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Abstract
To provide customized and high-quality net-

work services under limited network resources, 
the 5G introduces the network slicing technol-
ogy that divides physical networks into several 
logically independent virtual networks, improving 
the performance of network utilization. The slice 
management should satisfy the chief concerns 
of network operators and slice tenants who are 
the two most important participants, i.e., slice 
allocation for operators and Service Level Agree-
ment (SLA) guarantee for tenants. However, for 
slice allocation, traditional centralized schemes 
cannot well support multi-operator slicing due to 
the lack of trust. And for SLA guarantee, existing 
solutions only provide global SLA based on game 
theory but cannot handle each dispute between 
operators and tenants. To solve the problems, we 
propose a blockchain-based network slice man-
agement framework consisting of a slice commit-
tee and three protocols: slice, audit, and dispute. 
With the help of the decentralization and reliabil-
ity of blockchain, the proposed scheme achieves 
collaborative slice management among multiple 
operators with SLA guarantee. Through securi-
ty and performance analysis, we prove that the 
proposed scheme can defend against possible 
dishonest behaviors of entities in the system, and 
is practical in terms of performance.

Introduction
Mobile communication technology has become 
a catalyst for social digitization, and future mobile 
communications are supposed to meet diverse 
communications needs simultaneously. For exam-
ple, one business customer may require highly 
reliable services, while another may require 
high-bandwidth communication or extremely 
low latency [1]. The 5G technology aims to pro-
vide different mixing capabilities simultaneously 
to meet such diverse needs. Therefore, 5G intro-
duces network slicing to divide a shared physical 
network infrastructure into multiple logical net-
works that could be used independently by dif-
ferent users [2, 3]. Such a design allows network 
customers to customize network slices according 
to their demands while enabling network oper-
ators to maximize the utilization rate of network 
resources [4].

Network slicing has two fundamental partici-
pants: network operators and slice tenants. Oper-
ators are resource providers that divide physical 
network infrastructure into virtual slices, and ten-
ants are network customers of slices and should 
pay the operators. To enable network slicing, the 
slice management module is indispensable for 
collecting and matching resources and demands, 
monitoring slice status, guaranteeing Service Level 
Agreement (SLA), and charging tenants. For this 
purpose, Samdanis et al. [5] proposed the slice bro-
ker that acts as the management module. Howev-
er, this kind of centralized management framework 
cannot sufficiently support multi-operator scenarios 
and is also prone to a single point of failure.

With the emergence of blockchain appli-
cations, researchers have introduced blockchain 
into network slicing. Blockchain plays a vital role 
in guaranteeing the fairness of slice orchestration 
and SLA. The decentralized consensus establishes 
trust among operators and achieves collaborative 
slice management, and the capacity to lock assets 
and reliable execution of smart contracts solve the 
“who-pay-first” contradiction between operators 
and tenants. Besides, the tamper-resistant storage of 
blockchain also provides an effective tool for audit 
and arbitration, providing fundamental conditions 
for correct billing and SLA guarantee. In the exist-
ing blockchain-based slice management schemes, 
blockchain-based orchestration [6–8] have been 
thoroughly discussed. Also, game theory has been 
utilized to enable global SLA guarantee [9, 10].

However, the issues of billing correctness and 
single SLA dispute remain unsolved. Specifical-
ly, existing billing schemes rely on usage reports 
from operators or tenants for charging without 
considering dishonest participants who may 
provide false reports. Besides, some game the-
ory-based schemes only guarantee SLA from a 
holistic perspective but cannot handle every dis-
pute between operators and tenants. To solve the 
problems, we propose to collect usage reports 
from both operators and tenants and then auto-
matically audit their consistency through the smart 
contract. For consistent reports, the contract will 
transfer tokens to pay the bill. While for inconsis-
tent reports, we design the slice committee mech-
anism and utilize the end-to-end network test to 
check which report is correct. Also, we design a 
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dispute protocol for tenants to claim dissatisfac-
tion with the service quality.

To summarize, we propose a secure and fair 
network slice management framework based on 
blockchain that provides correct billing and SLA 
guarantee. To further enhance the performance 
and security of our proposed framework, we 
introduce the Merkle hash tree (MHT) and ver-
ifiable random function technology. We prove 
the security and effectiveness of the proposed 
slice management framework by analyzing the 
possible dishonest behaviors in the system and 
prototyping the proposed framework for perfor-
mance analysis.

