
IEEE Communications Magazine • July 2023142 0163-6804/23/$25.00 © 2023 IEEE

Abstract
To provide customized and high-quality net-

work services under limited network resources,
the 5G introduces the network slicing technol-
ogy that divides physical networks into several
logically independent virtual networks, improving
the performance of network utilization. The slice
management should satisfy the chief concerns
of network operators and slice tenants who are
the two most important participants, i.e., slice
allocation for operators and Service Level Agree-
ment (SLA) guarantee for tenants. However, for
slice allocation, traditional centralized schemes
cannot well support multi-operator slicing due to
the lack of trust. And for SLA guarantee, existing
solutions only provide global SLA based on game
theory but cannot handle each dispute between
operators and tenants. To solve the problems, we
propose a blockchain-based network slice man-
agement framework consisting of a slice commit-
tee and three protocols: slice, audit, and dispute.
With the help of the decentralization and reliabil-
ity of blockchain, the proposed scheme achieves
collaborative slice management among multiple
operators with SLA guarantee. Through securi-
ty and performance analysis, we prove that the
proposed scheme can defend against possible
dishonest behaviors of entities in the system, and
is practical in terms of performance.

Introduction
Mobile communication technology has become
a catalyst for social digitization, and future mobile
communications are supposed to meet diverse
communications needs simultaneously. For exam-
ple, one business customer may require highly
reliable services, while another may require
high-bandwidth communication or extremely
low latency [1]. The 5G technology aims to pro-
vide different mixing capabilities simultaneously
to meet such diverse needs. Therefore, 5G intro-
duces network slicing to divide a shared physical
network infrastructure into multiple logical net-
works that could be used independently by dif-
ferent users [2, 3]. Such a design allows network
customers to customize network slices according
to their demands while enabling network oper-
ators to maximize the utilization rate of network
resources [4].

Network slicing has two fundamental partici-
pants: network operators and slice tenants. Oper-
ators are resource providers that divide physical
network infrastructure into virtual slices, and ten-
ants are network customers of slices and should
pay the operators. To enable network slicing, the
slice management module is indispensable for
collecting and matching resources and demands,
monitoring slice status, guaranteeing Service Level
Agreement (SLA), and charging tenants. For this
purpose, Samdanis et al. [5] proposed the slice bro-
ker that acts as the management module. Howev-
er, this kind of centralized management framework
cannot sufficiently support multi-operator scenarios
and is also prone to a single point of failure.

With the emergence of blockchain appli-
cations, researchers have introduced blockchain
into network slicing. Blockchain plays a vital role
in guaranteeing the fairness of slice orchestration
and SLA. The decentralized consensus establishes
trust among operators and achieves collaborative
slice management, and the capacity to lock assets
and reliable execution of smart contracts solve the
“who-pay-first” contradiction between operators
and tenants. Besides, the tamper-resistant storage of
blockchain also provides an effective tool for audit
and arbitration, providing fundamental conditions
for correct billing and SLA guarantee. In the exist-
ing blockchain-based slice management schemes,
blockchain-based orchestration [6–8] have been
thoroughly discussed. Also, game theory has been
utilized to enable global SLA guarantee [9, 10].

However, the issues of billing correctness and
single SLA dispute remain unsolved. Specifical-
ly, existing billing schemes rely on usage reports
from operators or tenants for charging without
considering dishonest participants who may
provide false reports. Besides, some game the-
ory-based schemes only guarantee SLA from a
holistic perspective but cannot handle every dis-
pute between operators and tenants. To solve the
problems, we propose to collect usage reports
from both operators and tenants and then auto-
matically audit their consistency through the smart
contract. For consistent reports, the contract will
transfer tokens to pay the bill. While for inconsis-
tent reports, we design the slice committee mech-
anism and utilize the end-to-end network test to
check which report is correct. Also, we design a

Xinyi Luo, Kaiping Xue, Jian Li, Ruidong Li, and David S. L. Wei

Xinyi Luo, Kaiping Xue (corresponding author), and Jian Li are with the University of Science and Technology of China, China; Ruidong Li is
with Kanazawa University, Japan; David S. L. Wei is with Fordham University, USA.

Digital Object Identifier:
10.1109/MCOM.001.2200665

Make Rental Reliable: Blockchain-Based
Network Slice Management Framework

with SLA Guarantee

MOBILE COMMUNICATIONS AND NETWORKS

The authors propose a block-
chain-based network slice man-
agement framework consisting of
a slice committee and three proto-
cols: slice, audit, and dispute.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:19:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2023 143

dispute protocol for tenants to claim dissatisfac-
tion with the service quality.

To summarize, we propose a secure and fair
network slice management framework based on
blockchain that provides correct billing and SLA
guarantee. To further enhance the performance
and security of our proposed framework, we
introduce the Merkle hash tree (MHT) and ver-
ifiable random function technology. We prove
the security and effectiveness of the proposed
slice management framework by analyzing the
possible dishonest behaviors in the system and
prototyping the proposed framework for perfor-
mance analysis.

The rest of our article is organized as below:
we introduce existing schemes related to net-
work slice management, and provide basic
backgrounds. We detail the proposed slice man-
agement framework. We discuss the security and
performance of the proposed scheme. Finally, we
conclude the article.

relAted work
For network slicing management, Samdanis et al.
[5] introduced the broker that collects resourc-
es from operators and assigns them to tenants
according to their demands. Based on this archi-
tecture, Rost et al. [11] proposed a hybrid archi-
tecture that enables the coexistence of dedicated
and shared slices to implement different objec-
tive functions dynamically, maximizing spectral
efficiency. Ksentini et al. [12] proposed another
framework based on eDECOR and introduced a
two-level scheduler for radio resource allocation.
These schemes perform well in single-operator
scenarios. However, with further development, a
network slice is supposed to consist of resourc-
es from multiple operators and those centralized
broker-based schemes cannot provide solid trust
among operators.

