univariate marginal distribution algorithm (UMDA) on the
OneMax function through experiments as well as theoretical
analysis. Pelikan et al. [32] studied the convergence time of
Bayesian optimization algorithm on the OneMax function.
Rastegar and Meybodi [35] carried out a theoretical study
of the global convergence time of a limit model of EDAs
using drift analysis, but they did not investigate any relations
between the problem size and computation time of EDAs. In
addition to convergence time, the time complexity of EDAs
can be measured by the first hitting time (FHT), which is
defined as the first time for a stochastic optimization algorithm
to reach the global optimum. Although recent work pointed out
the significance of studying the FHT of EDAs [29], [33], few
results have been reported. Droste’s results [8] on the compact
genetic algorithm (cGA) are a rare example. He analyzed
rigorously the FHT of cGA with population size 2 [14] on
linear functions. The other example is González’s doctoral
dissertation [13], where she analyzed the FHT of EDAs on the
pseudo-boolean injective function using the analytical Markov
chain framework proposed by He and Yao [17]. González
[13] proved an important result that the worst-case mean FHT
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TABLE I

General Procedure of EDA

ξ1 ← N individuals are generated by the initial probability distribution;
% Beginning of the 0th generation.

t← 1; % End of the 0th generation.
Repeat

ξ
(s)
t ← M individuals are selected from the N individuals in ξt ;

% Beginning of the tth generation (t ≥ 1).
p(x|ξ(s)

t )← The joint probability distribution is estimated from ξ
(s)
t ;

ξt+1 ← N individuals are sampled from p(x|ξ(s)
t );

t← t + 1; % End of the tth generation.
Until the Stopping Criterion is Met.

ξt and ξ
(s)
t are the populations before and after selection at the tth generation.

is exponential in the problem size for four commonly used
EDAs. However, no specific problem was analyzed theoreti-
cally. Instead, González et al. [10] studied experimentally the
mean FHT of three different types of EDAs, including the
UMDA, on the Linear function, LeadingOnes function [4],
[7], [16], [37], and Unimax (long-path) function [22].

This paper concerns theoretical analysis of the FHT of
EDAs on the optimization problems with a unique global
optimum. First, we provide a classification of problem hard-
ness based on the FHT of EDAs, so that we can relate the
problem characteristics to EDAs. This is very important for
investigating the principles of when to use which EDAs for
a given problem. Given such a classification (with respect to
an EDA), we then investigate the relationship between EDAs
probability conditions and problem hardness. Specifically, the
time complexity of a simple EDA, the UMDA with truncation
selection, is analyzed on two unimodal problems. The first
problem is the LeadingOnes problem [37], which has fre-
quently been studied in the field of time complexity analysis
of EAs [7], [16]–[18]. The other problem is a variant of
LeadingOnes, namely BVLeadingOnes.

Our analysis can be briefly summarized from two aspects.
First, we propose a general approach to time complexity
analysis of EDAs with finite populations. In the domain of
EDAs, lots of theoretical results are based on infinite popu-
lation assumption (e.g., [3], [11], [45]), while few consider
the more realistic scenario that employs finite populations.
Though we restrict our analysis to UMDA, our approach may
also be useful for other EDAs. Second, both LeadingOnes

and BVLeadingOnes are unimodal problems, and hence are
usually expected to be easy for EDAs [11]. Our analysis
confirms that LeadingOnes is easy for the UMDA studied.
However, we interestingly find that BVLeadingOnes is hard
for the UMDA. To deal with this issue, we relax the UMDA
by the so-called margins, and prove that BVLeadingOnes

becomes easy for this relaxed version of UMDA.
The rest of the paper is organized as follows. Section II

discusses why FHT is more appropriate for time complexity
analysis of EDAs and presents the classification of problem
hardness and the corresponding probability conditions for
EDAs. Section III presents the new approach to analyzing
EDAs with finite populations and describes the UMDA studied
in this paper. Then, UMDA is analyzed on LeadingOnes and
BVLeadingOnes problems in Sections IV and V, respec-
tively. Section VI studies the relaxation form of the UMDA on

the BVLeadingOnes problem. Finally, Section VII concludes
the paper.

II. Time Complexity Measures for EDAs

A. How to Measure the Time Complexity of EDAs

The concept of “convergence” is often used to measure the
limit behaviors of EAs, including EDAs, which was derived
from the concept of convergence of random sequences [37].
For EDAs, the following formal definition of “convergence”
was given by Zhang and Mühlenbein [45]:

If limt→∞ F̄ (t) = g∗ holds for a given EDA, where
F̄ (t) is the average fitness of individuals in the
tth generation and g∗ is the fitness of the global
optimum, then we say that the EDA converges to the
global optimum.

There has been some work concerning such convergence of
EDAs [12], [30]. It is worth noting that the above definition
of convergence requires all individuals of a population to
reach the global optimum. If we assume that an EDA on
a problem converges to the global optimum, we can then
measure the EDAs time complexity using the minimal number
of generations that is needed for it to converge. This concept is
called the convergence time (CT), denoted by T in this paper.
For EDAs, the CT is formally defined by

T �min{t; p(x∗|ξ(s)
t ) = 1} (1)

where x∗ is the global optimum of a given problem, and ξ
(s)
t is

the population after selection at the tth generation. p(x∗|ξ(s)
t )

is the estimated probability (of generating x∗) by the EDA at
the tth generation.

In addition to CT, the FHT is also a commonly used concept
for measuring the time complexity of EAs [16], [17]. The
FHT [16], [17], [43], denoted by τ, is defined for the general
procedure of EDA shown in Table I

τ �min{t; x∗ ∈ ξt+1} (2)

where ξt+1 is the population generated at the end of tth
generation. In the domain of EA, the FHT records the smallest
number of generations needed to find the optimum, which is
by a factor N smaller than another commonly used measure
named number of fitness evaluations, where N is the number
of fitness evaluations in every generation [9]. As González
pointed out in [13], the FHT can also be used to measure the
time complexity of EDAs.
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Since EDAs are stochastic algorithms, both CT T and FHT
τ are random variables. Noting that the FHT measures the time
for the global optimum to be found for the first time, thus the
CT is no smaller than FHT

T ≥ τ (3)

which implies a natural way to bound CT from below by FHT
or bound FHT from above by the CT.

In practical optimization, we are most interested in the
time spent in finding the global optimum, not in waiting
for the whole population to converge to the global optimum.
Hence, the FHT is a better measure for analyzing the time
complexity of the EDAs. It is worth noting that for a given
EDA on a problem, it may have a small FHT but large CT.
In other words, the population may take a long time (even
infinite) to converge to the global optimum. In such cases, the
analysis of FHT is still valid while the analysis of CT is rather
uninteresting. It is possible that an EDA could find the global
optimum efficiently (in polynomial time), but the population
does not converge to the global optimum. We will discuss such
an example in Section VI.

B. Probability Conditions for EDA–Hardness

In order to understand better the relationship between prob-
lem characteristics and algorithmic features of an EDA, we
introduce a problem classification for a given EDA. However,
we should introduce some notations first.

Denote Poly(n) as the polynomial function class of the prob-
lem size n and SuperPoly(n) as the super-polynomial function
class of the problem size n. For a function f (n) (where
f (n) > 1 always holds, and when n → ∞, f (n) → ∞),
denote the following:

1) f (n) ≺ Poly(n) and g(n) = 1
f (n) � 1

Poly(n) if and only if
∃a, b ∈ R+, n0 ∈ N: ∀n > n0, f (n) ≤ anb;

2) f (n) � SuperPoly(n) and g(n) = 1
f (n) ≺ 1

SuperPoly(n) if
and only if ∀a, b ∈ R+: ∃n0 ∈ N: ∀n > n0, f (n) > anb.

Based on the above definitions, we know that “≺” and “�”
imply “<” and “>” respectively, when n is sufficiently large.
Poly(n) [SuperPoly(n)] implies that there exists a monotoni-
cally increasing function that is polynomial (super-polynomial)
in the problem size n. Note that g(n) = 1

f (n) ∈ (0, 1), and its
asymptotic form g(n) � 1

Poly(n) or g(n) ≺ 1
SuperPoly(n) , can be

used to measure the asymptotic order of a probability (e.g.,
the probability of generating a certain individual), since a
probability always takes its value in the interval [0, 1].1 Then
we provide the following problem classification for a given
EDA.

1For g(n) ∈ [0, 1], there are more detailed asymptotic orders in the interval
[0, 1]:

1) g(n) ≺ 1
SuperPoly(n) ;

2) 1
Poly(n) ≺ g(n) ≺ 1 − 1

Poly(n) [if and only if ∃a1, b1, a2, b2 ∈ R+,
n0, n1 ∈ N: ∀n > max{n0, n1}, 1/(a1n

b1 ) ≤ g(n) ≤ 1− 1/(a2n
b2 )];

3) g(n) � 1− 1
SuperPoly(n) [if and only if ∀a, b ∈ R+: ∃n0 ∈ N: ∀n > n0,

g(n) ≥ 1− 1/(anb)].

If necessary, these detailed asymptotic orders can be obtained by considering
the regions c ± 1

Poly(n) and c ± 1
SuperPoly(n) , where 0 < c < 1.

1) EDA-easy Class. For a given EDA, a problem is
EDA-easy if, and only if, with the probability of
1−1/SuperPoly(n), the FHT needed to reach the global
optimum is polynomial in the problem size n.

2) EDA-hard Class. For a given EDA, a problem is EDA-
hard if, and only if, with the probability of 1/Poly(n),
the FHT needed to reach the global optimum is super-
polynomial in the problem size n.

The above classification can be considered as a direct gener-
alization of the following EA-hardness classification for EAs
proposed by He and Yao [18].

1) EA-easy Class. For a given EA, a problem is EA-easy
if, and only if, the mean FHT needed to reach the global
optimum is polynomial in the problem size n.

2) EA-hard Class. For a given EA, a problem is EA-hard
if, and only if, the mean FHT needed to reach the global
optimum is super-polynomial in the problem size n.

We see that He and Yao’s classification for EAs is based on
mean FHT, while our classification for EDAs concerns more
detailed characteristics of the probability distribution of FHT.
Given a problem, if the FHT of an EDA is polynomial with a
probability super-polynomially close to 1 (the probability will
be called “an overwhelming probability” in the following parts
of the paper), then we can say that in most of independent runs,
the EDA can find the optimum of the problem efficiently. On
the other hand, if the FHT of an EDA is super-polynomial with
a probability that is polynomially large. i.e., 1/Poly(n), then
it is very likely that the EDA cannot find the optimum of the
problem efficiently. A similar idea can be found in [42], which
defined efficiency measures for randomized search heuristics.

From the definition of expectation in probability theory, we
know that for an algorithm, the problems belonging to the
EDA-hard class in our classification will still be hard under
the classification based on mean FHT. But our classification
defines EDA-easy differently from the classification based on
mean FHT. In practice, it is possible that an EDA finds the
optimum efficiently in most of the independent runs, while
spends extremely long time in the other runs. This kind of
problems will considered to be “hard” cases if using mean
FHT for classification. However, in our classification, such
problems are considered to be easy cases, which is more likely
to fit the practitioners’ point of view.

We now establish conditions under which a problem is
EDA-hard (or EDA-easy) for a given EDA. Let P(τ = t)
(t ∈ N) be the probability distribution of the FHT, which is
determined by the probabilistic model at the tth generation. An
EDA can be regarded as a random process K = {Kt : t ∈ N},
where Kt is the probabilistic model (including the parameters)
maintained at the tth generation. Obviously, Kt implies the
probability of generating the global optimum in one sampling
at the tth generation, denoted by P∗t

∀t ∈ N : Kt � P∗t . (4)

Meanwhile, to obtain the probability distribution of the
FHT τ, we let P ′t be the probability of generating the global
optimum in one sampling at the tth generation, conditional
on the event τ ≥ t (i.e., the global optimum has not been
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generated before the tth generation). Consequently, we obtain
the following lemma:

Lemma 1: The probability distribution of the FHT τ satis-
fies

∀t ≥ 0 : P(τ = t) =
(
1− (1− P ′t )

N
) t−1∏

j=0

(1− P ′j)N. (5)

Proof: Let x∗ be the global optimum. As Table I and (2),
we also let ξt+1 be the generated population at the end of tth
generation (t ∈ N). According to the FHT defined in (2), for
any t ∈ N+ we have

P(τ = t) = P
(
x∗ ∈ ξt+1, x

∗ /∈ ξt, . . . , x
∗ /∈ ξ2, x

∗ /∈ ξ1

)
= P
(
x∗ ∈ ξt+1, x

∗ /∈ ξt, . . . , x
∗ /∈ ξ2 | x∗ /∈ ξ1

)
·P
(
x∗ /∈ ξ1

)
= P
(
x∗ ∈ ξt+1, x

∗ /∈ ξt, . . . , x
∗ /∈ ξ3 | x∗ /∈ ξ2, x

∗ /∈ ξ1

)
·P
(
x∗ /∈ ξ2 | x∗ /∈ ξ1

)
P

(
x∗ /∈ ξ1

)
= P
(
x∗ ∈ ξt+1 | x∗ /∈ ξt, . . . , x

∗ /∈ ξ1

)
P

(
x∗ /∈ ξ1

)

·
t−1∏
j=1

P

(
x∗ /∈ ξj+1 | x∗ /∈ ξj, . . . , x

∗ /∈ ξ1

)

= P
(
x∗ ∈ ξt+1 | τ ≥ t

) t−1∏
j=0

P

(
x∗ /∈ ξj+1 | τ ≥ j

)

=
(
1− (1− P ′t )

N
) t−1∏

j=0

(1− P ′j)N

where N is the population size, the item 1− (1− P ′t )
N is the

probability that the optimum is found at the tth generation,
conditional on the event τ ≥ t, and the item

∏t−1
j=0(1 − P ′j)N

is the probability that the optimum has not been found before
the tth generation. Combining the above result with the fact
P(τ = 0) = 1− (1− P ′0)N , we have proven the lemma.