The rest of our article is organized as below: 
we introduce existing schemes related to net-
work slice management, and provide basic 
backgrounds. We detail the proposed slice man-
agement framework. We discuss the security and 
performance of the proposed scheme. Finally, we 
conclude the article.

relAted work
For network slicing management, Samdanis et al.
[5] introduced the broker that collects resourc-
es from operators and assigns them to tenants 
according to their demands. Based on this archi-
tecture, Rost et al. [11] proposed a hybrid archi-
tecture that enables the coexistence of dedicated 
and shared slices to implement different objec-
tive functions dynamically, maximizing spectral 
efficiency. Ksentini et al. [12] proposed another 
framework based on eDECOR and introduced a 
two-level scheduler for radio resource allocation. 
These schemes perform well in single-operator 
scenarios. However, with further development, a 
network slice is supposed to consist of resourc-
es from multiple operators and those centralized 
broker-based schemes cannot provide solid trust 
among operators.

To solve the problem, researchers introduced 
blockchain to establish decentralized network 
slice management architecture for the multi-op-
erator demand. Togou et al. [6] proposed a basic 
blockchain-based architecture called DBNS that 
utilizes smart contracts to execute the pre-estab-
lished bidding-based allocation strategy. Subse-
quent studies improve performance and security 
in various aspects. For instance, Hewa et al. [7] 
proposed SNSB that optimizes the slice orches-
tration strategy to guarantee SLA based on the 
Stackelberg game model. Reference [8] adopts 
the DAG algorithm for selecting the optimal 
slice and proposes several security mechanisms, 
including authentication and handover. Reference 
[9] designs a fair incentive mechanism for slice 
trading. Considering the public characteristic of 
blockchain, He et al. [10] proposed NetChain that 
protects privacy by combining blockchain with a 
trusted execution environment (TEE). References 
[9] and [10] also adopt game theory to design 
incentive mechanisms for SLA guarantee. How-
ever, they only realize a long-term and global SLA 
but cannot handle each dispute between an oper-
ator and a tenant. For a single dispute, Zhou et al.
[13] proposed a blockchain-based witness model 
to handle SLA disputes of cloud service. Zhou’s 
scheme utilizes the smart contract to randomly 
select a group of witnesses to verify the current 
service level to handle users’ disputes. Howev-

er, this scheme relies on users’ initiative and can-
not provide automatic SLA audits. To solve those 
problems, we propose a blockchain-based net-
work slicing framework that enables both auto-
matic audit and user dispute of SLA, guaranteeing 
fairness and effi  ciency.

PrelIMInArIes
This section introduces two critical technologies 
of our work, i.e., the concept of 5G network slic-
ing and smart contract.

5g network slIcIng
3GPP defines the network slicing technolo-
gy that enables operators to create virtual net-
works and customize them to provide optimized 
solutions for different communication scenarios 
with diverse needs, such as eMBB, mMTCs, and 
URLLC, as Fig. 1 shows. Using cloud computing 
and virtualization technology, operators can effi  -
ciently orchestrate the shared physical network 
resources into logical network slices according to 
diff erent demands.

A signifi cant problem that operators are con-
cerned about is slice allocation, i.e., how to divide 
network resources will achieve maximum benefi t. 
For tenants, one of their biggest concerns might 
be the SLA guarantee, i.e., whether the provided 
slice can meet the pre-agreed service quality [14]. 
We can acquire a network slice’s service level 
(e.g., latency, throughput, or jitter) through the 
end-to-end network test. Besides, correct billing is 
a concern for both parties. Our scheme combines 
the slice test with smart contracts to provide SLA 
guarantees for a network slice.

sMArt contrAct
A smart contract is a computer program deployed 
to the blockchain and can be reliably executed 
by blockchain miners. Ethereum is the fi rst block-
chain that supports smart contracts, and users can 
deploy and invoke contracts by sending transac-
tions to the blockchain network. Miners will col-
lect transactions to execute relevant codes and 
upload the results into the blockchain. There are 
two important limitations of smart contracts for 
our scheme. First, since all the miners should 
execute each line of code, some heavy tasks are 
improper to be directly implemented through 
smart contracts, including the network test in our 
scheme. Second, blockchain cannot directly gen-
erate random numbers due to the lack of external 
information. Our design of the slice committee 
and adoption of the verifiable random function 
(VRF) are to solve these issues.

FIGURE 1. The overall architecture of 5G network slicing.
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proposed framework for performance analysis.
The rest of our paper is organized as below: Section II intro-

duces existing schemes related to network slice management,
and Section III provides basic backgrounds. Section IV details
the proposed slice management framework. Section V discuss
the security and performance of the proposed scheme. Finally,
Section VI concludes the paper.

II. RELATED WORK

For network slicing management, Samdanis et al. [5]
introduced the broker that collects resources from operators
and assigns them to tenants according to their demands.
Based on this architecture, Rost et al. [11] proposed a
hybrid architecture that enables the coexistence of dedicated
and shared slices to implement different objective functions
dynamically, maximizing spectral efficiency. Ksentini et al.
[12] proposed another framework based on eDECOR and
introduced a two-level scheduler for radio resource allocation.
These schemes perform well in single-operator scenarios.
However, with further development, a network slice is
supposed to consist of resources from multiple operators and
those centralized broker-based schemes cannot provide solid
trust among operators.