To solve the problem, researchers introduced
blockchain to establish decentralized network
slice management architecture for the multi-op-
erator demand. Togou et al. [6] proposed a basic
blockchain-based architecture called DBNS that
utilizes smart contracts to execute the pre-estab-
lished bidding-based allocation strategy. Subse-
quent studies improve performance and security
in various aspects. For instance, Hewa et al. [7]
proposed SNSB that optimizes the slice orches-
tration strategy to guarantee SLA based on the
Stackelberg game model. Reference [8] adopts
the DAG algorithm for selecting the optimal
slice and proposes several security mechanisms,
including authentication and handover. Reference
[9] designs a fair incentive mechanism for slice
trading. Considering the public characteristic of
blockchain, He et al. [10] proposed NetChain that
protects privacy by combining blockchain with a
trusted execution environment (TEE). References
[9] and [10] also adopt game theory to design
incentive mechanisms for SLA guarantee. How-
ever, they only realize a long-term and global SLA
but cannot handle each dispute between an oper-
ator and a tenant. For a single dispute, Zhou et al.
[13] proposed a blockchain-based witness model
to handle SLA disputes of cloud service. Zhou’s
scheme utilizes the smart contract to randomly
select a group of witnesses to verify the current
service level to handle users’ disputes. Howev-

er, this scheme relies on users’ initiative and can-
not provide automatic SLA audits. To solve those
problems, we propose a blockchain-based net-
work slicing framework that enables both auto-
matic audit and user dispute of SLA, guaranteeing
fairness and effi ciency.

PrelIMInArIes
This section introduces two critical technologies
of our work, i.e., the concept of 5G network slic-
ing and smart contract.

5g network slIcIng
3GPP defines the network slicing technolo-
gy that enables operators to create virtual net-
works and customize them to provide optimized
solutions for different communication scenarios
with diverse needs, such as eMBB, mMTCs, and
URLLC, as Fig. 1 shows. Using cloud computing
and virtualization technology, operators can effi -
ciently orchestrate the shared physical network
resources into logical network slices according to
diff erent demands.

A signifi cant problem that operators are con-
cerned about is slice allocation, i.e., how to divide
network resources will achieve maximum benefi t.
For tenants, one of their biggest concerns might
be the SLA guarantee, i.e., whether the provided
slice can meet the pre-agreed service quality [14].
We can acquire a network slice’s service level
(e.g., latency, throughput, or jitter) through the
end-to-end network test. Besides, correct billing is
a concern for both parties. Our scheme combines
the slice test with smart contracts to provide SLA
guarantees for a network slice.

sMArt contrAct
A smart contract is a computer program deployed
to the blockchain and can be reliably executed
by blockchain miners. Ethereum is the fi rst block-
chain that supports smart contracts, and users can
deploy and invoke contracts by sending transac-
tions to the blockchain network. Miners will col-
lect transactions to execute relevant codes and
upload the results into the blockchain. There are
two important limitations of smart contracts for
our scheme. First, since all the miners should
execute each line of code, some heavy tasks are
improper to be directly implemented through
smart contracts, including the network test in our
scheme. Second, blockchain cannot directly gen-
erate random numbers due to the lack of external
information. Our design of the slice committee
and adoption of the verifiable random function
(VRF) are to solve these issues.

FIGURE 1. The overall architecture of 5G network slicing.

2

proposed framework for performance analysis.
The rest of our paper is organized as below: Section II intro-

duces existing schemes related to network slice management,
and Section III provides basic backgrounds. Section IV details
the proposed slice management framework. Section V discuss
the security and performance of the proposed scheme. Finally,
Section VI concludes the paper.

II. RELATED WORK

For network slicing management, Samdanis et al. [5]
introduced the broker that collects resources from operators
and assigns them to tenants according to their demands.
Based on this architecture, Rost et al. [11] proposed a
hybrid architecture that enables the coexistence of dedicated
and shared slices to implement different objective functions
dynamically, maximizing spectral efficiency. Ksentini et al.
[12] proposed another framework based on eDECOR and
introduced a two-level scheduler for radio resource allocation.
These schemes perform well in single-operator scenarios.
However, with further development, a network slice is
supposed to consist of resources from multiple operators and
those centralized broker-based schemes cannot provide solid
trust among operators.

To solve the problem, researchers introduced blockchain to
establish decentralized network slice management architecture
for the multi-operator demand. Togou et al. [6] proposed a
basic blockchain-based architecture called DBNS that utilizes
smart contracts to execute the pre-established bidding-based
allocation strategy. Subsequent studies improve performance
and security in various aspects. For instance, Hewa et al.
[7] proposed SNSB that optimizes the slice orchestration
strategy to guarantee SLA based on the Stackelberg game
model. [8] adopts the DAG algorithm for selecting the
optimal slice and proposes several security mechanisms,
including authentication and handover. [9] designs a fair
incentive mechanism for slice trading. Considering the public
characteristic of blockchain, He et al. [10] proposed NetChain
that protects privacy by combining blockchain with a trusted
execution environment (TEE). [9] and [10] also adopt game
theory to design incentive mechanisms for SLA guarantee.
However, they only realize a long-term and global SLA but
cannot handle each dispute between an operator and a tenant.
For a single dispute, Zhou et al. [13] proposed a blockchain-
based witness model to handle SLA disputes of cloud service.
Zhou’s scheme utilizes the smart contract to randomly select a
group of witnesses to verify the current service level to handle
users’ disputes. However, this scheme relies on users’ initiative
and cannot provide automatic SLA audits. To solve those
problems, we propose a blockchain-based network slicing
framework that enables both automatic audit and user dispute
of SLA, guaranteeing fairness and efficiency.

III. PRELIMINARIES

This section introduces two critical technologies of our
work, i.e., the concept of 5G network slicing and smart
contract.