Moreover, let us consider the following lemma:
Lemma 2: If P(τ ≺ Poly(n)) � 1 − 1

SuperPoly(n) , then ∃t′ ≤
�E[τ | τ ≺ Poly(n)]� + 1 such that

P(τ = t′) � 1

Poly(n)
.

Proof: Assume that ∀t ≤ �E[τ | τ ≺ Poly(n)]� + 1, P(τ =
t) ≺ 1

SuperPoly(n) , then we know that

max
{
P(τ = t); t ≤ �E[τ | τ ≺ Poly(n)]� + 1

}
≺ 1

SuperPoly(n)
.

Hence, we can obtain

P(τ ≤ �E[τ | τ ≺ Poly(n)]� + 1)

=
�E[τ|τ≺Poly(n)]�+1∑

t=0

P(τ = t)

≤
(
�E[τ | τ ≺ Poly(n)]� + 2

)

·max
{
P(τ = t); t ≤ �E[τ | τ ≺ Poly(n)]� + 1

}
≺ Poly(n)

SuperPoly(n)
.

Now we can estimate the expectation of the FHT τ

E[τ | τ ≺ Poly(n)] =
+∞∑
t=0

tP(τ = t | τ ≺ Poly(n))

=
Poly(n)∑

t=0

tP(τ = t, τ ≺ Poly(n))

P(τ ≺ Poly(n))

=
Poly(n)∑

t=0

tP(τ = t)

P(τ ≺ Poly(n))
≥

Poly(n)∑
t=0

tP(τ = t)

=
�E[τ|τ≺Poly(n)]�+1∑

t=0

tP(τ = t)

+
Poly(n)∑

t=�E[τ|τ≺Poly(n)]�+2

tP(τ = t)

> (�E[τ | τ ≺ Poly(n)]� + 2)

·P
(
Poly(n) � τ > �E[τ | τ ≺ Poly(n)]� + 1

)
= (�E[τ | τ ≺ Poly(n)]� + 2)

(
P
(
τ ≺ Poly(n)

)
−P(τ ≤ �E[τ | τ ≺ Poly(n)]� + 1

))
= (�E[τ | τ ≺ Poly(n)]� + 2)

·
(

1− 1

SuperPoly(n)
− Poly(n)

SuperPoly(n)

)

� (�E[τ | τ ≺ Poly(n)]� + 2)− Poly(n)

SuperPoly(n)

−Poly(n)Poly(n)

SuperPoly(n)
.

As n → ∞, Poly(n)
SuperPoly(n) → 0 and Poly(n)Poly(n)

SuperPoly(n) → 0. Hence,
there exists a sufficiently large problem size n such that

E[τ | τ ≺ Poly(n)] > �E[τ | τ ≺ Poly(n)]� + 1 (6)

which is an obvious contradiction. So we have proven the
lemma.

Formally, an optimization problem can be denoted by I =
(�, f ), where � is the search space and f the fitness function.
Following He et al. [19], we use P = (�, f,A) to indicate
an algorithm A on a fitness function f in the search space
�. Let the FHT of A on I be τ(P). The following theorem
describes the relation between EDA-hardness and probabi-
lity P∗i .

Theorem 1: For a given P , if the population size N of the
EDA A is polynomial in the problem size n, then:

1) if I is EDA-easy for A, then ∃t′′ ≤ �E[τ(P) | τ(P) ≺
Poly(n)]� + 1 such that

P∗t′′ �
1

Poly(n)
;

2) if ∀t = t(n) ≺ Poly(n), P∗t ≺ 1
SuperPoly(n) , then I is EDA-

hard for A.
Proof: Note that the second part of this theorem is a

corollary of the first part. We only need to prove the first part.
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According to Lemma 1, we have

P(τ(P) = i) < 1− (1− P ′i )
N.

On the other hand, according to Lemma 2, we know that ∃t′ ≤
�E[τ(P) | τ(P) ≺ Poly(n)]� + 1 such that

P(τ(P) = t′) � 1

Poly(n)
.

Thus, we can define t′′ as follows:

t′′ = min

{
t′; t′ ≤ �E[τ(P) | τ(P) ≺ Poly(n)]� + 1,

P(τ(P) = t′) � 1

Poly(n)

}
. (7)

Since P(τ(P) = t′′) � 1
Poly(n) , we have

1− (1− P ′t′′ )
N � 1

Poly(n)
. (8)

Let us assume that P∗t′′ ≺ 1
SuperPoly(n) . Here we let E represent

the event “the global optimum is generated in one sampling at
the t′′-th generation,” then according to the definitions of P∗t′′
and P ′t′′ mentioned in Section II-B, we obtain the following
inequality:

P∗t′′ = P(E) ≥ P(E, τ(P) ≥ t′′)
= P(E | τ(P) ≥ t′′)P(τ(P) ≥ t′′)
= P ′t′′P(τ(P) ≥ t′′). (9)

Meanwhile, (7) implies that

P(τ(P) ≥ t′′) ≥ P(τ(P) = t′′) � 1

Poly(n)
. (10)

Combining (9) and (10) together, we know that P∗t′′ ≺
1

SuperPoly(n) yields P ′t′′ ≺ 1
SuperPoly(n) .

Now ∀f (n) ≺ Poly(n), we estimate

lim
n→∞

1− (1− P ′t′′
)N

1/f (n)
(11)

where N = N(n) ≺ Poly(n) is the population size of the EDA.
Equation (11) can be calculated as follows:

lim
n→∞

1− (1− P ′t′′
)N(n)

1/f (n)

= lim
n→∞

1−
((

1− P ′t′′
) 1

P ′
t′′

)P ′
t′′N(n)

1/f (n)

= lim
n→∞

(
f (n)− f (n)e−P ′

t′′N(n)
)

= lim
n→∞

(
f (n)− f (n)

(
1− P ′t′′N(n)

+
(P ′t′′N(n))2

2
+ o
(

(P ′t′′N(n))2
)))

= lim
n→∞ f (n)P ′t′′N(n)− lim

n→∞
f (n)(P ′t′′N(n))2

2

− lim
n→∞ o

(
f (n)

(
P ′t′′N(n)

)2
)

≺ lim
n→∞

Poly2(n)

SuperPoly(n)
− lim

n→∞
Poly3(n)

SuperPoly2(n)

− lim
n→∞ o

(
Poly3(n)

SuperPoly2(n)

)
= 0.

Hence, we know that 1−(1−P ′t′′ )
N is smaller than 1

f (n) � 1
Poly(n)

when n→∞. In other words

1− (1− P ′t′′ )
N ≺ 1

SuperPoly(n)

where we obtain a contradiction to (8).
So we have

P∗t′′ �
1

Poly(n)
.

The theorem is proven.
The theorem above provides us with two simple probability

conditions related to the problem classification in terms of
EDA-hardness. Later, we will use this theorem to obtain more
specific results related to EDA-hardness for the UMDA.

III. Time Complexity Analysis of EDAs With Finite

Population Sizes

A. A General Approach to Analyzing EDAs With Finite Pop-
ulation Sizes

In the domain of EA, several different approaches have been
proposed for analyzing theoretically the FHT, such as drift
analysis [16], [18], analytical Markov chain [17], Chernoff
bounds [7], [23], [24], and convergence rate [15], [43]. Some
of them have been applied to EDAs as well. González used the
analytical Markov chain to study the worst case exponential
FHT of some EDAs [13]. Droste employs drift analysis and
Chernoff bounds to analyze the time complexity of cGA (with
a population size of two) on linear pseudo-boolean functions
[8]. However, those existing techniques might not be sufficient
for time complexity analysis of EDAs, because EDAs do not
use any variation operators (e.g., mutation and crossover) but
rely on sampling successive probabilistic models. Hence, some
new ideas are needed to deal with probabilistic models.

One of the main difficulties of analyzing probabilistic
models is due to the errors brought by the random sampling
processes. Such random errors may occur when a probabilistic
model is updated via random sampling. An intuitive idea of
handling the random errors is to assume infinite population
sizes for EDAs. This assumption has been adopted in the
most existing literature, such as the well-known example
of OneMax given by Mühlenbein and Schlierkamp-Voosen
[31], and Zhang’s convergence analysis of EDAs [45]. Two
exceptions are the aforementioned Droste’s results on cGA
[8] and González’s general worst case analysis of EDAs [13].

In this section, we will provide a general approach to
analyzing theoretically EDAs with finite population sizes. The
approach is closely related to Chernoff bounds and the dis-
crete dynamic system model of population-based incremental
learning (PBIL) [1]. PBIL is a more general version of UMDA
and its discrete dynamic system model was first presented
by González et al. [11]–[13]. Assume there is a function
G : Rn → Rn, then A(t + 1) = G(A(t)) (t = 0, 1, . . .) is called
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a discrete dynamic system [39]. In [11]–[13], two discrete
dynamic system were discussed. The first one considered PBIL
as a function G1 : [0, 1]n → [0, 1]n. G1 includes the random
effects. Hence, even if the initial probability distribution and
algorithm parameters of PBIL are fixed, the system is still
stochastic. This is an exact model of PBIL, but hard to analyze
directly. So the authors considered the second dynamic system
with the function G2 : [0, 1]n → [0, 1]n, which removes the
random effects by assuming an infinite population size and
thereby becomes deterministic. Although the deviation (caused
by the random sampling errors) between the two dynamic
systems has been estimated, so as to study the fixed point
of the first dynamic system by investigating that of the second
system, their method does not relate the deviation to the
computation time of PBIL. Hence, it is not applicable to time
complexity analysis.

Although González et al. [11]–[13] did not analyze the time
complexity of EDAs, their mathematical models (using the
discrete dynamic systems) can be used to develop a feasible
approach to analyzing the time complexity of EDAs. Such an
approach can be summarized by two major steps.

1) Build an easy-to-analyze discrete dynamic system for
the EDA. The idea is to de-randomize the EDA and
build a deterministic2 dynamic system.

2) Analyze the deviations caused by de-randomization.
Note that EDAs are stochastic algorithms. Concretely,
tail probability techniques, such as Chernoff bounds, can
be used to bound the deviations.

In this paper, we will use UMDA as an example of EDAs
to illustrate the analysis of EDAs time complexity using the
above approach. The analysis will show that our approach pro-
vides a feasible way of estimating the random errors brought
by finite populations in UMDA, and thus shed some light
on analyzing other EDAs with finite populations. However, it
should be noted that much work remains to be done to achieve
such a goal.

B. Univariate Marginal Distribution Algorithm

The UMDA was originally proposed as a discrete EDA [28],
[44]. As one of the earliest and simplest EDAs, UMDA has
attracted a lot of research attention. The UMDA studied in this
paper adopts binary encoding and one of the most commonly
used selection strategies—the truncation selection, which is
described below.

Sort the N individuals in the population by their
fitness from high to low. Then select the best M of
them for estimating the probability distribution.

The general procedure of UMDA studied in our paper is shown
in Table II, where x = (x1, x2, . . ., xn) ∈ {0, 1}n represents an
individual, pt,i(1) (pt,i(0)) is the estimated marginal probability
of the ith bit of an individual to be 1 (0) at the tth generation.
We can also define the indicators δ(xi|1) as follows:

δ(xi|1)�
{

1, xi = 1
0, xi = 0.

2In our discussions, “deterministic” is always in the sense that we have
fixed the initial values of all the parameters of the non-self-adaptive EDA.

The marginal probabilities pt,i(1) and pt,i(0) are given by

pt,i(1)�
∑

x∈ξ(s)
t

δ(xi|1)

M
, pt,i(0)� 1− pt,i(1).