To solve the problem, researchers introduced blockchain to
establish decentralized network slice management architecture
for the multi-operator demand. Togou et al. [6] proposed a
basic blockchain-based architecture called DBNS that utilizes
smart contracts to execute the pre-established bidding-based
allocation strategy. Subsequent studies improve performance
and security in various aspects. For instance, Hewa et al.
[7] proposed SNSB that optimizes the slice orchestration
strategy to guarantee SLA based on the Stackelberg game
model. [8] adopts the DAG algorithm for selecting the
optimal slice and proposes several security mechanisms,
including authentication and handover. [9] designs a fair
incentive mechanism for slice trading. Considering the public
characteristic of blockchain, He et al. [10] proposed NetChain
that protects privacy by combining blockchain with a trusted
execution environment (TEE). [9] and [10] also adopt game
theory to design incentive mechanisms for SLA guarantee.
However, they only realize a long-term and global SLA but
cannot handle each dispute between an operator and a tenant.
For a single dispute, Zhou et al. [13] proposed a blockchain-
based witness model to handle SLA disputes of cloud service.
Zhou’s scheme utilizes the smart contract to randomly select a
group of witnesses to verify the current service level to handle
users’ disputes. However, this scheme relies on users’ initiative
and cannot provide automatic SLA audits. To solve those
problems, we propose a blockchain-based network slicing
framework that enables both automatic audit and user dispute
of SLA, guaranteeing fairness and efficiency.

III. PRELIMINARIES

This section introduces two critical technologies of our
work, i.e., the concept of 5G network slicing and smart
contract.

A. 5G Network Slicing

3GPP defines the network slicing technology that enables
operators to create virtual networks and customize them
to provide optimized solutions for different communication
scenarios with diverse needs, such as eMBB, mMTCs, and
URLLC, as Fig. 1 shows. Using cloud computing and
virtualization technology, operators can efficiently orchestrate
the shared physical network resources into logical network
slices according to different demands.

eMBB slices

mMTCs slices

URLLC slices

enhanced mobile broadband

massive machine-type communications

ultra-reliable low-latency comminications

Network
Resource

Slice 
Allocation

SLA 
Guarantee

film & TV

live & meeting

network layer management layer application layer

network 
operators

slice 
managers

network
tenants

Fig. 1. The overall architecture of 5G network slicing.

A significant problem that operators are concerned about
is slice allocation, i.e., how to divide network resources will
achieve maximum benefit. For tenants, one of their biggest
concerns might be the SLA guarantee, i.e., whether the
provided slice can meet the pre-agreed service quality [14].
We can acquire a network slice’s service level (e.g., latency,
throughput, or jitter) through the end-to-end network test.
Besides, correct billing is a concern for both parties. Our
scheme combines the slice test with smart contracts to provide
SLA guarantees for a network slice.

B. Smart Contract

A smart contract is a computer program deployed to
the blockchain and can be reliably executed by blockchain
miners. Ethereum is the first blockchain that supports smart
contracts, and users can deploy and invoke contracts by
sending transactions to the blockchain network. Miners will
collect transactions to execute relevant codes and upload the
results into the blockchain. There are two important limitations
of smart contracts for our scheme. First, since all the miners
should execute each line of code, some heavy tasks are
improper to be directly implemented through smart contracts,
including the network test in our scheme. Second, blockchain
cannot directly generate random numbers due to the lack of
external information. Our design of the slice committee and
adoption of the verifiable random function (VRF) are to solve
these issues.

IV. PROPOSED SLICE MANAGEMENT FRAMEWORK

In this section, we first introduce the system model and
security assumptions (IV-A) and then provide an overview of
our design (IV-B). Subsequently, we explain our design of
the slice committee (IV-C) and the three slice management
protocols (IV-D).
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ProPosed slIce MAnAgeMent frAMework
In this section, we first introduce the system 
model and security assumptions and then pro-
vide an overview of our design. Subsequently, we 
explain our design of the slice committee and the 
three slice management protocols.

systeM Model And securIty AssuMPtIons
The proposed slice management framework con-
sists of one slice committee and three slice man-
agement protocols, i.e., slice, audit, and dispute. 
Together, they provide a reliable slice management 
framework that enables correct billing and SLA guar-
antee. As shown in Fig. 2, the framework is imple-
mented through four contracts, i.e., slice contract, 
audit contract, dispute contract, and slice commit-
tee contract, and details will be given later. Besides, 
there are three entities in the system, i.e., network 
operators, slice tenants, and slice managers.
• Network operators provide physical network 

resources and transfer resources to network 
slices to server slice tenants. They publish 
the resource information through the slice 
contract and provide slices according to the 
slice orchestration result.