A. 5G Network Slicing

3GPP defines the network slicing technology that enables
operators to create virtual networks and customize them
to provide optimized solutions for different communication
scenarios with diverse needs, such as eMBB, mMTCs, and
URLLC, as Fig. 1 shows. Using cloud computing and
virtualization technology, operators can efficiently orchestrate
the shared physical network resources into logical network
slices according to different demands.

eMBB slices

mMTCs slices

URLLC slices

enhanced mobile broadband

massive machine-type communications

ultra-reliable low-latency comminications

Network
Resource

Slice
Allocation

SLA
Guarantee

film & TV

live & meeting

network layer management layer application layer

network
operators

slice
managers

network
tenants

Fig. 1. The overall architecture of 5G network slicing.

A significant problem that operators are concerned about
is slice allocation, i.e., how to divide network resources will
achieve maximum benefit. For tenants, one of their biggest
concerns might be the SLA guarantee, i.e., whether the
provided slice can meet the pre-agreed service quality [14].
We can acquire a network slice’s service level (e.g., latency,
throughput, or jitter) through the end-to-end network test.
Besides, correct billing is a concern for both parties. Our
scheme combines the slice test with smart contracts to provide
SLA guarantees for a network slice.

B. Smart Contract

A smart contract is a computer program deployed to
the blockchain and can be reliably executed by blockchain
miners. Ethereum is the first blockchain that supports smart
contracts, and users can deploy and invoke contracts by
sending transactions to the blockchain network. Miners will
collect transactions to execute relevant codes and upload the
results into the blockchain. There are two important limitations
of smart contracts for our scheme. First, since all the miners
should execute each line of code, some heavy tasks are
improper to be directly implemented through smart contracts,
including the network test in our scheme. Second, blockchain
cannot directly generate random numbers due to the lack of
external information. Our design of the slice committee and
adoption of the verifiable random function (VRF) are to solve
these issues.

IV. PROPOSED SLICE MANAGEMENT FRAMEWORK

In this section, we first introduce the system model and
security assumptions (IV-A) and then provide an overview of
our design (IV-B). Subsequently, we explain our design of
the slice committee (IV-C) and the three slice management
protocols (IV-D).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:19:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2023144

ProPosed slIce MAnAgeMent frAMework
In this section, we first introduce the system
model and security assumptions and then pro-
vide an overview of our design. Subsequently, we
explain our design of the slice committee and the
three slice management protocols.

systeM Model And securIty AssuMPtIons
The proposed slice management framework con-
sists of one slice committee and three slice man-
agement protocols, i.e., slice, audit, and dispute.
Together, they provide a reliable slice management
framework that enables correct billing and SLA guar-
antee. As shown in Fig. 2, the framework is imple-
mented through four contracts, i.e., slice contract,
audit contract, dispute contract, and slice commit-
tee contract, and details will be given later. Besides,
there are three entities in the system, i.e., network
operators, slice tenants, and slice managers.
• Network operators provide physical network

resources and transfer resources to network
slices to server slice tenants. They publish
the resource information through the slice
contract and provide slices according to the
slice orchestration result.

• Slice tenants publish their requests to the
blockchain by invoking the slice contract
and wait for appropriate choices. Then, they
might rent one or more slices as needed and
pay the operators regularly.

• Slice managers are blockchain miners who
undertake the slice management duty by
executing the management contracts. The
contracts are not required to be deployed
on public blockchains. Instead, network
operators and tenants with strong abilities
can establish their own consortium block-
chain for slice management. There are many
options for the underlying blockchain, e.g.,
proof of Work (PoW) Ethereum, proof of
Stake (PoS) Ethereum, or Hyperledger Fab-
ric, and slice managers may determine a
choice after a careful consideration.
We separately consider the security of slice

service and the management framework. For the
slice service, we mainly concentrate on two prob-
lems: dishonest operators and “dine-and-dash”
tenants. Specifically, a dishonest operator may
provide unqualified slices that do not meet the
agreed service level. And a “dine-and-dash” tenant
may refuse to pay usage fees to operators after
using the slice. And for the management frame-

work, the slice managers are blockchain miners,
most of whom are honest. However, some might
try to deceive others for their own benefits. For
example, some dishonest operator miners may
collude to provide false audit (the audit protocol),
resulting in charging more fees from tenants.

oVerVIew of the ProPosed solutIon
We utilize the blockchain to propose a secure
and fair network slice management framework
that provides correct billing and SLA guarantee.
Our main idea is to periodically collect usage
reports from operators and tenants and then audit
them by checking whether they are consistent.
A consistent result means the usage report is
correct, and the bill can be directly performed
according to it. If not consistent, it means one of
them is cheating, and we should determine which
is valid through off -chain methods, e.g., checking
the current slice condition through a pre-defi ned
test interface. However, in some cases, the above
audit process might lag and cannot prompt-
ly determine if there is a quality decline. For
instance, the report uploading period is relatively
long. Therefore, we propose a way for tenants to
claim the quality descent proactively.

For the above purpose, we design three pro-
tocols: slice, audit, and dispute. The slice proto-
col collects network resources and slice requests
and runs the orchestration algorithm for matching
resources and requests. It also maintains usage
reports uploaded by operators and tenants for
audit. The audit protocol checks the consisten-
cy of reports from operators and tenants and
charges the tenants if consistent. If not, it will
check the current service condition of the slice
through the provided test interface to determine
which one is correct for billing. Moreover, the
dispute protocol is used for tenants to proactively
claim the quality decline of a slice. The protocols
are mainly implemented by smart contracts. How-
ever, considering the expensive cost to invoke
the test interface and the smart contract requiring
all the miners to execute each line of code, it is
impractical to execute all the protocols through
contracts directly. Therefore, we design the slice
committee for executing network tests, reducing
the cost of slice management signifi cantly.

slIce coMMIttee
We can implement the protocols through smart
contracts directly; however, the audit and dispute
protocols require executors to test slice quality
through network tests. As a result, direct imple-
mentation through smart contracts will cause pro-
hibitive costs. To solve the problem, we propose
the slice committee to perform the network test.
For convenience, we divide time into slots, and
a fixed amount of slots form an epoch. A slice
committee is a group of miners randomly selected
from all the miners, and a particular one acts as
the leader (also chosen randomly). Since on-chain
random generation is a challenge, we adopt the
Chainlink verifiable random function (VRF) [15]
technology which is particularly designed as a
smart contract random generator. We can call the
Chainlink VRF to acquire a secure random num-
ber in any contract to support the subsequent
function. The leader is responsible for invoking
contracts when needed, as smart contracts can-

FIGURE 2. System model of the proposed slice management framework.