Let
Pt(x)�

(
pt,1(x1), pt,2(x2), . . . , pt,n(xn)

)
where Pt(x) is a probability vector, which is made up of
n random variables (that is because, UMDA is a stochastic
algorithm). Then the probability of generating individual x in
the tth generation is

pt(x) =
n∏

i=1

pt,i(xi).

C. Analyzing Time Complexity of UMDA

The UMDA given in the former section can be analyzed
following the general idea presented in Section III-A. First,
we define a function γ : [0, 1]n→ [0, 1]n such that γ = S ◦D,
where S : [0, 1]n → [0, 1]n is the function that represents
the effect of selection, and D : [0, 1]n → [0, 1]n is the
function that is used in eliminating the stochastic effects of
the random sampling. Then we obtain a deterministic discrete
dynamic system {P̂t(x∗); t = 0, 1, . . .} related to the marginal
probabilities of generating the global optimum

P̂0(x∗) = P0(x∗) (12)

P̂t+1(x∗) = γ
(

P̂t(x∗)
)

= S
(
D(P̂t(x∗)

))
(13)

P̂t(x∗) = γt
(

P̂0(x∗)
)

(14)

where P̂t(x) =
(
p̂t,1(x1), . . . , p̂t,n(xn)

)
is the marginal prob-

ability vector of the deterministic system for generating an
individual x, and x∗ is the global optimum. Since UMDA is
usually initialized with a uniform distribution, we consider
P̂0(x) = P0(x) =

(
1
2 , . . . , 1

2

)
in this paper. Correspondingly,

the probability of generating an individual x is

p̂t(x) =
n∏

i=1

p̂t,i(xi).

Note that pt(x) in the former section corresponds to the
original UMDA, while p̂t(x) is obtained from the deterministic
dynamic system after de-randomization. Following the first
step of our general approach, we need to estimate the time
complexity of the de-randomized UMDA.

To relate the time complexity result obtained by the deter-
ministic system to the original UMDA, we should estimate
the deviation of the de-randomized UMDA from the original
UMDA. Since time complexity of the former totally depends
on {P̂t(x∗); t = 0, 1, . . .}, such deviation arises from the differ-
ence between {P̂t(x∗); t = 0, 1, . . .} and {Pt(x∗); t = 0, 1, . . .}.
Ideally, we want to exactly calculate the difference between
the two sequences of marginal probability vectors. However,
this is a non-trivial work (if not impossible). Alternatively, we
resort to estimating the probabilities that the deviations are
smaller than some specific values. Two crucial lemmas for
this task are given below.
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TABLE II

Univariate Marginal Distribution Algorithm (UMDA) With Truncation Selection

p0,i(xi)← Initial values (∀i = 1, . . . , n)
ξ1 ← N individuals are sampled according to the distribution

p0(x) =
∏n

i=1 p0,i(xi)
t← 1;
Repeat

ξ
(s)
t ← The best M individuals are selected from the N individuals in ξt (N > M)

pt,i(1)←
∑

x∈ξ(s)
t

δ(xi|1)

M
, pt,i(0)← 1− pt,i(1) (∀i = 1, . . . , n)

ξt+1 ← N individuals are sampled according to the distribution
pt(x) =

∏n

i=1 pt,i(xi)
t← t + 1;

Until the Stopping Criterion is Met

Lemma 3 ([26]): Chernoff Bounds. Let X1, X2, . . . , Xk ∈
{0, 1} be k independent random variables (take the value of
either 0 or 1) with a same distribution

∀i �= j : P(Xi = 1) = P(Xj = 1)

where i, j ∈ {1, . . . , k}. Let X be the sum of those random
variables, i.e., X =

∑k
i=1 Xi, then we have:

1) ∀0 < δ < 1

P

(
X < (1− δ)E[X]

)
< e−E[X]δ2/2;

2) ∀δ ≤ 2e− 1

P

(
X > (1 + δ)E[X]

)
< e−E[X]δ2/4.

Lemma 4 ([21], [38]): Consider sampling without replace-
ment from a finite population (X1, . . . , XN ) ∈ {0, 1}N . Let
(Y1, . . . , YM) ∈ {0, 1}M be a sample of size M get randomly
without replacement from the whole population, Y (M) and
X(N) be the sums of the random variables in the sample
and population, respectively, i.e., Y (M) =

∑M
i=1 Yi and X(N) =∑N

i=1 Xi, then we have

P

(
Y (M) − MX(N)

N
≥ Mδ

)
≤ e
− 2Mδ2

1−(M−1)/N

< e−2Mδ2

P

(∣∣∣Y (M) − MX(N)

N

∣∣∣ > Mδ

)
≤ 2e

− 2Mδ2

1−(M−1)/N

< 2e−2Mδ2

where δ ∈ [0, 1] is some constant.3

Another issue that will be involved in our further analysis
is to estimate the probability of the following events:

∀t ∈ N0 : pt(x∗)⊕ p̂t(x∗) (15)

where ⊕ ∈ {≤,≥}. As we will show soon, they can be handled
on the basis of estimation of the probabilities of deviations.
Finally, before presenting the case studies in detail, it should
be noted that we always consider finite population sizes
throughout this paper. Although we will sometimes utilize a
statement like “when the problem size becomes sufficiently
large,” that does not mean that we assume infinite population

3The first inequality can be found in Corollary 1.1 in [38], or a similar form
can be found in [21], and the second inequality is in (3.3) in [38].

sizes, it is merely used to obtain the asymptotic order of a
function of the problem size n. The main difference is that
the infinite population assumption implies infinite population
sizes for all problem sizes (so that the random sampling errors
are removed), while in our case the population size will be
infinite only if the problem size has become infinite.

IV. Worst Case Analysis of UMDA on the

LeadingOnes Problem

The first maximization problem we investigate is called the
LeadingOnes problem, formally defined as follows:

LeadingOnes(x)�
n∑

i=1

i∏
j=1

xj, xj ∈ {0, 1}. (16)

The global optimum of LeadingOnes is x∗ = (1, . . . , 1).
The fitness of an individual is determined by the number of
the leading 1-bits in the individual, and it is not influenced
by any bits right to the leftmost 0-bit of the individual. The
value of the bits right to the leftmost 0-bit will not influence
the output of fitness-based selection operators in EAs. Due to
this characteristic, a population will begin to converge to 1 at
a bit if the bits left to it have almost converged to 1’s, and
thus a sequential convergence phenomenon, namely Domino
convergence [3], [36], [41], will happen.

In the literature of EDAs, the LeadingOnes problem has
been investigated empirically [10], but no rigorous theoretical
result exists. This section will provide the first theoretical
result that put a sound foundation to the time complexity
analysis of the UMDA on this problem.

First, we introduce the following concept.
Definition 1 (b-Promising Individual): In the population

that contains N individuals, the b-promising individuals are
those individuals with fitness no smaller than a threshold b.

Since the UMDA adopts the truncation selection, we have
the following lemma.

Lemma 5: For the UMDA with truncation selection, the
poportion of the b-promising individuals after selection at the
tth generation satisfies

Q
(s)
t,b =

{
Qt,bN

M
, Qt,b ≤ M

N

1, Qt,b > M
N

(17)
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where Qt,b ≤ 1 is the proportion of the b-promising individ-
uals before the truncation selection.

Define the i-convergence time Ti to be the number of
generations for a discrete EDA to converge to the globally
optimal value on the ith bit of the solution. It is defined
formally as

Ti � min{t; pt,i(x
∗
i ) = 1}.

Let T0 = 0.
Moreover, in the following parts of the paper, we use

the notation “ω” to demonstrate the relationship between
the asymptotic orders of two functions [5], [24]. Given two
positive functions of the problem size n, say f = f (n) and
g = g(n), f = ω(g) holds if and only if limn→∞ g(n)/f (n) = 0.
Now we reach the following theorem.

Theorem 2: Given the population sizes N = ω(n2+α log n),
M = ω(n2+α log n) (where α can be any positive constant) and
M = βN (β ∈ (0, 1) is some constant), for the UMDA with
truncation selection on the LeadingOnes problem, initialized
with a uniform distribution, at least with the probability of(

1− n−ω(n2+α)δ2
)τ̄
(

1− n
−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2(n−1)τ̄

its FHT satisfies

τ < τ̄ =
n
(

ln eM
N
− ln(1− δ)

)
ln(1− δ) + ln

(
N
M

) + 2n

where δ ∈ (max{0, 1 − 2M
N
}, 1 − M

N
) is a positive constant,

and τ̄ represents an upper bound4 of the random variable τ.
In other words, the LeadingOnes problem is EDA-easy for
the UMDA.

Proof: The basic idea of the proof is based on the
approach outlined in the former section. We first de-randomize
the UMDA. Since the LeadingOnes problem is associated
with the domino convergence property, we can further divide
the optimization process into n stages. The ith stage starts
when all bits at the left side of the ith bit have converged to 1’s,
and ends when the ith bit has converged. Suppose generation
t + 1 belongs to the ith stage, then the marginal probabilities
at the generation are

P̂t+1(x∗) = γi(P̂t(x∗)) =
(
p̂t,1(x∗1), . . . , p̂t,i−1(x∗i−1),

[Gp̂t,i(x
∗
i )], Rp̂t,i+1(x∗i+1), . . . , Rp̂t,n(x∗n)

)
where x∗ = (x∗1, . . . , x

∗
n) = (1, . . . , 1) is the global optimum of

the LeadingOnes problem, G = (1 − δ) N
M

(δ ∈ (max{0, 1 −
2M
N
}, 1 − M

N
) is a constant), and R = (1 − η)(1 − η′) (η < 1

and η′ < 1 are positive functions of the problem size n). We
consider three different cases in the above equation.

1) j ∈ {1, . . . , i − 1}. In the deterministic system above,
the marginal probabilities p̂t,j(x∗j ) have converged to 1,
thus at the next generation they will not change.

2) j = i. In the deterministic system above, the marginal
probability p̂t,i(x∗i ) is converging, and we use the factor
G = (1 − δ) N

M
to demonstrate the impact of selection

4Given the values of the population sizes and the constant δ, the value of τ̄

is then determined by the problem size n. Thus, τ̄ is not a random variable.

pressure on this converging marginal probability,5 where
N
M

represents the influence of the selection operator (see
Lemma 5).

3) j ∈ {i + 1, . . . , n}. The jth bits of individuals are not
exposed to selection pressure, and we use the factor R =
(1−η)(1−η′) to demonstrate the impact of genetic drift6

on these marginal probabilities.

In Case 3, we consider the jth marginal probability p.,j(x∗j )
(j ∈ {i + 1, . . . , n}) which is not affected by the selection
pressure. This is rather pessimistic, because the UMDA tends
to preserve the value of x∗j = 1 that leads to higher fitness, and
thus tends to increase p.,j(x∗j ). Utilizing the idea mentioned
in (15), we will study the time complexity of the UMDA
by studying the above deterministic system, and estimate
the deviation between the deterministic system and the real
UMDA in terms of the probability that the stochastic marginal
probabilities of the UMDA are bounded by the corresponding
deterministic marginal probabilities of the deterministic sys-
tem. Before our analysis, we first provide the formal definition
of the deterministic system.

With P̂0(x∗) =
(

1
2 , . . . , 1

2

)
, we have

P̂t(x∗) = γ
t−Ti−1
i

(
P̂Ti−1 (x∗)

)
where Ti−1 < t ≤ Ti (i = 1, . . . , n). Since {γi}ni=1 de-
randomizes the whole optimization process, {Ti}ni=1 in the
above equation are no longer random variables. For the sake
of clarity, we rewrite the above equation as

P̂t(x∗) = γ
t−T̂i−1
i

(
P̂T̂i−1

(x∗)
)

where T̂i−1 < t ≤ T̂i (i = 1, . . . , n). As we will show
immediately, T̂i (1 ≤ i ≤ n) is an upper bound of the random
variable Ti with some probability. Since Tn ≥ τ, our task
finally becomes calculating the T̂n and the probability that T̂n

holds as an upper bound of Tn.
Now we present the proof in detail. First, we estimate T̂1

and T1 for the UMDA, which is the first stage of our analysis.
Consider the 1-promising individuals. Note that the first bits of
the 1-promising individuals are 1’s. The sampling procedure
of the UMDA can be considered as a large number of events
resulting in either 0 or 1. Hence, when pt−1,1(1) ≤ M

N(1−δ) , for
the sampling procedure of the UMDA, by noting Lemma 5,
we can apply Chernoff bounds to obtain the following:

P

(
Mpt,1(1) ≥ (1− δ)pt−1,1(1)N | pt−1,1(1) ≤ M

N(1− δ)

)

> 1− e−
pt−1,1(1)N

2 δ2

where N = ω(n2 log n), thus the probability above is super-
polynomially close to 1, i.e., an overwhelming probability. An

5The notation “[ ]” can be interpreted as follows: given a > 1, [a] = 1;
given a ∈ (0, 1), [a] = a. For the sake of brevity, we will omit this notation but
implicitly restrict the value of a probability not to exceed 1 in the following
parts of the paper.