• Slice tenants publish their requests to the 
blockchain by invoking the slice contract 
and wait for appropriate choices. Then, they 
might rent one or more slices as needed and 
pay the operators regularly.

• Slice managers are blockchain miners who 
undertake the slice management duty by 
executing the management contracts. The 
contracts are not required to be deployed 
on public blockchains. Instead, network 
operators and tenants with strong abilities 
can establish their own consortium block-
chain for slice management. There are many 
options for the underlying blockchain, e.g., 
proof of Work (PoW) Ethereum, proof of 
Stake (PoS) Ethereum, or Hyperledger Fab-
ric, and slice managers may determine a 
choice after a careful consideration.
We separately consider the security of slice 

service and the management framework. For the 
slice service, we mainly concentrate on two prob-
lems: dishonest operators and “dine-and-dash” 
tenants. Specifically, a dishonest operator may 
provide unqualified slices that do not meet the 
agreed service level. And a “dine-and-dash” tenant 
may refuse to pay usage fees to operators after 
using the slice. And for the management frame-

work, the slice managers are blockchain miners, 
most of whom are honest. However, some might 
try to deceive others for their own benefits. For 
example, some dishonest operator miners may 
collude to provide false audit (the audit protocol), 
resulting in charging more fees from tenants.

oVerVIew of the ProPosed solutIon
We utilize the blockchain to propose a secure 
and fair network slice management framework 
that provides correct billing and SLA guarantee. 
Our main idea is to periodically collect usage 
reports from operators and tenants and then audit 
them by checking whether they are consistent. 
A consistent result means the usage report is 
correct, and the bill can be directly performed 
according to it. If not consistent, it means one of 
them is cheating, and we should determine which 
is valid through off -chain methods, e.g., checking 
the current slice condition through a pre-defi ned 
test interface. However, in some cases, the above 
audit process might lag and cannot prompt-
ly determine if there is a quality decline. For 
instance, the report uploading period is relatively 
long. Therefore, we propose a way for tenants to 
claim the quality descent proactively.

For the above purpose, we design three pro-
tocols: slice, audit, and dispute. The slice proto-
col collects network resources and slice requests 
and runs the orchestration algorithm for matching 
resources and requests. It also maintains usage 
reports uploaded by operators and tenants for 
audit. The audit protocol checks the consisten-
cy of reports from operators and tenants and 
charges the tenants if consistent. If not, it will 
check the current service condition of the slice 
through the provided test interface to determine 
which one is correct for billing. Moreover, the 
dispute protocol is used for tenants to proactively 
claim the quality decline of a slice. The protocols 
are mainly implemented by smart contracts. How-
ever, considering the expensive cost to invoke 
the test interface and the smart contract requiring 
all the miners to execute each line of code, it is 
impractical to execute all the protocols through 
contracts directly. Therefore, we design the slice 
committee for executing network tests, reducing 
the cost of slice management signifi cantly.

slIce coMMIttee
We can implement the protocols through smart 
contracts directly; however, the audit and dispute 
protocols require executors to test slice quality 
through network tests. As a result, direct imple-
mentation through smart contracts will cause pro-
hibitive costs. To solve the problem, we propose 
the slice committee to perform the network test. 
For convenience, we divide time into slots, and 
a fixed amount of slots form an epoch. A slice 
committee is a group of miners randomly selected 
from all the miners, and a particular one acts as 
the leader (also chosen randomly). Since on-chain 
random generation is a challenge, we adopt the 
Chainlink verifiable random function (VRF) [15] 
technology which is particularly designed as a 
smart contract random generator. We can call the 
Chainlink VRF to acquire a secure random num-
ber in any contract to support the subsequent 
function. The leader is responsible for invoking 
contracts when needed, as smart contracts can-

FIGURE 2. System model of the proposed slice management framework.
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A. System Model and Security Assumptions

The proposed slice management framework consists of one
slice committee and three slice management protocols, i.e.,
slice, audit, and dispute. Together, they provide a reliable slice
management framework that enables correct billing and SLA
guarantee. As shown in Fig. 2, the framework is implemented
through four contracts, i.e., slice contract, audit contract,
dispute contract, and slice committee contract, and details will
be given later. Besides, there are three entities in the system,
i.e., network operators, slice tenants, and slice managers.

• Network operators provide physical network resources
and transfer resources to network slices to server slice
tenants. They publish the resource information through
the slice contract and provide slices according to the slice
orchestration result.

• Slice tenants publish their requests to the blockchain
by invoking the slice contract and wait for appropriate
choices. Then, they might rent one or more slices as
needed and pay the operators regularly.