3

A. System Model and Security Assumptions

The proposed slice management framework consists of one
slice committee and three slice management protocols, i.e.,
slice, audit, and dispute. Together, they provide a reliable slice
management framework that enables correct billing and SLA
guarantee. As shown in Fig. 2, the framework is implemented
through four contracts, i.e., slice contract, audit contract,
dispute contract, and slice committee contract, and details will
be given later. Besides, there are three entities in the system,
i.e., network operators, slice tenants, and slice managers.

• Network operators provide physical network resources
and transfer resources to network slices to server slice
tenants. They publish the resource information through
the slice contract and provide slices according to the slice
orchestration result.

• Slice tenants publish their requests to the blockchain
by invoking the slice contract and wait for appropriate
choices. Then, they might rent one or more slices as
needed and pay the operators regularly.

• Slice managers are blockchain miners who undertake the
slice management duty by executing the management
contracts. The contracts are not required to be deployed
on public blockchains. Instead, network operators and
tenants with strong abilities can establish their own
consortium blockchain for slice management. There are
many options for the underlying blockchain, e.g., proof of
Work (PoW) Ethereum, proof of Stake (PoS) Ethereum,
or Hyperledger Fabric, and slice managers may determine
a choice after a careful consideration.

We separately consider the security of slice service and
the management framework. For the slice service, we mainly
concentrate on two problems: dishonest operators and “dine-
and-dash” tenants. Specifically, a dishonest operator may
provide unqualified slices that do not meet the agreed service
level. And a “dine-and-dash” tenant may refuse to pay usage
fees to operators after using the slice. And for the management
framework, the slice managers are blockchain miners, most
of whom are honest. However, some might try to deceive
others for their own benefits. For example, some dishonest
operator miners may collude to provide false audit (the audit
protocol, see Section IV-D), resulting in charging more fees
from tenants.

B. Overview of the Proposed Solution

We utilize the blockchain to propose a secure and fair
network slice management framework that provides correct
billing and SLA guarantee. Our main idea is to periodically
collect usage reports from operators and tenants and then audit
them by checking whether they are consistent. A consistent
result means the usage report is correct, and the bill can
be directly performed according to it. If not consistent, it
means one of them is cheating, and we should determine
which is valid through off-chain methods, e.g., checking the
current slice condition through a pre-defined test interface.
However, in some cases, the above audit process might lag
and cannot promptly determine if there is a quality decline.
For instance, the report uploading period is relatively long.

Therefore, we propose a way for tenants to claim the quality
descent proactively.

Audit Dispute

Request

ChargeOrchestration

Evidence

Report
Audit

Billing

Evidence

Dispute

VRFSelection()

slice tenantsnetwork operators

Report

slice
managers

Resouce

eMBB slices

mMTCs slices

URLLC slices
network

test
network

Slice Committee

Audit

Slice Management Protocols

Orchestration
Slice

Fig. 2. System model of the proposed slice management framework.

For the above purpose, we design three protocols: slice,
audit, and dispute. The slice protocol collects network
resources and slice requests and runs the orchestration
algorithm for matching resources and requests. It also
maintains usage reports uploaded by operators and tenants
for audit. The audit protocol checks the consistency of
reports from operators and tenants and charges the tenants
if consistent. If not, it will check the current service condition
of the slice through the provided test interface to determine
which one is correct for billing. Moreover, the dispute protocol
is used for tenants to proactively claim the quality decline
of a slice. The protocols are mainly implemented by smart
contracts. However, considering the expensive cost to invoke
the test interface and the smart contract requiring all the miners
to execute each line of code, it is impractical to execute all
the protocols through contracts directly. Therefore, we design
the slice committee for executing network tests, reducing the
cost of slice management significantly.

C. Slice Committee

We can implement the protocols through smart contracts
directly; however, the audit and dispute protocols require
executors to test slice quality through network tests. As a
result, direct implementation through smart contracts will
cause prohibitive costs. To solve the problem, we propose the
slice committee to perform the network test. For convenience,
we divide time into slots, and a fixed amount of slots form
an epoch. A slice committee is a group of miners randomly
selected from all the miners, and a particular one acts as
the leader (also chosen randomly). Since on-chain random
generation is a challenge (see Section III-B), we adopt the
Chainlink verifiable random function (VRF) [15] technology
which is particularly designed as a smart contract random
generator. We can call the Chainlink VRF to acquire a secure
random number in any contract to support the subsequent
function. The leader is responsible for invoking contracts when
needed, as smart contracts cannot automatically start without
invocation. Based on the slice committee, only miners in the
committee will invoke the test interface for network tests, and
other miners will verify whether the result is provided by valid
committee members. Other miners will accept it only when

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:19:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2023 145

not automatically start without invocation. Based
on the slice committee, only miners in the com-
mittee will invoke the test interface for network
tests, and other miners will verify whether the
result is provided by valid committee members.
Other miners will accept it only when more than
2/3 committee members give the same test result,
which will be proved to be secure later.