6When there is no selection pressure, the proportion of alleles in a
population with finite genes will fluctuate due to the errors brought by random
sampling. For more details, one can refer to [6], [41].

Authorized licensed use limited to: Ke Tang. Downloaded on February 13,2010 at 20:36:32 EST from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ANALYSIS OF COMPUTATIONAL TIME OF SIMPLE ESTIMATION OF DISTRIBUTION ALGORITHMS 9

TABLE III

Calculation of Probability That pt,1(1) Is Lower Bounded by p̂t,1(1)

P

(
pt,1(1) ≥ p̂t,1(1) | p0,1(1) = p̂0,1(1)

)
=

∑
∀t′<t:at′ ∈

{
0, 1

M
, 2
M

,···,1
}P
(

pt,1(1) ≥ Gtp0,1(1), pt−1,1(1) = at−1, · · · , p1,1(1) = a1 | p0,1(1) = p̂0,1(1)
)

> P

(
pt,1(1) ≥ Gpt−1,1(1), · · · , p1,1(1) ≥ Gp0,1(1) | p0,1(1) = p̂0,1(1)

)
= P
(

pt−1,1(1) ≥ Gpt−2,1(1), · · · , p1,1(1) ≥ Gp0,1(1) | p0,1(1) = p̂0,1(1)
)

P

(
pt,1(1) ≥ Gpt−1,1(1) | pt−1,1(1) ≥ Gpt−2,1(1), · · · , p1,1(1) ≥ Gp0,1(1), p0,1(1) = p̂0,1(1)

)
= P
(

p1,1(1) ≥ Gp0,1(1) | p0,1(1) = p̂0,1(1)
)

t∏
k=2

P

(
pk,1(1) ≥ Gpk−1,1(1) | pk−1,1(1) ≥ Gpk−2,1(1), · · · , p1,1(1) ≥ Gp0,1(1), p0,1(1) = p̂0,1(1)

)

= P
(

p1,1(1) ≥ Gp0,1(1) | p0,1(1) = p̂0,1(1)
)

t∏
k=2

P

(
pk,1(1) ≥ Gpk−1,1(1) | pk−1,1(1) ≥ p̂k−1,1(1) = Gk−1p̂0,1(1)

)

>

t∏
k=1

(
1− e−p̂k−1,1(1)Nδ2/2

)
=

t∏
k=1

(
1− e−Gk−1p̂0,1(1)Nδ2/2

)
>

(
1− e−p̂0,1(1)Nδ2/2

)t

TABLE IV

Calculation of Probability That T1 Is Upper Bounded by T̂1

P

(
T1 ≤ T̂1 | p0,1(1) = p̂0,1(1)

)
(18)

> P

(
pT̂1−1,1(1) ≥ M

N(1− δ)
| p0,1(1) = p̂0,1(1)

)(
1− e−

p̂0,1(1)N
2 δ2

)
(19)

> P

(
pT̂1−1,1(1) ≥ p̂T̂1−1,1(1) = GT̂1−1p0,1(1) >

M

N(1− δ)
| p0,1(1) = p̂0,1(1)

)(
1− e−

p̂0,1(1)N
2 δ2

)
> P

(
pT̂1−1,1(1) ≥ p̂T̂1−1,1(1) | p0,1(1) = p̂0,1(1), p̂T̂1−1,1(1) >

M

N(1− δ)

)
·P
(

p̂T̂1−1,1(1) >
M

N(1− δ)
| p0,1(1) = p̂0,1(1)

)(
1− e−

p̂0,1(1)N
2 δ2

)

TABLE V

Bounding N
(s)
t,j (x∗j ) From Below With an Overwhelming Probability

P

(
N

(s)
t,j (x∗j ) > (1− η′)

(1− η)pt−1,j(x∗j )N

N
M | Nt,j(x∗j ) ≥

(
1−
(

1

n

)1+ α
2
)

pt−1,j(x∗j )N, pt−1,j(xj)

)

= P

(
(1− η)pt−1,j(x∗j )N

N
M −N

(s)
t,j (x∗j ) < η′

(1− η)pt−1,j(x∗j )N

N
M | Nt,j(x∗j ) ≥

(
1−
(

1

n

)1+ α
2
)

pt−1,j(x∗j )N, pt−1,j(x∗j )

)
> 1− 2e

−2(1−η)2p2
t−1,j

(x∗
j

)η′2M
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TABLE VI

Calculation of the Joint Probability That T1 Is Bounded Above by T̂2

P

(
T2 ≤ T̂2, T1 ≤ T̂1, pT̂1,2(1) ≥ p̂T̂1,2(1) >

1

e
| p0,1(1) = p̂0,1(1), p0,2(1) = p̂0,2(1)

)
(20)

> P

(
pT̂2−1,2(1) ≥ M

N(1− δ)
| p0,1(1) = p̂0,1(1), p0,2(1) = p̂0,2(1), T1 ≤ T̂1, pT̂1,2(1) ≥ p̂T̂1,2(1) >

1

e

)

·
(

1− e−
ω(n2+α log n)

2e
δ2
)T̂1
(

1− n
−
(

1−( 1
n )

1+ α
2
)2

ω(1)

)2T̂1(
1− e−

p̂
T̂1 ,2(1)N

2 δ2
)

(21)

> P

(
pT̂2−1,2(1) ≥ p̂T̂2−1,2(1) = GT̂2−T̂1−1pT̂1,2(1) >

M

N(1− δ)
| pT̂1,1(1) = 1, pT̂1,2(1) ≥ p̂T̂1,2(1) >

1

e

)

·
(

1− e−
ω(n2+α log n)

2e
δ2
)T̂1
(

1− n
−
(

1−( 1
n )

1+ α
2
)2

ω(1)

)2T̂1(
1− e−

p̂
T̂1 ,2(1))N

2 δ2
)

> P

(
pT̂2−1,2(1) ≥ p̂T̂2−1,2(1) | pT̂1,1(1) = 1, pT̂1,2(1) ≥ p̂T̂1,2(1) >

1

e
, p̂T̂2−1,2(1) >

M

N(1− δ)

)
(22)

P

(
p̂T̂2−1,2(1) >

M

N(1− δ)
| pT̂1,1(1) = 1, pT̂1,2(1) ≥ p̂T̂1,2(1) >

1

e

)

·
(

1− e−
ω(n2+α log n)

2e
δ2
)T̂1
(

1− n
−
(

1−( 1
n )

1+ α
2
)2

ω(1)

)2T̂1(
1− e−

ω(n2+α log n)
2e

δ2
)

TABLE VII

Bounding N
(s)
t,q (x∗q) From Above With an Overwhelming Probability

P

(
N

(s)
t,q (x∗q) < (1 + η′)

(1 + η)pt−1,q(x∗q)N

N
M | Nt,q(x∗q) ≤

(
1 +
(

1

n

)1+ α
2
)

pt−1,q(x∗q)N, pt−1,q(x∗q)

)

= P

(
N

(s)
t,q (x∗q)− (1 + η)pt−1,q(x∗q)N

N
M < η′

(1 + η)pt−1,q(x∗q)N

N
M | Nt,q(x∗q) ≤

(
1 +
(

1

n

)1+ α
2
)

pt−1,q(x∗q)N, pt−1,q(x∗q)

)
> 1− e

−2(1+η)2p2
t−1,q

(x∗q )η′2M
(23)

equivalent form of the equation above is

P

(
pt,1(1) ≥ (1− δ)pt−1,1(1)N

M
| pt−1,1(1) ≤ M

N(1−δ)

)
> 1− e−

pt−1,1(1)N

2 δ2

which demonstrates with an overwhelming probability the
marginal probability pt,1(1) is lower bounded by Gpt−1,1(1) =
(1 − δ)pt−1,1(1)N

M
. Furthermore, given p̂t,1(1) = Gtp̂0,1(1) and

G > 1, we can obtain the inequality in Table III.
We now study the distribution of T1. Considering the

probability that T1 is bounded by a value, say T̂1: given
T1 < T̂1, then according to Lemma 5, at the (T̂1 − 1)th
generation, the marginal probability pT̂1−1,1(1) should be at
least M

N(1−δ) . The above proposition is presented in Table IV,

where in (19) the factor (1 − e−
p̂0,1(1)N

2 δ2
) is added since we

apply Chernoff bounds once at the end of the (T̂1 − 1)th
generation and obtain the probability that p̂T̂1,1(1) = 1, under
the condition p̂T̂1−1,1(1) ≥ M

N(1−δ) . Now let us consider the
following item. Noting that p̂T̂1−1,1(1) is deterministic, we

know

P

(
p̂T̂1−1,1(1) >

M

N(1− δ)
| p0,1(1) = p̂0,1(1)

)
(24)

must be either 0 or 1, and we need to find the value of T̂1 that
makes the probability above 1. Given that p̂0,1(1) = 1

2 , the
condition that ∀t < T̂1− 1 : M

N(1−δ) > p̂t,1(1) > (1− δ) p̂t−1,1(1)N
M

and Lemma 5 together imply the following inequalities.

GT̂1−2p̂0,1(1) = (1− δ)T̂1−2

(
N

M

)T̂1−2

p̂0,1(1)

<
M

N(1− δ)

GT̂1−1p̂0,1(1) = (1− δ)T̂1−1

(
N

M

)T̂1−1

p̂0,1(1)

≥ M

N(1− δ)
.

Solving the inequalities above, we get

T̂1 ≤
ln 2M

N
− ln(1− δ)

ln(1− δ) + ln
(

N
M

) + 2
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where δ ∈ (max{0, 1 − 2M
N
}, 1 − M

N
) is a constant, and it

is easy to show that T̂1 = 
(1). On the other hand, recall
the inequalities in Table III, we can continue to estimate the
corresponding probability mentioned in (18)

P

(
T1 ≤ T̂1 | p0,1(1) = p̂0,1(1)

)
> P

(
pT̂1−1,1(1) ≥ p̂T̂1−1,1(1) | p0,1(1) = p̂0,1(1)

)
·
(

1− e−
p̂0,1(1)N

2 δ2
)

>
(

1− e−
p̂0,1(1)N

2 δ2
)T̂1

. (25)

The analysis above tells us, the probability to which the
marginal probability converges before the T̂1th generation

(T1 < T̂1) is at least
(

1− e−
N
4 δ2
)T̂1

. Since N = ω(n2+α log n),

M = βN (β ∈ (0, 1) is a constant) and T̂1 is polynomial in the
problem size n, we know that the probability is overwhelming.

At every stage, the bits on the right-hand side of the
currently converging bit are not exposed to selection pressure.
However, we should still consider the errors brought by the
repeated sampling procedures in UMDA, which is related to
the genetic drift [6], [41].

Take the first stage as an example. The jth bit (j = 2, . . . , n)
is affected by genetic drift. First, we utilize Chernoff bounds
to study the deviations brought by the random sampling
procedures of the UMDA

P

(
Nt,j(x∗j ) ≥ (1− η)pt−1,j(x∗j )N | pt−1,j(x∗j )

)

> 1− e−
pt−1,j (1)N

2 η2

where η is a parameter that controls the size of deviation, and
Nt,j(xj) is the number of individuals that takes the value xj

in their jth bit in the population before selection, ξt . Here we

set η =
(

1
n

)1+ α
2
, and obtain

P

(
Nt,j(x∗j ) ≥

(
1−

(1

n

)1+ α
2
)
pt−1,j(x∗j )N | pt−1,j(x∗j )

)

> 1− e−
pt−1,j (x∗

j
)ω(log n)

2 = 1− n−
pt−1,j (x∗

j
)ω(1)

2 .

Second, we further consider the selection procedure, since
it may also bring some deviations. In our worst case analysis,
the jth bits of individuals are considered to not be exposed
to the selection pressure, then for these bits the selection
procedure can be regarded as get a simple random sample
of M individuals from a finite population with N individuals
[34]. More precisely, since one individual cannot be selected
more than once by the truncation selection, this procedure is
known as random sampling without replacement from a finite
population [34] in the field of statistics. From Lemma 4, we
can bound from below the probability such that the number of
individuals taking the value x∗j on their jth bits after selection
[denoted by N

(s)
t,j (x∗j )] is lower bounded, which is shown by the

inequalities presented in Table V, where η′ is a parameter that
controls the size of deviation, and N

(s)
t,j (x∗j ) = pt,j(x∗j )M. By

setting η′ = η =
(

1
n

)1+ α
2
, since M = ω(n2+α log n) we obtain

P

(
pt,j(x∗j ) ≥

(
1−

(1

n

)1+ α
2
)2

pt−1,j(x∗j ) | pt−1,j(x∗j )

)

>
(

1− n
−pt−1,j(x∗

j
)ω(1)
)

·
(

1− n
−
(

1−( 1
n

)1+ α
2

)2
p2

t−1,j
(x∗

j
)ω(1)
)

>
(

1− n
−
(

1−( 1
n

)1+ α
2

)2
p2

t−1,j
(x∗

j
)ω(1)
)2

.