• Slice managers are blockchain miners who undertake the
slice management duty by executing the management
contracts. The contracts are not required to be deployed
on public blockchains. Instead, network operators and
tenants with strong abilities can establish their own
consortium blockchain for slice management. There are
many options for the underlying blockchain, e.g., proof of
Work (PoW) Ethereum, proof of Stake (PoS) Ethereum,
or Hyperledger Fabric, and slice managers may determine
a choice after a careful consideration.

We separately consider the security of slice service and
the management framework. For the slice service, we mainly
concentrate on two problems: dishonest operators and “dine-
and-dash” tenants. Specifically, a dishonest operator may
provide unqualified slices that do not meet the agreed service
level. And a “dine-and-dash” tenant may refuse to pay usage
fees to operators after using the slice. And for the management
framework, the slice managers are blockchain miners, most
of whom are honest. However, some might try to deceive
others for their own benefits. For example, some dishonest
operator miners may collude to provide false audit (the audit
protocol, see Section IV-D), resulting in charging more fees
from tenants.

B. Overview of the Proposed Solution

We utilize the blockchain to propose a secure and fair
network slice management framework that provides correct
billing and SLA guarantee. Our main idea is to periodically
collect usage reports from operators and tenants and then audit
them by checking whether they are consistent. A consistent
result means the usage report is correct, and the bill can
be directly performed according to it. If not consistent, it
means one of them is cheating, and we should determine
which is valid through off-chain methods, e.g., checking the
current slice condition through a pre-defined test interface.
However, in some cases, the above audit process might lag
and cannot promptly determine if there is a quality decline.
For instance, the report uploading period is relatively long.

Therefore, we propose a way for tenants to claim the quality
descent proactively.
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Fig. 2. System model of the proposed slice management framework.

For the above purpose, we design three protocols: slice,
audit, and dispute. The slice protocol collects network
resources and slice requests and runs the orchestration
algorithm for matching resources and requests. It also
maintains usage reports uploaded by operators and tenants
for audit. The audit protocol checks the consistency of
reports from operators and tenants and charges the tenants
if consistent. If not, it will check the current service condition
of the slice through the provided test interface to determine
which one is correct for billing. Moreover, the dispute protocol
is used for tenants to proactively claim the quality decline
of a slice. The protocols are mainly implemented by smart
contracts. However, considering the expensive cost to invoke
the test interface and the smart contract requiring all the miners
to execute each line of code, it is impractical to execute all
the protocols through contracts directly. Therefore, we design
the slice committee for executing network tests, reducing the
cost of slice management significantly.

C. Slice Committee

We can implement the protocols through smart contracts
directly; however, the audit and dispute protocols require
executors to test slice quality through network tests. As a
result, direct implementation through smart contracts will
cause prohibitive costs. To solve the problem, we propose the
slice committee to perform the network test. For convenience,
we divide time into slots, and a fixed amount of slots form
an epoch. A slice committee is a group of miners randomly
selected from all the miners, and a particular one acts as
the leader (also chosen randomly). Since on-chain random
generation is a challenge (see Section III-B), we adopt the
Chainlink verifiable random function (VRF) [15] technology
which is particularly designed as a smart contract random
generator. We can call the Chainlink VRF to acquire a secure
random number in any contract to support the subsequent
function. The leader is responsible for invoking contracts when
needed, as smart contracts cannot automatically start without
invocation. Based on the slice committee, only miners in the
committee will invoke the test interface for network tests, and
other miners will verify whether the result is provided by valid
committee members. Other miners will accept it only when
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not automatically start without invocation. Based 
on the slice committee, only miners in the com-
mittee will invoke the test interface for network 
tests, and other miners will verify whether the 
result is provided by valid committee members. 
Other miners will accept it only when more than 
2/3 committee members give the same test result, 
which will be proved to be secure later.

Specifically, the management framework con-
sists of four smart contracts: committee contract, 
slice contract, audit contract, and dispute contract. 
The first one is used to select the slice committee, 
and the latter three are used to implement the 
slice, audit, and dispute protocols, respectively. 
During each epoch, the current leader invokes the 
audit contract for auditing and charging at each 
slot. Furthermore, at the last slot, the leader invokes 
the committee contract to select the committee 
and leader for the next epoch. The details of the 
three protocol contracts will be introduced later. 
Besides, in case the leader does not invoke the 
contracts as requested, an inactive leader will be 
punished according to the pre-determined rules, 
e.g., be banned from the committee or even from 
making profits by providing resources for a while.

Slice Management Protocols
The proposed architecture consists of three slice 
management protocols: slice, audit, and dispute. 
Among them, slice protocol undertakes slice allo-
cation, and audit and dispute protocols are for 
SLA guarantee. Roughly speaking, audit protocol 
is executed by slice managers to monitor slice 
quality, and dispute protocol is invoked by tenants 
who found that the slice’s quality has decreased.