Specifically, the management framework con-
sists of four smart contracts: committee contract,
slice contract, audit contract, and dispute contract.
The first one is used to select the slice committee,
and the latter three are used to implement the
slice, audit, and dispute protocols, respectively.
During each epoch, the current leader invokes the
audit contract for auditing and charging at each
slot. Furthermore, at the last slot, the leader invokes
the committee contract to select the committee
and leader for the next epoch. The details of the
three protocol contracts will be introduced later.
Besides, in case the leader does not invoke the
contracts as requested, an inactive leader will be
punished according to the pre-determined rules,
e.g., be banned from the committee or even from
making profits by providing resources for a while.

Slice Management Protocols
The proposed architecture consists of three slice
management protocols: slice, audit, and dispute.
Among them, slice protocol undertakes slice allo-
cation, and audit and dispute protocols are for
SLA guarantee. Roughly speaking, audit protocol
is executed by slice managers to monitor slice
quality, and dispute protocol is invoked by tenants
who found that the slice’s quality has decreased.

Protocol: Slice. The slice protocol is respon-
sible for slice orchestration and is imple-
mented by the slice contract consists of five
functions: Resource, Request, Orchestra-
tion, Report, and Charge. The former three
are for slice allocation: operators and tenants sep-
arately invoke the Resouce and Request func-
tions to upload the network resources and slice
demands information. Then the Request func-
tion invokes Orchestration to divide available
resources into needed slices.
•	 Resource. When an operator wants to join

the system or change information, it invokes
the Resouce function to upload its resource
and other information. Then, the current
slice committee validates and determines
whether to allow the operator to join. If suc-
cessfully joined, the corresponding resource
will be recorded in the resource object for
the following slice orchestration.

•	 Request . A tenant can request slices by
invoking the Request function to provide
his/her request and a certain amount of
deposit. The Request function will auto-
matically invoke the Orchestration func-
tion for matching requests and resources.
Besides, the tenant should lock some depos-
it into the slice contract for the following
charging and can also withdraw the redun-
dant deposit later.

•	 Orchestration. This function runs opti-
mization algorithms to appropriately match
resources and requests according to several
factors to maximize the effectiveness of the
network slicing. There are lots of studies that

propose excellent orchestration algorithms.
For instance, [10] proposes a bilateral evalu-
ation mechanism for slice orchestration.
The Report and Charge functions are used

for billing. Operators and tenants invoke Report to
upload usage reports periodically. Then slice manag-
ers audit the reports and charge tenants according
to the audit result through the Charge function.
•	 Report. Operators and tenants invoke the
Report function to upload the usage report
of slices periodically. The reports are used for
billing and auditing in the audit protocol. For
lightening the on-chain payload, blockchain
miners compress reports into two Merkle
hash trees and only store the tree roots in the
contract. A Merkle hash tree is a binary tree
that takes the hash of reports as leaf nodes,
and the hash of every two adjacent nodes is
their parent. It is often used to check the con-
sistency of two data sets quickly.

•	 Charge. The Charge function is automati-
cally invoked by the audit contract to charge
tenants by transferring the required assets
from the deposit locked by the tenant to the
operator’s address. When the balance is insuf-
ficient, the operator will suspend the slice ser-
vice until the tenant replenishes the deposit or
terminate the service after waiting a long time.
Protocol: Audit. The audit protocol supervises

slice quality and processes billing and is imple-
mented by the audit contract. At each slot, the
leader invokes the ReportAudit function to
audit the usage reports uploaded during the last
slot. The ReportAudit function first compares
whether the usage reports uploaded by opera-
tors and tenants are consistent. If consistent, it
will invoke the Billing function to charge the
tenant according to the usage report. If not con-
sistent, it should invoke the Evidence function
to check which report is true.
•	 ReportAudit . This function checks two

usage report sets in the form of MHT that are
provided by operators and tenants separate-
ly. It compares their consistency and invokes
Billing or Evidence contract as needed.

•	 Billing. Given a set of usage reports, the
Billing function invokes the Charge
function to transfer tenants’ deposits to oper-
ators according to each usage report.

•	 Evidence. The Evidence function handles
inconsistent usage reports. When members
of the slice committee find the invocation of
Evidence, they conduct off-chain investiga-
tions (e.g., checking the current service qual-
ity from end-to-end network test) to check
which report is correct and upload the result
to the contract. When receiving the same
result from 2/3 members, the correspond-
ing report will be regarded as correct (and
become the input of the Charge function).
Protocol: Dispute. The dispute protocol is

designed for tenants to claim that a slice does not
satisfy the negotiated SLA. For some slices, the
report uploading period may be set to a relatively
long time, and the audit protocol cannot timely
discover the quality decline of slices. Therefore,
the dispute protocol acts as a supplement to the
SLA guarantee. The dispute protocol is imple-
mented in the dispute contract that consists of
two functions: Dispute and Evidence. The

During each epoch, the
current leader invokes the
audit contract for auditing
and charging at each slot.

Furthermore, at the last
slot, the leader invokes the

committee contract to select
the committee and leader for

the next epoch.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:19:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2023146

former is invoked by a tenant to provide the iden-
tity of the objective slice. Then it automatically
invokes the latter to handle the dispute, and the
process is the same as in the audit contract.

Security and Performance Analysis

Security Analysis
Assertion: A dishonest tenant may try to

underpay for the slice but cannot succeed in our
proposed framework.

Proof: On the one hand, a tenant could inter-
fere with billing by lying about the usage report,
for example, lowering the service level in the
report. On the other hand, a common charge
mode is use-then-pay, i.e., for each charge epoch,
the tenant pays for the service at the end of the
epoch; thus, a dishonest tenant may leave without
paying the fee of the last epoch. In our proposed
framework, the audit and slice protocols solve the
two problems, respectively. By adopting Repor-
tAudit to compare the usage reports upload-
ed by operators and tenants, slice managers can
find a lying tenant or operator when inconsis-
tency appears. Besides, tenants are required to
lock enough deposit into the slice contract when
requesting slices, and the Charge function will
automatically charge tenants from the deposit.
According to the reliability of blockchain smart
contracts, tenants cannot succeed in defaulting
on payments. 