Since the factor R =
(

1−
(

1
n

)1+ α
2
)2

< 1, for ∀j = 2 . . . , n

and t = 1, . . . , T̂1, similar to the analysis shown in Table III,
we further obtain

P

(
pt,j(x∗j ) ≥

(
1−

(
1
n

)1+ α
2
)2t

p0,j(x∗j )

| p0,j(x∗j ) = p̂0,j(x∗j )

)

>

(
1− n

−
(

1−( 1
n

)1+ α
2

)2
p̂2

t−1,j
(x∗

j
)ω(1)
)2t

. (26)

Given any t = O(n), according to the definition of the
deterministic system, we know

p̂t,j(x∗j ) ≥
(

1−
(1

n

)1+ α
2
)O(n)

p̂0,j(x∗j ) >
1

e

holds. The above inequality implies that within the number
of generations t = O(n), the probability in (26) is an over-
whelming one.

To generalize the above analysis to other stages, let us
consider the ith (i ∈ {2, . . . , n}) stage is about to start.
Due to the genetic drift, the marginal probability pt,j(x∗j )
(j ∈ {i, . . . , n}) has dropped to a lower level than the initial
value 1

2 by multiplying the factor Rt . We concern the value of
pt,i(x∗i ). For any t = O(n), similar to (26), the probability that
pt,i(x∗i ) maintains a level of

pt,i(x
∗
i ) ≥

(
1−

(1

n

)1+ α
2
)O(n)

p̂0,i(x
∗
i ) >

1

e
(27)

is super-polynomially close to 1 (an overwhelming pro-
bability).

According to (27), we know that pt,i(x∗i ) is above 1
e

with an
overwhelming probability. Consequently, the joint probability
that the first bit has converged to 1 and the genetic drift cannot
reduce pT̂1,2(1) to be smaller than 1

e
by the end of the first

stage is(
1− e−

ω(n2+α log n)
2e

δ2
)T̂1
(

1− n
−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2T̂1

(28)

which is again an overwhelming probability. Now we have
finished the analysis of the first stage.

As the dynamic system we described at the beginning of
the proof, in the second stage, for T̂1 < t ≤ T̂2, we have

p̂t,2(1) = Gp̂t−1,2(1).

Given T̂1 and the corresponding marginal probabilities, we
consider the joint probability that T2 is bounded above by
T̂2 by inequalities presented in Table VI.
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Let us consider the following item of the probability esti-
mated in Table VI:

P

(
p̂T̂2−1,2(1) > M

N(1−δ) | pT̂1,1(1) = 1,

pT̂1,2(1) ≥ p̂T̂1,2(1) > 1
e

)

since {p̂t,2(1)}∞t=0 is a deterministic sequence, the above item
must be either 0 or 1. Noting that p̂T̂1,2(1) > 1

e
, given the

condition that ∀t : T̂1 < t < T̂2 − 1 : M
N(1−δ) > p̂t,2(1) =

(1 − δ) p̂t−1,2(1)N
M

, we can solve the following inequalities to
obtain T̂2

GT̂2−T̂1−2p̂T̂1,2(1)

=

(
(1− δ)

(
N
M

))T̂2−T̂1−2

p̂T̂1,2(1) < M
N(1−δ)

GT̂2−T̂1−1p̂T̂1,2(1)

=

(
(1− δ)

(
N
M

))T̂2−T̂1−1

p̂T̂1,2(1) ≥ M
N(1−δ) .

Moreover, another item in (22)

P

(
pT̂2−1,2(1) ≥ p̂T̂2−1,2(1) | pT̂1,1(1) = 1,

pT̂1,2(1) ≥ p̂T̂1,2(1) > 1
e
, p̂T̂2−1,2(1) > M

N(1−δ)

)

should be estimated. This can be done similarly as we have
done in Table III. Then we obtain that

T2 < T̂2 ≤
2 ln eM

N
− 2 ln(1− δ)

ln(1− δ) + ln
(

N
M

) + 4

holds with the probability [the product of the items mentioned
in (22)]

(
1− e−

ω(n2+α log n)
2e

δ2
)T̂2
(

1− n
−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2T̂1

.

The above analysis can be readily extended to other stages.
To be specific, at the ith stage, the i-promising individuals are
taken into account. We have

p̂t,i(1) = Gp̂t−1,i(1).

For induction, assume that at the (i− 1)th stage

Ti−1 < T̂i−1 ≤
(i− 1) ln eM

N
− (i− 1) ln(1− δ)

ln(1− δ) + ln
(

N
M

)
+2(i− 1) (29)

holds with the probability(
1− e−

ω(n2+α log n)
4 δ2

)T̂i−1

·
i−2∏
k=1

(
1− n

−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2T̂k

.

To estimate T̂i, we solve the following inequalities:

GT̂i−T̂i−1−2p̂T̂i−1,i
(1)

= (1− δ)T̂i−T̂i−1−2

(
N
M

)T̂i−T̂i−1−2

p̂T̂i−1,i
(1)

< M
N(1−δ)

GT̂i−T̂i−1−1p̂T̂i−1,i
(1)

= (1− δ)T̂i−T̂i−1−1

(
N
M

)T̂i−T̂i−1−1

p̂T̂i−1,i
(1)

≥ M
N(1−δ)

where p̂T̂i−1,i
(1) > 1

e
[similar to (27)], since T̂i−1 = O(n) [our

assumption for induction in (29) shows that it is O(n)]. Similar
to the discussion at the second stage, we can get that

Ti < T̂i ≤
i ln eM

N
− i ln(1− δ)

ln(1− δ) + ln
(

N
M

) + 2i

holds with the probability(
1− e−

ω(n2+α log n)
2e

δ2
)T̂i

·∏i−1
k=1

(
1− n

−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2T̂k

.

Finally, the FHT τ is upper bounded by

τ < T̂n =
n
(

ln eM
N
− ln(1− δ)

)
ln(1− δ) + ln

(
N
M

) + 2n

with a probability of (
1− e−

ω(n2+α log n)
4 δ2

)T̂n

·∏n−1
k=1

(
1− n

−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2T̂k

>
(

1− n−ω(n2+α)δ2
)T̂n

·
(

1− n
−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2(n−1)T̂n

which is an overwhelming probability.
In the proof above, we have proven that a bound holds

for the FHT with an overwhelming probability. Further-
more, the proof also shows the convergence of UMDA on
LeadingOnes: the UMDA will converge to the optimum
with an overwhelming probability. The convergence property
is ensured by using population sizes of ω(n2+α log n), and
considering all the random sampling errors in the pessimistic
way.

V. Best Case Analysis of UMDA on the

BVLeadingOnes Problem

The previous section has shown that the LeadingOnes

problem is EDA-easy for the UMDA. In this section, we
will study another maximization problem that is unimodal
but EDA-hard for the UMDA. The problem, which is called
BVLeadingOnes (BVLO for short), can be regarded as the
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LeadingOnes problem with one bit’s variation. It is defined
as follows:

BVLO(x) =

⎧⎨
⎩

LO(x) + n, LO(x) ≤ n− 1, xn = 0
LO(x), LO(x) < n− 1, xn = 1
3n, LO(x) = n

(30)

where ∀i = 1, . . . , n : xi ∈ {0, 1} and LO stands for
LeadingOnes. The BVLeadingOnes is a unimodal function
whose global optimum is x∗ = (x∗1, . . . , x

∗
n) = (1, . . . , 1). In

this section, we will prove that BVLeadingOnes is EDA-
hard for the UMDA.

Let us look at (30) again. The nth bits of the individuals
are exposed to the selection pressure from the very beginning.
During the optimization process, an individual whose last bit
is 0 always has higher fitness than any individuals with its last
bit being 1, unless the first n− 1 bits of the latter are all 1’s.
In other words, the nth marginal probability p.,n(x̄∗n) starts
converging to 1 from the beginning of optimization, where
x̄∗n = 1 − x∗n = 0. Once p.,n(x̄∗n) reaches 1, the UMDA will
miss the global optimum forever. Therefore, we need to check
whether an individual whose first n− 1 bits are all 1’s can be
generated before p.,n(x̄∗n) reaches 1.

We start from analyzing the converging speed of the first
n − 1 bits of individuals, given polynomial population sizes
M = ω(n2+α log n), N = ω(n2+α log n) (where α can be any
positive constant), and M = βN (β ∈ (0, 1) is some constant)
for the UMDA. These bits can be classified into two categories.
The first category is exposed to the selection pressure, and the
second one is affected by the genetic drift. Unlike the previous
section, here we analyze from an optimistic viewpoint: all
bits of the first category will converge in one generation, and
the genetic drift will promote the marginal probabilities of
generating the optimal value on the remaining bits. We first
consider the genetic drift of a typical marginal probability,
say p.,q(x∗q) (the qth bits belong to the second category). Using
Chernoff bounds to study the deviations brought by the random
sampling procedures, we have

P

(
Nt,q(x∗q) ≤ (1 + η)pt−1,q(x∗q)N | pt−1,q(x∗q)

)

> 1− e−
pt−1,q (x∗q )N

4 η2

where η is a parameter that controls the size of deviation, and
Nt,q(x∗q) is the number of individuals that takes the value x∗q in

their qth bit in the population before selection. Set η =
(

1
n

)1+ α
2
,

we obtain

P

(
Nt,q(x∗q) ≤

(
1 +
(

1
n

)1+ α
2
)
pt−1,q(x∗q)N

| pt−1,q(x∗q)

)

> 1− e−
pt−1,q (x∗q )ω(log n)

4 = 1− n−
pt−1,q (x∗q )ω(1)

4 .

The selection procedure may also bring some deviations.
Since the qth bits of individuals are not exposed to the selec-
tion pressure, then for these bits the selection procedure can be
regarded as Simple Random Sampling without replacement.

Lemma 4 can be used to estimate the probability that the
number of individuals taking the value x∗q on their qth bits
after selection [denoted by N

(s)
t,j (x∗q)] is bounded from above,

which is lower bounded by 1−e
−2(1+η)2p2

t−1,q
(x∗q)η′2M estimated by

(23) in Table VII, where η′ is a parameter that controls the size

of deviation, and N
(s)
t,q(x∗q) = pt,q(x∗q)M. Let η′ = η =

(
1
n

)1+ α
2
,

since M = ω(n2+α log n) we get

P

(
pt,q(x∗q) ≤

(
1 +
(

1
n

)1+ α
2
)2

pt−1,q(x∗q) | pt−1,q(x∗q)

)

>
(

1− n−pt−1,q(x∗q)ω(1)
)

·
(

1− n
−
(

1+( 1
n

)1+ α
2

)2
p2

t−1,q
(x∗q)ω(1)

)
>
(

1− n
−
(

1+( 1
n

)1+ α
2

)2
p2

t−1,q
(x∗q)ω(1)

)2
.

Since R =
(

1 +
(

1
n

)1+ α
2
)2

> 1 (thus we know that
p̂t−1,q(x∗q) > p̂0,q(x∗q) in the above inequality), similar to the
analysis shown in Table III, we further have

P

(
pt,q(x∗q) ≤

(
1 +
(

1
n

)1+ α
2
)2t

p0,q(x∗q)

| p0,q(x∗q) = p̂0,q(x∗q)

)

>

(
1− n

−
(

1+( 1
n

)1+ α
2

)2
p̂2

0,q
(x∗q)ω(1)

)2t

.

Given any polynomial t, the above probability is an over-
whelming one. Specifically, ∀t = O(n), pt,q(x∗q) is upper
bounded as

pt,q(x∗q) ≤
(

1 +
(

1
n

)1+ α
2
)O(n)

p̂0,q(x∗q)

= 1
2 + 


(
1

nα/2

)
+ o
(

1
nα/2

)
< c < 1 (31)

with an overwhelming probability (where c is some positive
constant, and the qth bits are not exposed to the selection
pressure).

Another key issue of our analysis is the time T ′n for the nth
marginal probability p.,n(x̄∗n) to converge to 1. We can prove
the following lemma.

Lemma 6: The number of generations required by the
marginal probability p.,n(x̄∗n) to converge to 1, i.e. T ′n, is upper
bounded by

U =
ln 2M

N
− ln(1− δ)

ln(1− δ) + ln
(

N
M

) + 2

with an overwhelming probability, if no global optimum is
generated before the Uth generation, where δ ∈ (max{0, 1 −
2M
N
}, 1− M

N
) is a positive constant.

The proof is provided in the Appendix. Given polynomial
population sizes M = ω(n2+α log n), N = ω(n2+α log n) (where
α can be any positive constant), and M = βN (β ∈ (0, 1) is
some constant), Lemma 6 implies that U = 
(1). Now we
reach the following theorem.