Protocol: Slice. The slice protocol is respon-
sible for slice orchestration and is imple-
mented by the slice contract consists of five 
functions: Resource, Request, Orchestra-
tion, Report, and Charge. The former three 
are for slice allocation: operators and tenants sep-
arately invoke the Resouce and Request func-
tions to upload the network resources and slice 
demands information. Then the Request func-
tion invokes Orchestration to divide available 
resources into needed slices.
•	 Resource. When an operator wants to join 

the system or change information, it invokes 
the Resouce function to upload its resource 
and other information. Then, the current 
slice committee validates and determines 
whether to allow the operator to join. If suc-
cessfully joined, the corresponding resource 
will be recorded in the resource object for 
the following slice orchestration.

•	 Request . A tenant can request slices by 
invoking the Request function to provide 
his/her request and a certain amount of 
deposit. The Request function will auto-
matically invoke the Orchestration func-
tion for matching requests and resources. 
Besides, the tenant should lock some depos-
it into the slice contract for the following 
charging and can also withdraw the redun-
dant deposit later.

•	 Orchestration. This function runs opti-
mization algorithms to appropriately match 
resources and requests according to several 
factors to maximize the effectiveness of the 
network slicing. There are lots of studies that 

propose excellent orchestration algorithms. 
For instance, [10] proposes a bilateral evalu-
ation mechanism for slice orchestration. 
The Report and Charge functions are used 

for billing. Operators and tenants invoke Report to 
upload usage reports periodically. Then slice manag-
ers audit the reports and charge tenants according 
to the audit result through the Charge function.
•	 Report. Operators and tenants invoke the 
Report function to upload the usage report 
of slices periodically. The reports are used for 
billing and auditing in the audit protocol. For 
lightening the on-chain payload, blockchain 
miners compress reports into two Merkle 
hash trees and only store the tree roots in the 
contract. A Merkle hash tree is a binary tree 
that takes the hash of reports as leaf nodes, 
and the hash of every two adjacent nodes is 
their parent. It is often used to check the con-
sistency of two data sets quickly.

•	 Charge. The Charge function is automati-
cally invoked by the audit contract to charge 
tenants by transferring the required assets 
from the deposit locked by the tenant to the 
operator’s address. When the balance is insuf-
ficient, the operator will suspend the slice ser-
vice until the tenant replenishes the deposit or 
terminate the service after waiting a long time.
Protocol: Audit. The audit protocol supervises 

slice quality and processes billing and is imple-
mented by the audit contract. At each slot, the 
leader invokes the ReportAudit function to 
audit the usage reports uploaded during the last 
slot. The ReportAudit function first compares 
whether the usage reports uploaded by opera-
tors and tenants are consistent. If consistent, it 
will invoke the Billing function to charge the 
tenant according to the usage report. If not con-
sistent, it should invoke the Evidence function 
to check which report is true.
•	 ReportAudit . This function checks two 

usage report sets in the form of MHT that are 
provided by operators and tenants separate-
ly. It compares their consistency and invokes 
Billing or Evidence contract as needed.

•	 Billing. Given a set of usage reports, the 
Billing  function invokes the Charge 
function to transfer tenants’ deposits to oper-
ators according to each usage report.

•	 Evidence. The Evidence function handles 
inconsistent usage reports. When members 
of the slice committee find the invocation of 
Evidence, they conduct off-chain investiga-
tions (e.g., checking the current service qual-
ity from end-to-end network test) to check 
which report is correct and upload the result 
to the contract. When receiving the same 
result from 2/3 members, the correspond-
ing report will be regarded as correct (and 
become the input of the Charge function).
Protocol: Dispute. The dispute protocol is 

designed for tenants to claim that a slice does not 
satisfy the negotiated SLA. For some slices, the 
report uploading period may be set to a relatively 
long time, and the audit protocol cannot timely 
discover the quality decline of slices. Therefore, 
the dispute protocol acts as a supplement to the 
SLA guarantee. The dispute protocol is imple-
mented in the dispute contract that consists of 
two functions: Dispute and Evidence. The 

During each epoch, the 
current leader invokes the 
audit contract for auditing 
and charging at each slot. 

Furthermore, at the last 
slot, the leader invokes the 

committee contract to select 
the committee and leader for 

the next epoch.
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former is invoked by a tenant to provide the iden-
tity of the objective slice. Then it automatically 
invokes the latter to handle the dispute, and the 
process is the same as in the audit contract.

Security and Performance Analysis

Security Analysis
Assertion: A dishonest tenant may try to 

underpay for the slice but cannot succeed in our 
proposed framework.