Assertion: A dishonest operator may try to
charge tenants more than they should or lower
the service level of slices in use, but cannot suc-
ceed in our proposed framework.

Proof: Similar to tenants, a dishonest oper-
ator may try to charge tenants more than they
should pay by providing forged usage reports,
and this kind of misconduct can be detected and
handled by the audit protocol in our framework.
Besides, a dishonest operator may also lower the
service level of slices to save cost or to spare
network resources to create more slices, violat-
ing the SLA. This problem is solved by the audit
and dispute protocol. A violation of SLA can be
detected when the audit protocol finds an incon-
sistency of usage reports or a tenant executes
the dispute protocol to proactively claim the
decrease in service level. In conclusion, by com-
bining audit and dispute protocol, SLA is strongly
guaranteed. 

Assertion: A dishonest miner may try to pro-
vide false test results to disturb the reliable exe-
cution of the management protocols but cannot
succeed in our proposed framework.

Proof: In our proposed framework, a group
of miners is randomly selected to form the slice
committee that executes the slice management
protocols. Other miners are ordinary blockchain
miners that obey the blockchain consensus.
Since the underlying blockchain is considered
secure, we can ignore ordinary miners and con-
centrate on the security of the slice commit-
tee. For simplicity, we assume that half of the
miners are operators and others are tenants.
And intuitively, dishonest operator miners tend
to favor operators during the audit and tenant
miners are on the contrary. Suppose there are
a total of N = 1000 miners in the system and
bN are dishonest, and the committee consists of
aN miners. Only when the committee includes
more than 2/3aN dishonest tenant-miners or
operator-miners will the system accept a wrong
test result, and the probability is shown in Fig.
3. According to the result, the system might
accept a false test result when a < 0.04 and b
> 0.2. And for other settings, the probability will
stay at a tiny value close to 0, which is negligi-
ble in practice. 

Performance Analysis
To evaluate the performance of the proposed
scheme, we implement slice management con-
tracts through Ethereum Solidity. We mainly con-
centrate on the report check and network test.
For report check, to explore the effect of adopt-
ing MHT, we also implement a report check func-
tion in the slice contract based on the hash list
and compare their runtime. Furthermore, for the
network test, we simulate 500 miners and 10,000
tenants randomly distributed in a specific area
and estimate the test latency.

The result of the report check is shown in Fig.
4. We set the proportion of inconsistent reports
as 0.1 percent, 0.5 percent, and 1 percent, and
the total number of reports as 215, 220, 225, 230.
Then we analyze the time of hash check for con-
ducting a report check. As Fig. 4 shows, when
the report size increases, the check cost of the
hash list method grows sharply while the MHT-
based method performs much better. When the

FIGURE 3. Probability that the system accepts a wrong test result with different a and b.

5

V. SECURITY AND PERFORMANCE ANALYSIS

A. Security Analysis

Assertion: A dishonest tenant may try to underpay for the
slice but cannot succeed in our proposed framework.

Proof: On the one hand, a tenant could interfere with billing
by lying about the usage report, for example, lowering the
service level in the report. On the other hand, a common
charge mode is use-then-pay, i.e., for each charge epoch,
the tenant pays for the service at the end of the epoch;
thus, a dishonest tenant may leave without paying the fee
of the last epoch. In our proposed framework, the audit
and slice protocols solve the two problems, respectively. By
adopting ReportAudit to compare the usage reports uploaded
by operators and tenants, slice managers can find a lying tenant
or operator when inconsistency appears. Besides, tenants are
required to lock enough deposit into the slice contract when
requesting slices, and the Charge function will automatically
charge tenants from the deposit. According to the reliability
of blockchain smart contracts, tenants cannot succeed in
defaulting on payments.

Assertion: A dishonest operator may try to charge tenants
more than they should or lower the service level of slices in
use, but cannot succeed in our proposed framework.

Proof: Similar to tenants, a dishonest operator may try to
charge tenants more than they should pay by providing forged
usage reports, and this kind of misconduct can be detected
and handled by the audit protocol in our framework. Besides,
a dishonest operator may also lower the service level of slices
to save cost or to spare network resources to create more slices,
violating the SLA. This problem is solved by the audit and
dispute protocol. A violation of SLA can be detected when
the audit protocol finds an inconsistency of usage reports or
a tenant executes the dispute protocol to proactively claim the
decrease in service level. In conclusion, by combining audit
and dispute protocol, SLA is strongly guaranteed.

Assertion: A dishonest miner may try to provide false test
results to disturb the reliable execution of the management
protocols but cannot succeed in our proposed framework.

Fig. 3. Probability that the system accepts a wrong test result with different
α and β.

Proof: In our proposed framework, a group of miners is
randomly selected to form the slice committee that executes

the slice management protocols. Other miners are ordinary
blockchain miners that obey the blockchain consensus. Since
the underlying blockchain is considered secure, we can ignore
ordinary miners and concentrate on the security of the slice
committee. For simplicity, we assume that half of the miners
are operators and others are tenants. And intuitively, dishonest
operator miners tend to favor operators during the audit and
tenant miners are on the contrary. Suppose there are a total
of N = 1000 miners in the system and βN are dishonest,
and the committee consists of αN miners. Only when the
committee includes more than 2

3αN dishonest tenant-miners
or operator-miners will the system accept a wrong test result,
and the probability is shown in Fig. 3. According to the result,
the system might accept a false test result when α < 0.04 and
β > 0.2. And for other settings, the probability will stay at a
tiny value close to 0, which is negligible in practice.

B. Performance Analysis

To evaluate the performance of the proposed scheme,
we implement slice management contracts through Ethereum
Solidity. We mainly concentrate on the report check and
network test. For report check, to explore the effect of adopting
MHT, we also implement a report check function in the slice
contract based on the hash list and compare their runtime.
Furthermore, for the network test, we simulate 500 miners
and 10, 000 tenants randomly distributed in a specific area
and estimate the test latency.