Theorem 3: Given polynomial population sizes M =
ω(n2+α log n), N = ω(n2+α log n) (where α can be any positive
constant), and M = βN (β ∈ (0, 1) is some constant), the FHT
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of the UMDA with truncation selection on the BVLeadin-

gOnes problem is infinity with an overwhelming probability.
In other words, the UMDA with truncation selection cannot
find the optimum of the BVLeadingOnes problem with an
overwhelming probability.

Proof: We have proven that the number of generations
required for p.,n(x̄∗n) to reach 1 (denoted by T ′n) is upper
bounded by a constant function U with an overwhelming
probability, under the condition that no global optimum is
generated before the Uth generation. We now further prove
that the probability that no global optimum is generated before
the Uth generation is also overwhelming.

As mentioned before, we classify the first n − 1 bits of
individuals into two categories. The first category, which con-
tains the bits being exposed to the selection, further contains
two types of bits. The first type contains the bits which have
already converged to the optimal values, and the second type
contains the bits that are exposed to the selection pressure
but have not converged to the optimal values yet. In our best
case analysis, for the bits of the second type, we consider that
only one generation is needed for the corresponding marginal
probabilities (to the optimal values) to converge. In other
words, before the Uth generation, the marginal probabilities
(of the first n− 1 bits of individuals) are either 1 or no more
than the constant c. Noting that U = 
(1), according to (31),
c ∈ ( 1

2 , 1), and it demonstrates the result of genetic drift within
O(n) generations.

From an optimistic viewpoint, we further consider that in
every generation, besides the marginal probability p.,n(x̄∗n), at
most log2 n other marginal probabilities7 are also converging
with an overwhelming probability. log2 n is used here because
the joint probability of generating log2 n consecutive 1’s (so as
to produce the selection pressure on the corresponding bits) by
log2 n non-converged marginal probabilities is no more than
clog2 n, which is super-polynomially small.

The above result implies that the probability of gener-
ating the global optimum in one generation is also super-
polynomially small. Noting that U = 
(1), then the probability
of generating the optimum before the Uth generation is also
super-polynomially small. Combining this probability with
the conditional probability mentioned in Lemma 6, we know
that the joint probability that no global optimum is generated
before the Uth generation, and p.,n(x̄∗n) converges to 1 no later
than the Uth generation, is super-polynomially close to 1,
i.e., an overwhelming probability. Combining with the fact
that once the nth marginal probability p.,n(x∗n) has already
converged to 0, the probability of finding the optimum will
drop to 0, we have proven the theorem.

According to Theorem 1, given polynomial population sizes
M = ω(n2+α log n) and N = ω(n2+α log n) (M = βN, β ∈
(0, 1) is a constant.), BVLeadingOnes is EDA-hard for the
UMDA.

For the sake of consistence, we also provide the formal
description of the deterministic dynamic system utilized in
this section. Considering the ith stage (i ≤ min{T ′n, n−1

log2 n
})

7For the sake of brevity, we assume that log2 n is an integer and thus omit
the notation “� �.”

which starts when all the marginal probabilities p.,k(x∗k) (k ≤
(i − 1) log2 n}) have just converged to 1 and ends when all
the marginal probabilities p.,j(x∗j ) (j ≤ i log2 n) have just
converged to 1, we can obtain P̂t+1(x∗) by defining γi as
follows.

P̂t+1(x∗) = γi(P̂t(x∗)) =(
p̂t,1(x∗1), . . . , p̂t,(i−1) log2 n(x∗

(i−1) log2 n
), 1, . . . , 1,

Rp̂t,i log2 n+1(x∗
i log2 n+1

), . . . , Rp̂t,n−1(x∗n−1),

1−G(1− p̂t,n(x∗n))

)

where R = (1 + η)(1 + η′) (η < 1 and η′ < 1 are positive
functions of the problem size n), and G = (1 − δ) N

M
(δ ∈

(max{0, 1− 2M
N
}, 1− M

N
) is a constant). In the above equation,

we consider four different cases.
1) j ∈ {1, . . . , (i − 1) log2 n}. In the deterministic system

above, the marginal probabilities p̂t,j(x∗j ) have con-
verged to 1, thus at the next generation they will not
change.

2) j ∈ {(i− 1) log2 n + 1, . . . , i log2 n}. In the deterministic
system above, the marginal probabilities p̂t,j(x∗j ) are
converging to the optimum, and they will converge in
one generation in the best case analysis.

3) j ∈ {i log2 n + 1, . . . , n− 1}. The jth bits of individuals
are not exposed to selection pressure, and we use the
factor R = (1 + η)(1 + η′) to demonstrate the impact of
genetic drift in the deterministic system above.

4) j = n. The marginal probability p̂t,n(x̄∗n) = 1 − p̂t,n(x∗n)
is converging, and we use the factor G = (1 − δ) N

M

to demonstrate the impact of selection pressure on
this converging marginal probability in the determin-
istic system above, which is a best case style for
p̂t,n(x∗n).

With P̂0(x∗) =
(

1
2 , . . . , 1

2

)
, noting that one stage actually

refers to one generation (thus i = t), we have

P̂t(x∗) = γt ◦ γt−1 . . . ◦ γ1

(
P̂0(x∗)

)
where t ≤ min

{
T ′n,

n−1
log2 n

}
. Since {γi}ti=1 de-randomizes the

whole optimization process, T ′n in the above equation is no
longer random variable. For the sake of clarity, we rewrite the
above equation as

P̂t(x∗) = γt ◦ γt−1 . . . ◦ γ1

(
P̂0(x∗)

)
where t ≤ min

{
T̂ ′n,

n−1
log2 n

}
≤ min

{
U, n−1

log2 n

}
.

VI. A Modified UMDA: Relaxation by Margins

So far we have seen both EDA-easy and EDA-hard prob-
lems for the UMDA. This section will analyze more in-depth
the relationship between EDA-hardness and the algorithms.
The BVLeadingOnes problem, which has proven to be
EDA-hard for the UMDA with finite populations, will be
employed as the target problem in this section. We will show
that a simple “relaxed” version of UMDA with truncation
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selection can solve the BVLeadingOnes problem efficiently.
The “relaxation” is implemented by adding some “margins” to
the marginal probabilities of the UMDA. That is, the highest
level the marginal probabilities can reach is 1 − 1

M
and the

lowest level the marginal probabilities can drop to is 1
M

. Any
marginal probabilities higher than 1− 1

M
are set to be 1− 1

M
,

and any marginal probabilities lower than 1
M

are set to be
1
M

. We denote such a UMDA with margin as UMDAM . The
margins here aim to avoid the premature convergence, which
is similar to the upper and lower bounds of the pheromone
information in Max-Min Ant System [40] and Laplace cor-
rection [2]. It is noteworthy that we are not trying to propose
a new algorithm here. Instead, by an example, we are trying
to demonstrate theoretically that some approaches proposed
to avoid premature convergence of EDAs, can actually help to
promote the performance of the algorithms.

We have seen in the previous section that the origi-
nal UMDA cannot solve BVLeadingOnes efficiently. In-
terestingly, by adding the margins, the UMDAM can solve
BVLeadingOnes efficiently. The following theorem summa-
rizes the main result.

Theorem 4: Given polynomial population sizes N =
ω(n2+α log n), M = ω(n2+α log n) (where α can be any positive
constant) and M = βN (β ∈ (0, 1) is some constant), then for
any constant δ that satisfies δ ∈ (max{0, 1− 2M

N
}, 1− e

1
ε(n) M

N
)

(where ε(n) = M
n

), the first hitting time τ of the UMDAM with
truncation selection (initialized with a uniform distribution)
satisfies

τ < τ̄ =

(
ln e(M−1)

N
− ln(1− δ)

)
nε(n) + n

ε(n) ln(1− δ) + ε(n) ln
(

N
M

)− 1

+
M

N
ln2 n + 2n

with the overwhelming probability(
1− n−e−1/ε(n)ω(n2+α)δ2/2e

)2τ̄

·
(

1− n
−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2(n−1)τ̄

·
(

1−
(1

e

)ω(ln n)
)

.

Proof: In order to proof the above theorem, we define
n + 1 random variables t0 and ti (i = 1, . . . , n) as follows:

t0 � min
{

t; pt,n(x̄∗n) = 1− 1
M

}
ti � min

{
t; pt,i(x∗i ) = 1− 1

M

}
.

The proof follows our basic idea introduced in Section III-A,
and thus is similar to the proof of Theorem 2. However, the
maximal value that a marginal probability can reach drops to
1− 1

M
, and the minimal value that a marginal probability can

reach increases to 1
M

. We will then de-randomize the UMDAM .
In the analysis, we ignore the possibility that the optimum

is found before the t0th generation (which will make the FHT
smaller), and we divide the optimization process into (n+ 1)th
stages. The 1st stage begins when the optimization begins, and
ends when the marginal probability p̂.,n(x̄∗n) reaches 1 − 1

M

for the first time. The 2nd stage follows the 1st stage, and
ends when the marginal probability p̂.,1(x∗1) reaches 1 − 1

M

for the first time. The qth stage (q ∈ {2, . . . , n}) begins when
the marginal probability p̂.,q−2(x∗q−2) reaches 1 − 1

M
for the

first time, and ends when the marginal probability p̂.,q−1(x∗q−1)
reaches 1− 1

M
for the first time.

Let us consider the deterministic system. Suppose genera-
tion t + 1 belongs to the ith stage (i ∈ {1, . . . , n + 1}), then the
marginal probabilities at this generation are updated from the
marginal probabilities at generation t by γi. When i = 1, we
have

P̂t+1(x∗) = γ1(P̂t(x∗)) =(
Rp̂t,1(x∗1), . . . , Rp̂t,n−1(x∗n−1),

1−G1(1− p̂t,n(x∗n))
)

where R = (1 − η)(1 − η′) (η < 1 and η′ < 1 are
positive functions of the problem size n), and G1 = (1− δ) N

M

(δ ∈ (max{0, 1− 2M
N
}, 1− e

1
ε(n) M

N
) is a constant). In the above

equation, we consider two different cases.
1) j ∈ {1, . . . , n − 1}. In the deterministic system above,

the jth bits of individuals are not exposed to selection
pressure, and we use the factor R = (1 − η)(1 − η′) to
demonstrate the impact of genetic drift on these marginal
probabilities.

2) j = n. In the deterministic system above, the marginal
probability p̂t,n(x̄∗n) = 1− p̂t,n(x∗n) is increasing, and we
use the factor G1 = (1− δ) N

M
to demonstrate the impact

of selection pressure on the increasing marginal proba-
bility p̂.,n(x̄∗n) (p̂t+1,n(x̄∗n) = G1p̂t,n(x̄∗n), thus p̂t+1,n(x∗n) =
1−G1p̂t,n(x̄∗n) = 1−G1(1− p̂t,n(x∗n)) holds).

When i ∈ {2, . . . , n}, we have

P̂t+1(x∗) = γi(P̂t(x∗))

=
(
p̂t,1(x∗1), . . . , p̂t,i−2(x∗i−2),

G2p̂t,i−1(x∗i−1), Rp̂t,i(x∗i ), . . . ,

Rp̂t,n−1(x∗n−1), p̂t,n(x∗n)
)

where G2 = (1−δ)(1− 1
M

)n N
M

(δ ∈ (max{0, 1− 2M
N
}, 1−e

1
ε(n) M

N
)

is a constant), and R = (1 − η)(1 − η′) (η < 1 and η′ < 1
are positive functions of the problem size n). In the above
equation, we consider four different cases for the deterministic
system above.

1) j ≤ i − 2, j ∈ N+. The marginal probabilities p̂t,j(x∗j )
have reached 1− 1

M
, and at the next generation they will

not change (we will soon prove this).
2) j = i−1. The marginal probability p̂t,j(x∗j ) is increasing,

and we use the factor G2 = (1 − δ)(1 − 1
M

)n N
M

to
demonstrate the impact of selection pressure on this
increasing marginal probability.

3) j ∈ {i, . . . , n − 1}. The jth bits of individuals are not
exposed to selection pressure, and we use the factor R =
(1−η)(1−η′) to demonstrate the impact of genetic drift
on these marginal probabilities.