Proof: On the one hand, a tenant could inter-
fere with billing by lying about the usage report, 
for example, lowering the service level in the 
report. On the other hand, a common charge 
mode is use-then-pay, i.e., for each charge epoch, 
the tenant pays for the service at the end of the 
epoch; thus, a dishonest tenant may leave without 
paying the fee of the last epoch. In our proposed 
framework, the audit and slice protocols solve the 
two problems, respectively. By adopting Repor-
tAudit to compare the usage reports upload-
ed by operators and tenants, slice managers can 
find a lying tenant or operator when inconsis-
tency appears. Besides, tenants are required to 
lock enough deposit into the slice contract when 
requesting slices, and the Charge function will 
automatically charge tenants from the deposit. 
According to the reliability of blockchain smart 
contracts, tenants cannot succeed in defaulting 
on payments. 

Assertion: A dishonest operator may try to 
charge tenants more than they should or lower 
the service level of slices in use, but cannot suc-
ceed in our proposed framework.

Proof: Similar to tenants, a dishonest oper-
ator may try to charge tenants more than they 
should pay by providing forged usage reports, 
and this kind of misconduct can be detected and 
handled by the audit protocol in our framework. 
Besides, a dishonest operator may also lower the 
service level of slices to save cost or to spare 
network resources to create more slices, violat-
ing the SLA. This problem is solved by the audit 
and dispute protocol. A violation of SLA can be 
detected when the audit protocol finds an incon-
sistency of usage reports or a tenant executes 
the dispute protocol to proactively claim the 
decrease in service level. In conclusion, by com-
bining audit and dispute protocol, SLA is strongly 
guaranteed. 

Assertion: A dishonest miner may try to pro-
vide false test results to disturb the reliable exe-
cution of the management protocols but cannot 
succeed in our proposed framework.

Proof: In our proposed framework, a group 
of miners is randomly selected to form the slice 
committee that executes the slice management 
protocols. Other miners are ordinary blockchain 
miners that obey the blockchain consensus. 
Since the underlying blockchain is considered 
secure, we can ignore ordinary miners and con-
centrate on the security of the slice commit-
tee. For simplicity, we assume that half of the 
miners are operators and others are tenants. 
And intuitively, dishonest operator miners tend 
to favor operators during the audit and tenant 
miners are on the contrary. Suppose there are 
a total of N = 1000 miners in the system and 
bN are dishonest, and the committee consists of 
aN miners. Only when the committee includes 
more than 2/3aN dishonest tenant-miners or 
operator-miners will the system accept a wrong 
test result, and the probability is shown in Fig. 
3. According to the result, the system might 
accept a false test result when a < 0.04 and b 
> 0.2. And for other settings, the probability will 
stay at a tiny value close to 0, which is negligi-
ble in practice. 

Performance Analysis
To evaluate the performance of the proposed 
scheme, we implement slice management con-
tracts through Ethereum Solidity. We mainly con-
centrate on the report check and network test. 
For report check, to explore the effect of adopt-
ing MHT, we also implement a report check func-
tion in the slice contract based on the hash list 
and compare their runtime. Furthermore, for the 
network test, we simulate 500 miners and 10,000 
tenants randomly distributed in a specific area 
and estimate the test latency.

The result of the report check is shown in Fig. 
4. We set the proportion of inconsistent reports 
as 0.1 percent, 0.5 percent, and 1 percent, and 
the total number of reports as 215, 220, 225, 230. 
Then we analyze the time of hash check for con-
ducting a report check. As Fig. 4 shows, when 
the report size increases, the check cost of the 
hash list method grows sharply while the MHT-
based method performs much better. When the 

FIGURE 3. Probability that the system accepts a wrong test result with different a and b.
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to save cost or to spare network resources to create more slices,
violating the SLA. This problem is solved by the audit and
dispute protocol. A violation of SLA can be detected when
the audit protocol finds an inconsistency of usage reports or
a tenant executes the dispute protocol to proactively claim the
decrease in service level. In conclusion, by combining audit
and dispute protocol, SLA is strongly guaranteed.

Assertion: A dishonest miner may try to provide false test
results to disturb the reliable execution of the management
protocols but cannot succeed in our proposed framework.
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Proof: In our proposed framework, a group of miners is
randomly selected to form the slice committee that executes

the slice management protocols. Other miners are ordinary
blockchain miners that obey the blockchain consensus. Since
the underlying blockchain is considered secure, we can ignore
ordinary miners and concentrate on the security of the slice
committee. For simplicity, we assume that half of the miners
are operators and others are tenants. And intuitively, dishonest
operator miners tend to favor operators during the audit and
tenant miners are on the contrary. Suppose there are a total
of N = 1000 miners in the system and βN are dishonest,
and the committee consists of αN miners. Only when the
committee includes more than 2

3αN dishonest tenant-miners
or operator-miners will the system accept a wrong test result,
and the probability is shown in Fig. 3. According to the result,
the system might accept a false test result when α < 0.04 and
β > 0.2. And for other settings, the probability will stay at a
tiny value close to 0, which is negligible in practice.