The result of the report check is shown in Fig. 4. We set
the proportion of inconsistent reports as 0.1%, 0.5%, and 1%,
and the total number of reports as 215, 220, 225, 230. Then we
analyze the time of hash check for conducting a report check.
As Fig. 4 shows, when the report size increases, the check
cost of the hash list method grows sharply while the MHT-
based method performs much better. When the report size
reaches 230, the hash list-based method should conduct 109

hash checks, while the MHT-based method needs only around
106. The less the inconsistency proportion, the more optimized
the MHT method is compared to the hash list method. When
there are 0.1% inconsistent reports, the cost of the MHT-based
method is around 5% of the hash list method, proving the
effectiveness of adopting MHT for the report check.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

200

400

600

800

1000

1200

15 20 25 30

M
H

T
to

 h
as

h
lis

t r
at

io

tim
e

of
 h

as
h

ch
ec

ki
ng

 /1
06

log of the number of reports

(0.1%, MHT) (0.1%, hash list) (0.5%, MHT)
(0.5%, hash list) (1%, MHT) (1%, hash list)
(0.1%, ratio) (0.5%, ratio) (1%, ratio)

Fig. 4. A comparison between MHT-based and hash list-based report check.

To evaluate the performance of the network test, we simulate
500 miners and 10, 000 tenants randomly distributed in a

FIGURE 4. A comparison between MHT-based and hash list-based report check.

5

V. SECURITY AND PERFORMANCE ANALYSIS

A. Security Analysis

Assertion: A dishonest tenant may try to underpay for the
slice but cannot succeed in our proposed framework.

Proof: On the one hand, a tenant could interfere with billing
by lying about the usage report, for example, lowering the
service level in the report. On the other hand, a common
charge mode is use-then-pay, i.e., for each charge epoch,
the tenant pays for the service at the end of the epoch;
thus, a dishonest tenant may leave without paying the fee
of the last epoch. In our proposed framework, the audit
and slice protocols solve the two problems, respectively. By
adopting ReportAudit to compare the usage reports uploaded
by operators and tenants, slice managers can find a lying tenant
or operator when inconsistency appears. Besides, tenants are
required to lock enough deposit into the slice contract when
requesting slices, and the Charge function will automatically
charge tenants from the deposit. According to the reliability
of blockchain smart contracts, tenants cannot succeed in
defaulting on payments.

Assertion: A dishonest operator may try to charge tenants
more than they should or lower the service level of slices in
use, but cannot succeed in our proposed framework.

Proof: Similar to tenants, a dishonest operator may try to
charge tenants more than they should pay by providing forged
usage reports, and this kind of misconduct can be detected
and handled by the audit protocol in our framework. Besides,
a dishonest operator may also lower the service level of slices
to save cost or to spare network resources to create more slices,
violating the SLA. This problem is solved by the audit and
dispute protocol. A violation of SLA can be detected when
the audit protocol finds an inconsistency of usage reports or
a tenant executes the dispute protocol to proactively claim the
decrease in service level. In conclusion, by combining audit
and dispute protocol, SLA is strongly guaranteed.

Assertion: A dishonest miner may try to provide false test
results to disturb the reliable execution of the management
protocols but cannot succeed in our proposed framework.

Fig. 3. Probability that the system accepts a wrong test result with different
α and β.

Proof: In our proposed framework, a group of miners is
randomly selected to form the slice committee that executes

the slice management protocols. Other miners are ordinary
blockchain miners that obey the blockchain consensus. Since
the underlying blockchain is considered secure, we can ignore
ordinary miners and concentrate on the security of the slice
committee. For simplicity, we assume that half of the miners
are operators and others are tenants. And intuitively, dishonest
operator miners tend to favor operators during the audit and
tenant miners are on the contrary. Suppose there are a total
of N = 1000 miners in the system and βN are dishonest,
and the committee consists of αN miners. Only when the
committee includes more than 2

3αN dishonest tenant-miners
or operator-miners will the system accept a wrong test result,
and the probability is shown in Fig. 3. According to the result,
the system might accept a false test result when α < 0.04 and
β > 0.2. And for other settings, the probability will stay at a
tiny value close to 0, which is negligible in practice.

B. Performance Analysis

To evaluate the performance of the proposed scheme,
we implement slice management contracts through Ethereum
Solidity. We mainly concentrate on the report check and
network test. For report check, to explore the effect of adopting
MHT, we also implement a report check function in the slice
contract based on the hash list and compare their runtime.
Furthermore, for the network test, we simulate 500 miners
and 10, 000 tenants randomly distributed in a specific area
and estimate the test latency.

The result of the report check is shown in Fig. 4. We set
the proportion of inconsistent reports as 0.1%, 0.5%, and 1%,
and the total number of reports as 215, 220, 225, 230. Then we
analyze the time of hash check for conducting a report check.
As Fig. 4 shows, when the report size increases, the check
cost of the hash list method grows sharply while the MHT-
based method performs much better. When the report size
reaches 230, the hash list-based method should conduct 109

hash checks, while the MHT-based method needs only around
106. The less the inconsistency proportion, the more optimized
the MHT method is compared to the hash list method. When
there are 0.1% inconsistent reports, the cost of the MHT-based
method is around 5% of the hash list method, proving the
effectiveness of adopting MHT for the report check.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

200

400

600

800

1000

1200

15 20 25 30

M
H

T
to

 h
as

h
lis

t r
at

io

tim
e

of
 h

as
h

ch
ec

ki
ng

 /1
06

log of the number of reports

(0.1%, MHT) (0.1%, hash list) (0.5%, MHT)
(0.5%, hash list) (1%, MHT) (1%, hash list)
(0.1%, ratio) (0.5%, ratio) (1%, ratio)

Fig. 4. A comparison between MHT-based and hash list-based report check.