4) j = n. The marginal probabilities p̂t,n(x̄∗n) and p̂t,n(x∗n)
have reached 1− 1

M
and 1

M
respectively, and at the next
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TABLE VIII

Calculation of Probability That t0 Is Upper Bounded by t̂0

P

(
t0 ≤ t̂0 | p0,n(x̄∗n) = p̂0,n(x̄∗n)

)
(32)

> P

(
pt̂0−1,1(1) ≥ M − 1

N(1− δ)
| p0,n(x̄∗n) = p̂0,n(x̄∗n)

)(
1− e−

p̂0,1(1)N
2 δ2

)
(33)

> P

(
pt̂0−1,1(1) ≥ p̂t̂0−1,1(1) = Gt̂0−1p0,n(x̄∗n) >

M − 1

N(1− δ)
| p0,n(x̄∗n) = p̂0,n(x̄∗n)

)(
1− e−

p̂0,1(1)N
2 δ2

)

> P

(
pt̂0−1,1(1) ≥ p̂t̂0−1,n(x̄∗n) | p0,n(x̄∗n) = p̂0,n(x̄∗n), p̂t̂0−1,n(x̄∗n) >

M − 1

N(1− δ)

)

·P
(

p̂t̂0−1,n(x̄∗n) >
M − 1

N(1− δ)
| p0,n(x̄∗n) = p̂0,n(x̄∗n)

)(
1− e−p̂0,n(x̄∗n)Nδ2/2

)

TABLE IX

Calculation of (34) and (35)

G
t̂i−t̂i−1−2
2 p̂t̂i−1,i(x

∗
i ) = (1− δ)t̂i−t̂i−1−2

(
1− 1

M

)(t̂i−t̂i−1−2)n
(

N
M

)t̂i−t̂i−1−2

p̂t̂i−1,i(x
∗
i ) < M−1

N(1−δ)(1− 1
M

)n
(34)

G
t̂i−t̂i−1−1
2 p̂t̂i−1,i(x

∗
i ) = (1− δ)t̂i−t̂i−1−1

(
1− 1

M

)(t̂i−t̂i−1−1)n
(

N
M

)t̂i−t̂i−1−1

p̂t̂i−1,i(x
∗
i ) ≥ M−1

N(1−δ)(1− 1
M

)n
(35)

generation they will not change (we will soon prove
this).

Consider the (n + 1)th stage, we have

P̂t+1(x∗) = γn+1(P̂t(x∗))

=
(
p̂t,1(x∗1), . . . , p̂t,n−1(x∗n−1), p̂t,n(x∗n)

)
where we consider two different cases for this deterministic
system.

1) j ∈ {1, . . . , n − 1}. The marginal probabilities p̂t,j(x∗j )
have reached 1− 1

M
, and at the next generation they will

not change (we will soon prove this).
2) j = n. The marginal probability p̂t,n(x∗n) is always no

smaller than 1
M

.

With P̂0(x∗) =
(

1
2 , . . . , 1

2

)
, we have

P̂t(x∗) = γ
t−ti−2
i

(
P̂ti−2 (x∗)

)
where ti−2 < t ≤ ti−1 (i = 1, . . . , n + 1), and we let t−1 =
0 represent the beginning of the optimization process. Since
{γi}n+1

i=1 de-randomizes the whole optimization process, {ti}ni=0
in the above equation are no longer random variables. For the
sake of clarity, we rewrite the above equation as

P̂t(x∗) = γ
t−t̂i−2
i

(
P̂t̂i−2 (x∗)

)
where t̂i−2 < t ≤ t̂i−1 (i = 1, . . . , n + 1). As we will show
immediately, t̂i (0 ≤ i ≤ n) is an upper bound of the random
variable ti with some probability. Once all t̂i can be estimated,
and all the marginal probabilities pt,j(x∗j ) (j = 1, . . . , n) have

reached 1 − 1
M

, the optimum might already be found, or it
will take only a few steps to generate the optimum. Thus, if
we can prove that once the marginal probabilities pt,j(x∗j ) (j =
1, . . . , n− 1) have reached 1− 1

M
, it will never reduce again,

our task finally becomes calculating the t̂n, the probability that
t̂n holds as an upper bound of tn.

We now provide the formal proof stage by stage. At the
1st stage, we analyze the case with the nth bit. At the tth
generation (which belongs to the 1st stage), according to
Lemma 5 and Chernoff bounds, we have

P

(
pt,n(x̄∗n) ≥ (1− δ)pt−1,n(x̄∗n)N

M

| pt−1,n(x̄∗n) ≤ M−1
N(1−δ)

)
> 1− e−pt−1,n(x̄∗n)Nδ2/2

where δ ∈ (max{0, 1− 2M
N
}, 1− e

1
ε(n) M

N
) is a positive constant,

and pt,n(x̄∗n) ≤ 1− 1
M

(since the UMDA adopts margins) yields
the condition that pt−1,n(x̄∗n) ≤ M−1

N(1−δ) . Similar to Table III in
the proof of Theorem 2 we can obtain

P

(
pt,n(x̄∗n) ≥ Gt

1p0,n(x̄∗n) | p0,n(x̄∗n) = p̂0,n(x̄∗n)
)

>
(

1− e−p0,n(x̄∗n)Nδ2/2
)t

. (36)

Consider the probability that t0 is upper bounded by
some value, say t̂0, we obtain the inequalities estimated in
Table VIII, where in (33) the factor

(
1 − e−p̂0,n(x̄∗n)Nδ2/2

)
is
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added since we apply Chernoff bounds at the end of the
(t̂0 − 1)th generation. Now we consider the following item:

P

(
p̂t̂0−1,n(x̄∗n) > M−1

N(1−δ) | p0,n(x̄∗n) = p̂0,n(x̄∗n)

)

= P

(
p̂t̂0−1,n(x̄∗n) > M−1

N(1−δ)

)
. (37)

Since {p̂t,n(x̄∗n)}∞t=0 is a deterministic sequence, the probability
above must be either 0 or 1. We need to find the value of t̂0
that makes the above probability 1. Given that p̂0,n(x̄∗n) = 1

2 ,
the definition of t̂0 (it is an upper bound of t0 defined at the
beginning of the proof) and the condition that ∀t < t̂0 − 1 :
M−1

N(1−δ) > p̂t,n(x̄∗n) > (1− δ) p̂t−1,n(x̄∗n)N
M

together imply

G
t̂0−2
1 p̂0,n(x̄∗n)

=

(
(1− δ)

(
N
M

))t̂0−2

p̂0,n(x̄∗n) < M−1
N(1−δ)

G
t̂0−1
1 p̂0,n(x̄∗n)

=

(
(1− δ)

(
N
M

))t̂0−1

p̂0,n(x̄∗n) ≥ M−1
N(1−δ) .

Hence, we obtain the value of t̂0

t̂0 ≤
ln 2M−2

N
− ln(1− δ)

ln(1− δ) + ln
(

N
M

) + 2.

Now we can continue to estimate the probability mentioned
in (32), which can provide us the probability that t0 is upper
bounded by t̂0. Similar to (25) in the proof of Theorem 2,
according to (36), we can obtain that the probability is at least(

1− e−p0,n(x̄∗n)Nδ2/2
)t̂0

.
On the other hand, we can deal with the genetic drift in the

same way as we did for Theorem 2: since t̂0 = 
(1), when
t = t̂0, for the marginal probabilities of other bits, a level of 1

e

can be maintained at least with the overwhelming probability
of (

1− e−
ω(n2+α log n)

2e
δ2
)t̂0
(

1− n
−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2t̂0

where the second factor

(
1−n

−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2t̂0

comes from

the analysis of genetic drift (please refer to (26) for details).
The proof details will be very similar to those in the proof of
Theorem 2. For the sake of brevity, we omit the details. Now
we have finished the analysis of the 1st stage.

After the marginal probability p.,n(x̄∗n) has reached 1− 1
M

,
i.e., t ≥ t̂0, p.,n(x̄∗n) will not drop to a level that is smaller than
1− 1

M
again unless the algorithm has found the optimum. In

fact, for other marginal probabilities, similar fact also holds.
In order to prove it, let us consider the (i + 1)th stage (1 ≤
i < n), and we use the factor G2 to demonstrate the impact
of selection, by which the interactions among bits are taken
into account. For the ith bit, at the kth generation, we can
investigate the following situation:

pk,i(x∗i ) < 1− 1
M

,

∀j ≤ i− 1 : pk,j(x∗j ) = 1− 1
M

.

We will then prove that once ∀1 ≤ j ≤ i − 1, p.,j(x∗j )
reach 1 − 1

M
, with an overwhelming probability, none of

them will decrease again with an overwhelming probability.
Let rk+1

(
(1i−1 ∗ ∗ · · · ∗ 1)

)
be the proportion of individuals

(1i−1 ∗ ∗ · · · ∗ 1) before selection at the (k + 1)th generation,
where ∗ must be either 0 or 1. According to Chernoff bounds,
and with N > M = ε(n)n, we have

P

(
rk+1

(
(1i−1 ∗ ∗ · · · ∗ 1)

)
> (1− δ)

(
1− 1

M

)i

| pk,n(x̄∗n) = 1− 1
M

,∀j ≤ i− 1 : pk,j(x∗j ) = 1− 1
M

)

> 1− e−(1− 1
M

)iNδ2/2 > 1− e−(1− 1
M

)nNδ2/2

> 1− e
−(1− 1

ε(n)n )nε(n)nδ2/2

→ 1− e−e−1/ε(n)ε(n)nδ2/2

which is an overwhelming probability when n → ∞. Since
δ ∈ (max{0, 1− 2M

N
}, 1− e

1
ε(n) M

N
), we know that

rk+1

(
(1i−1 ∗ ∗ · · · ∗ 1)

)
> (1− δ)

(
1− 1

M

)i

> (1− δ)

(
1− 1

M

)n

>
M

N

holds with an overwhelming probability 1−e−e−1/ε(n)ε(n)nδ2/2. At
the same time, it is obvious that the individuals (1i−1∗∗ · · ·∗1)
have the highest fitness in the population. After truncation
selection, according to Lemma 5, we obtain that (note that we
use margins for the marginal probabilities)

P

(
∀j ≤ i− 1 : pk+1,j(x∗j ) = 1− 1

M
| pk,n(x̄∗n) = 1− 1

M
,

∀j ≤ i− 1 : pk,j(x∗j ) = 1− 1
M

)

> 1− e−e−1/ε(n)ε(n)nδ2/2 (38)

which means with an overwhelming probability, the marginal
probabilities p.,j(x∗j ) (∀j ≤ i− 1) will no longer change once
they reach 1− 1

M
.

Now we consider the (i + 1)th stage (i ≤ n − 1), at which
the ith bits of individuals are of our interest. Similar to the
case of the 1st stage, in which the marginal probability p̂.,n(x̄∗n)
is investigated, we can estimate the time that p̂.,i(x∗i ) reaches
1− 1

M
, i.e., t̂i (1 ≤ i < n). As presented in Table IX, it is not

hard to obtain (34) and (35).
In order to obtain t̂i. we need to know p̂t̂i−1,i(x

∗
i ) so as to

solve (34) and (35). It is worth noting that p̂t̂i−1,i(x
∗
i ) is related

to the genetic drift. Similar to what we did in Section IV,
when the bits are not exposed to selection pressure, given that
t̂i−1 = O(n), the marginal probability p̂.,i(x∗i ) will remain to
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be as 1
e
. 8 Hence, we have pt̂i−1,i(x

∗
i ) > 1

e
holds with the

overwhelming probability of
i−1∏
k=0

(
1− n

−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2t̂k

(39)

where the item (
1− n

−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2t̂k

represents the probability that the (k+1)th marginal probability
is at least 1

e
after genetic drift. Detailed analysis can be found

in the proof of Theorem 2.
Now we can solve the equations given in (34) and (35), and

get

t̂i = t̂0 +
i∑

k=1

(t̂k − t̂k−1)

<

(i+1)

(
ln e(M−1)

N
−ln(1−δ)+ 1

ε(n)

)
ln(1−δ)+ln

(
N
M

)
− 1

ε(n)

+2(i + 1) (40)

where i ≤ n− 1 holds.
Next, we need to estimate the joint probability that the

random variable ti is upper bounded by t̂i. Since similar work
has been done in (32) and (33), and (20) in the proof of
Theorem 2, we only informally describe it here for the sake
of brevity. This joint probability contains four parts.

1) The probability that ∀k ∈ {1, . . . , i−1} : tk < t̂k. (It can
be obtained by induction. For more details, please refer
to (20).)

2) The probability that after genetic drift of the ith bit, the
marginal probability pt̂i−1,i(x

∗
i ) is larger than 1

e
. (We have

already mentioned it in (39).)
3) The probability that after the marginal probabilities

p.,j(x∗j ) (j �= n) have reached 1 − 1
M

, they will never
drop to a lower level again. (We can utilize the result
given in (38).)

4) The probability that pt,i(x∗i ) is lower bounded by p̂t,i(x∗i )
(t̂i−1 < t ≤ t̂i), given the condition that pt̂i−1,i(x

∗
i ) ≥

p̂t̂i−1,i(x
∗
i ).