B. Performance Analysis

To evaluate the performance of the proposed scheme,
we implement slice management contracts through Ethereum
Solidity. We mainly concentrate on the report check and
network test. For report check, to explore the effect of adopting
MHT, we also implement a report check function in the slice
contract based on the hash list and compare their runtime.
Furthermore, for the network test, we simulate 500 miners
and 10, 000 tenants randomly distributed in a specific area
and estimate the test latency.

The result of the report check is shown in Fig. 4. We set
the proportion of inconsistent reports as 0.1%, 0.5%, and 1%,
and the total number of reports as 215, 220, 225, 230. Then we
analyze the time of hash check for conducting a report check.
As Fig. 4 shows, when the report size increases, the check
cost of the hash list method grows sharply while the MHT-
based method performs much better. When the report size
reaches 230, the hash list-based method should conduct 109

hash checks, while the MHT-based method needs only around
106. The less the inconsistency proportion, the more optimized
the MHT method is compared to the hash list method. When
there are 0.1% inconsistent reports, the cost of the MHT-based
method is around 5% of the hash list method, proving the
effectiveness of adopting MHT for the report check.
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and estimate the test latency.

The result of the report check is shown in Fig. 4. We set
the proportion of inconsistent reports as 0.1%, 0.5%, and 1%,
and the total number of reports as 215, 220, 225, 230. Then we
analyze the time of hash check for conducting a report check.
As Fig. 4 shows, when the report size increases, the check
cost of the hash list method grows sharply while the MHT-
based method performs much better. When the report size
reaches 230, the hash list-based method should conduct 109

hash checks, while the MHT-based method needs only around
106. The less the inconsistency proportion, the more optimized
the MHT method is compared to the hash list method. When
there are 0.1% inconsistent reports, the cost of the MHT-based
method is around 5% of the hash list method, proving the
effectiveness of adopting MHT for the report check.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

200

400

600

800

1000

1200

15 20 25 30

M
H

T 
to

 h
as

h 
lis

t r
at

io

tim
e 

of
 h

as
h 

ch
ec

ki
ng

 /1
06

log of the number of reports

(0.1%, MHT) (0.1%, hash list) (0.5%, MHT)
(0.5%, hash list) (1%, MHT) (1%, hash list)
(0.1%, ratio) (0.5%, ratio) (1%, ratio)

Fig. 4. A comparison between MHT-based and hash list-based report check.

To evaluate the performance of the network test, we simulate
500 miners and 10, 000 tenants randomly distributed in a
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report size reaches 230, the hash list-based meth-
od should conduct 109 hash checks, while the 
MHT-based method needs only around 106. The 
less the inconsistency proportion, the more opti-
mized the MHT method is compared to the hash 
list method. When there are 0.1 percent incon-
sistent reports, the cost of the MHT-based meth-
od is around 5 percent of the hash list method, 
proving the effectiveness of adopting MHT for 
the report check.

To evaluate the performance of the network 
test, we simulate 500 miners and 10,000 tenants 
randomly distributed in a specific area. The com-
munication delay is proportional to the distance 
and is 100 ms between the two farthest nodes. 
The test concurrency of miners is set to 100, i.e., 
a miner could test 100 tenants at the same time. 
Then we set the committee size as 50 and test the 
average time cost of each miner with the propor-
tion of inconsistency reports from 0.1 percent to 
0.5 percent. The result is shown in Fig. 5a. We can 
find that the time cost of each miner increases 
with the inconsistency proportion increases and is 
less than 1 second, which is a relatively small cost 
compared to blockchain consensus.

We also fix the proportion as 0.03 and change 
the committee size to test the total execution 
delay of the Evidence function. The concurren-
cy of tenants is set to 20. The delay consists of 
committee members’ testing slice quality, upload-
ing results, and other miners verifying signatures. 
The network test delay results from previous 
experiments, and the signature verification delay 
is represented by the throughput of executing 
the Evidence function, which is tested through 
Caliper. As Fig. 5b shows, the average delay of 
executing the Evidence function increases with 
the increase of committee size.

Conclusion
Aiming to enhance the security and fairness of 
network slicing, we introduced blockchain to 
propose a network slice management frame-
work with correct billing and SLA guaran-
tee. Our proposed framework consists of the 
slice, audit, and dispute protocols. Our main 
idea is to utilize blockchain’s public and reli-
able storage to audit and compare the usage 
reports from operators and tenants. Besides, 
our scheme relies on network tests to handle 
inconsistency and disputes among operators 
and tenants. However, it is infeasible to directly 
implement the network test through smart con-
tracts due to its relatively high cost. Therefore, 
we proposed the slice committee mechanism to 
handle the inconsistency and dispute for audit 
and dispute protocols. We analyzed the possi-
ble dishonest behaviors to prove security and 
conducted some experiments to show the prac-
ticability of the proposed scheme.
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