Now we briefly estimate the probability mentioned in Item 4
(and a more detailed example can be found in Table III
in the proof of Theorem 2). As the first step, we con-
sider the relation between pt,i(x∗i ) and pt−1,i(x∗i ) (t̂i−1 <

t ≤ t̂i) by applying Chernoff bounds twice. As a result,
we obtain the inequalities presented in Table X, where we
utilize “min” to take into account the situation in which
(1 − δ) N

M
pt−1,i(x∗i )pt−1,n(x̄∗n)

∏i−1
j=1 pt−1,j(x∗j ) > 1 − 1

M
holds.

In this case, noting that the UMDA has adopted margins, the

8For the sake of brevity, we write the results of different stages together.
It is noteworthy that the proof here contains no loop, since we can prove the
result for different values of i (i = 1, . . . , n− 1 is the index of bits) one after
another as we have done in Theorem 2. Similar to the case of Theorem 2,
since ∀i = 1, . . . , n− 1, t̂i− t̂i−1 = 
(1), the sum of at most i such items [see
(40)] is always O(n), and the impact of genetic drift can be estimated as we
have done in Theorem 2 for the (i + 1)th bit: at least a level of 1/e can be
maintained with an overwhelming probability.

marginal probability pt,i(x∗i ) is set to be 1− 1
M

. By setting the
condition of the above probability as pt−1,i(x∗i ) ≥ p̂t−1,i(x∗i ) =
G

t−t̂i−1−1
2 p̂t̂i−1,i(x

∗
i ), the above inequality further implies that

P

(
pt,i(x∗i ) ≥ min

{
G2pt−1,i(x∗i ), 1− 1

M

}

| pt−1,i(x∗i ) ≥ G
t−t̂i−1−1
2 p̂t̂i−1,i(x

∗
i )

)

> 1− e−(1− 1
M

)nG
t−t̂i−1−1
2 p̂t̂i−1 ,i(x∗i )Nδ2/2

> 1− e−(1− 1
M

)np̂t̂i−1 ,i(x∗i )Nδ2/2

> 1− e−(1− 1
M

)nNδ2/2e

holds, where we utilize the facts that p̂t̂i−1,i(x
∗
i ) > 1

e
holds

with an overwhelming probability (the consequence of genetic
drift. Original analysis can be found before (27), and G2 > 1
(which ensures that p̂t,i(x∗i ) is mono-increasing when the time
index t satisfies t̂i−1 < t ≤ t̂i). As a consequence of the above
inequality, similar to Table III in the proof of Theorem 2, we
obtain the probability mentioned in Item 4(

1− e−(1− 1
M

)nNδ2/2e
)t̂i−t̂i−1

=
(

1− e−e−1/ε(n)ω(n2+α log n)δ2/2e
)t̂i−t̂i−1

.

Now combining the probabilities mentioned in Items 1, 2, 3
and 4 together, we can obtain that ti is upper bounded by t̂i
at least with the probability of(

1− n−e−1/ε(n)ω(n2+α)δ2/2e
)2t̂i

·
i−1∏
k=0

(
1− n

−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2t̂k

.

As a result, tn−1 is bounded by t̂n−1 with the overwhelming
probability of

(
1− n−e−1/ε(n)ω(n2+α)δ2/2e

)2t̂n−1 ·
n−2∏
k=0

(
1− n

−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2t̂k

.

When all the marginal probabilities p.,i(x∗i ) (i �= n) have
reached 1− 1

M
, the marginal probability p.,n(x̄∗n) will become

smaller and smaller and the probability of finding the optimum
becomes larger and larger.

Now we consider the (n + 1)th stage, in which two events
hold: 1) p̂t̂n−1,n(x∗n) ≥ 1

M
holds; 2) ∀t > t̂n−1, t ≺ Poly(n),∀j ≤

n−1 : pt,j(x∗j ) = 1− 1
M

holds with an overwhelming probability
(38). Thus, there is no genetic drift to be taken into account.
Meanwhile, the probability of generating the optimum in one
sampling of a generation, conditional on the above two events,
is at least (1− 1

M
)n−1 1

M
= e−(n−1)/nε(n) 1

M
, which implies that if

the above two events both happen (which is true in the (n+1)th
stage), then the optimum will be found within M ln2 n extra
samplings (which generates M ln2 n new individuals) with the
overwhelming probability 1 − ( 1

e

)ω(ln n)
. Consequently, after

the first n stages, at most M
N

ln2 n generations can guarantee the
emergence of the optimum with an overwhelming probability.
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TABLE X

Bounding pt,i(x∗i ) From Below With an Overwhelming Probability

P

(
pt,i(x∗i ) ≥ min

{
(1− δ) N

M
pt−1,i(x∗i )pt−1,n(x̄∗n)

∏i−1
j=1 pt−1,j(x∗j ), 1− 1

M

}

| pt−1,i(x∗i ), pt,n(x̄∗n) = 1− 1
M

,∀j ≤ i− 1 : pt−1,j(x∗j ) = 1− 1
M

)

> P

(
pt,i(x∗i ) ≥ min

{
(1− δ) N

M
(1− 1

M
)npt−1,i(x∗i ), 1− 1

M

}
| pt−1,i(x∗i )

)
> 1− e

−(1− 1
M

)npt−1,i(x
∗
i

)Nδ2/2

TABLE XI

Calculation of Probability That T ′n Is Upper Bounded by T̂ ′n

P

(
T ′n ≤ T̂ ′n | p0,n(x̄∗n) = p̂0,n(x̄∗n)

)
(41)

> P

(
pT̂ ′n−1,1(1) ≥ M

N(1− δ)
| p0,n(x̄∗n) = p̂0,n(x̄∗n)

)(
1− e−

p̂0,1(1)N
2 δ2

)
(42)

> P

(
pT̂ ′n−1,1(1) ≥ p̂T̂ ′n−1,1(1) = GT̂ ′n−1p0,n(x̄∗n) >

M

N(1− δ)
| p0,n(x̄∗n) = p̂0,n(x̄∗n)

)(
1− e−

p̂0,1(1)N
2 δ2

)

> P

(
pT̂ ′n−1,1(1) ≥ p̂T̂ ′n−1,n(x̄∗n) | p0,n(x̄∗n) = p̂0,n(x̄∗n), p̂T̂ ′n−1,n(x̄∗n) >

M

N(1− δ)

)

P

(
p̂T̂ ′n−1,n(x̄∗n) >

M

N(1− δ)
| p0,n(x̄∗n) = p̂0,n(x̄∗n)

)(
1− e−p0,n(x̄∗n)Nδ2/2

)

Hence, the first hitting time τ is upper bounded by a
deterministic value τ̄

τ < τ̄ =

(
ln e(M−1)

N
− ln(1− δ)

)
nε(n) + n

ε(n) ln(1− δ) + ε(n) ln
(

N
M

)− 1

+
M

N
ln2 n + 2n

with the overwhelming probability at least(
1− n−e−1/ε(n)ω(n2+α)δ2/2e

)2τ̄

·
(

1− n
−
(

1−( 1
n

)1+ α
2

)2
ω(1)
)2(n−1)τ̄

·
(

1−
(1

e

)ω(ln n)
)

.

The results in this section show that margins can avoid mis-
leading convergence and leave some chances to the UMDAM

to find the global optimum. However, UMDAM cannot con-
verge to the global optimum completely anymore, i.e., the CT
becomes infinite. This is an interesting case where the FHT
is bounded polynomially in the problem size, but the CT is
infinite, and it demonstrates that FHT is a more appropriate
measure for EDAs time complexity than CT. It is noteworthy
that the idea of margins is quite similar to the Laplace cor-
rection [2], which was also proposed to prevent the marginal
probabilities from premature convergence. However, since our

purpose here is to demonstrate the influence of forbidding a
marginal probability to be 0 or 1, the slight difference between
relaxation and Laplace correction is not investigated.

VII. Conclusion

In this paper, we utilized the FHT to measure the time
complexity of EDAs. Based on the FHT measure, we pro-
posed a classification of problem hardness for EDAs and the
corresponding probability conditions. This is the first time the
general issues related to the time complexity of EDAs were
discussed theoretically. After that, a new approach to analyzing
the FHT for EDAs with finite population was introduced.
Using this approach, we investigated the time complexity of
UMDAs as examples.

In this paper, UMDAs were analyzed in depth on two
problems: LeadingOnes [37] and BVLeadingOnes. Both
of the problems are unimodal. The latter was derived from
the former, and inherited the domino convergence property of
the former. For the original UMDA, LeadingOnes is shown
to be EDA-easy, and BVLeadingOnes is shown to be EDA-
hard. Comparing the theoretical results of EDAs with those
of the EAs’, although the first result is similar to EAs’, i.e.,
LeadingOnes is easy, it should be noted that the general case
does not hold. That is, a problem that is easy for the EAs
could be hard for EDAs, e.g., the BVLeadingOnes problem.
However, it is still an open issue to analyze problems that are
hard for the EAs but easy for the EDAs.
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If the UMDA is further relaxed by margins, BVLeadin-

gOnes will no longer be EDA-hard. Our analysis shows that
the margin is helpful for UMDA to avoid wrong convergence
and thus significantly increases the performance of UMDA on
BVLeadingOnes. This is the first rigorous time complexity
evidence that supports the efficacy of relaxations (corrections)
of EDAs.

Finally, although we only analyze UMDAs, our approach
has the potential for analyzing other EDAs with the finite
populations. The general idea is to find a way to simplify the
EDAs and then estimate the probability that this simplification
holds. However, since different EDAs may have different char-
acteristics, more work needs to be done for the generalization
of our approach.

APPENDIX

Proof of Lemma 6. According to Chernoff bounds, we have

P

(
pt,n(x̄∗n) ≥ (1− δ)pt−1,n(x̄∗n)N

M

| pt−1,n(x̄∗n) ≤ M
N(1−δ)

)
> 1− e−pt−1,n(x̄∗n)Nδ2/2,∀t ≤ U

where δ ∈ (max{0, 1− 2M
N
}, 1−M

N
) is a positive constant. Since

no global optimum is generated before the Uth generation, we
have

p̂t,n(x̄∗n) = Gtp0,n(x̄∗n),∀t ≤ U

where G = (1 − δ) N
M

, and p̂t,n(x̄∗n) is deterministic given the
initial value p0,n(x̄∗n) = p̂0,n(x̄∗n) = 1

2 . Furthermore, setting t =
U in the above equation, by calculation we obtain that

p̂U,n(x̄∗n) = 1.

Let T̂ ′n denote the minimal t for p̂t,n(x̄∗n) to reach 1, then the
above equation implies T̂ ′n ≤ U. We study the probability that
the random variable pt,n(x̄∗n) is larger than p̂t,n(x̄∗n). Similar to
Table III, ∀t ≤ T̂ ′n we obtain

P

(
pt,n(x̄∗n) ≥ p̂t,n(x̄∗n) | p0,n(x̄∗n) = p̂0,n(x̄∗n)

)
>
(

1− e−p0,n(x̄∗n)Nδ2/2
)t

.

By inequalities in Table XI, we estimate the probabil-
ity that T ′n is bounded by T̂ ′n, where in (42) the factor(

1− e−p0,n(x̄∗n)Nδ2/2
)

is added since we apply Chernoff bounds

at the end of the (T̂ ′n − 1)th generation. We then consider the
following item:

P

(
p̂T̂ ′n−1,n(x̄∗n) > M

N(1−δ) | p0,n(x̄∗n) = p̂0,n(x̄∗n)

)

= P

(
p̂T̂ ′n−1,n(x̄∗n) > M

N(1−δ)

)
.

According to the definition of T̂ ′n, and noting that
p̂T̂ ′n−1,n(x̄∗n) > M

N(1−δ) is deterministic, we know the probability

above is 1. Thus, we continue to estimate the corresponding
probability mentioned in (41)

P

(
T ′n ≤ T̂ ′n | p0,n(x̄∗n) = p̂0,n(x̄∗n)

)
> P

(
pT̂ ′n−1,n(x̄∗n) ≥ p̂T̂ ′n−1,n(x̄∗n)

| p0,n(x̄∗n) = p̂0,n(x̄∗n)
)(

1− e−
p̂0,n (1)N

2 δ2
)

>
(

1− e−
p̂0,n (1)N

2 δ2
)T̂ ′n

.

Since T̂ ′n ≤ U, we further get

P

(
T ′n ≤ U | p0,n(x̄∗n) = p̂0,n(x̄∗n)

)
> P

(
T ′n ≤ T̂ ′n | p0,n(x̄∗n) = p̂0,n(x̄∗n)

)
>
(

1− e−
p̂0,n (1)N

2 δ2
)U

.

The analysis above tells us, the probability that the marginal
probability converges before the Uth generation (Tn < U) is

at least
(

1− e−
N
4 δ2
)U

. Since N = ω(n2+α log n), M = βN (β ∈
(0, 1) is a constant) and U is polynomial in the problem size
n, this probability is overwhelming. Hence, we have proven
the lemma.
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