To evaluate the performance of the network test, we simulate
500 miners and 10, 000 tenants randomly distributed in a

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:19:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2023 147

report size reaches 230, the hash list-based meth-
od should conduct 109 hash checks, while the
MHT-based method needs only around 106. The
less the inconsistency proportion, the more opti-
mized the MHT method is compared to the hash
list method. When there are 0.1 percent incon-
sistent reports, the cost of the MHT-based meth-
od is around 5 percent of the hash list method,
proving the effectiveness of adopting MHT for
the report check.

To evaluate the performance of the network
test, we simulate 500 miners and 10,000 tenants
randomly distributed in a specific area. The com-
munication delay is proportional to the distance
and is 100 ms between the two farthest nodes.
The test concurrency of miners is set to 100, i.e.,
a miner could test 100 tenants at the same time.
Then we set the committee size as 50 and test the
average time cost of each miner with the propor-
tion of inconsistency reports from 0.1 percent to
0.5 percent. The result is shown in Fig. 5a. We can
find that the time cost of each miner increases
with the inconsistency proportion increases and is
less than 1 second, which is a relatively small cost
compared to blockchain consensus.

We also fix the proportion as 0.03 and change
the committee size to test the total execution
delay of the Evidence function. The concurren-
cy of tenants is set to 20. The delay consists of
committee members’ testing slice quality, upload-
ing results, and other miners verifying signatures.
The network test delay results from previous
experiments, and the signature verification delay
is represented by the throughput of executing
the Evidence function, which is tested through
Caliper. As Fig. 5b shows, the average delay of
executing the Evidence function increases with
the increase of committee size.

Conclusion
Aiming to enhance the security and fairness of
network slicing, we introduced blockchain to
propose a network slice management frame-
work with correct billing and SLA guaran-
tee. Our proposed framework consists of the
slice, audit, and dispute protocols. Our main
idea is to utilize blockchain’s public and reli-
able storage to audit and compare the usage
reports from operators and tenants. Besides,
our scheme relies on network tests to handle
inconsistency and disputes among operators
and tenants. However, it is infeasible to directly
implement the network test through smart con-
tracts due to its relatively high cost. Therefore,
we proposed the slice committee mechanism to
handle the inconsistency and dispute for audit
and dispute protocols. We analyzed the possi-
ble dishonest behaviors to prove security and
conducted some experiments to show the prac-
ticability of the proposed scheme.

Acknowledgments
This work is supported in part by the Key
Research and Development Program of Anhui
Province under Grant No. 2022a05020050, the
National Natural Science Foundation of China
under Grant No. 61972371, and Youth Inno-
vation Promotion Association of the Chinese
Academy of Sciences (CAS) under Grant No.
Y202093.

References
[1] K. Katsalis et al., “Network Slices Toward 5G Communica-

tions: Slicing the LTE Network,” IEEE Commun. Mag., vol. 55,
no. 8, 2017, pp. 146–54.

[2] C. Benzaïd et al., “Trust in 5G and Beyond Networks,” IEEE
Network, vol. 35, no. 3, 2021, pp. 212–22.

[3] —, “AI-Based Autonomic and Scalable Security Management
Architecture for Secure Network Slicing in b5g,” IEEE Net-
work, vol. 36, no. 6, 2022, pp. 165–74.

[4] I. Afolabi et al., “Network Slicing and Softwarization: A Survey
on Principles, Enabling Technologies, and Solutions,” IEEE Com-
mun. Surveys & Tutorials, vol. 20, no. 3, 2018, pp. 2429–53.

[5] K. Samdanis et al., “From Network Sharing to Multi-Tenancy:
The 5G Network Slice Broker,” IEEE Commun. Mag., vol. 54,
no. 7, 2016, pp. 32–39.

[6] M. A. Togou et al., “DBNS: A Distributed Blockchain-Enabled
Network Slicing Framework for 5G Networks,” IEEE Com-
mun. Mag., vol. 58, no. 11, 2020, pp. 90–96.

[7] T. Hewa et al., “Blockchain-Based Network Slice Broker to
Facilitate Factory-As-A-Service,” IEEE Trans. Industrial Infor-
matics, vol. 19, no. 1, 2022, pp. 519–30.

[8] I. H. Abdulqadder et al., “SliceBlock: Context-Aware Authen-
tication Handover and Secure Network Slicing Using
DAG-Blockchain in Edgeassisted SDN/NFV-6G Environment,”
IEEE Internet of Things J., vol. 9, no. 18, 2022, pp. 18,079–97.

[9] G. O. Boateng et al., “Blockchain-Enabled Resource Trading
and Deep Reinforcement Learning-Based Autonomous RAN
slicing in 5G,” IEEE Trans. Network and Service Management,
vol. 19, no. 1, 2021, pp. 216–27.

[10] G. He et al., “NetChain: A Blockchain-Enabled Privacy-Pre-
serving Multidomain Network Slice Orchestration Architec-
ture,” IEEE Trans. Network and Service Management, vol. 19,
no. 1, 2022, pp. 188–202.

[11] P. Rost et al., “Network Slicing to Enable Scalability and
Flexibility in 5G Mobile Networks,” IEEE Commun. Mag., vol.
55, no. 5, 2017, pp. 72–79.

[12] A. Ksentini et al., “Toward Enforcing Network Slicing on
ran: Flexibility and Resources Abstraction,” IEEE Commun.
Mag., vol. 55, no. 6, 2017, pp. 102–08.

[13] H. Zhou et al., “A Blockchain Based Witness Model for
Trustworthy Cloud Service Level Agreement Enforcement,”
Proc. 2019 IEEE Conf. Comp. Commun. (INFOCOM), 2019,
pp. 1567–75.

[14] X. Zhou et al., “Network Slicing as A Service: Enabling
Enterprises’ Own Software-Defined Cellular Networks,” IEEE
Commun. Mag., vol. 54, no. 7, 2016, pp. 146–53.

[15] L. Breidenbach et al., “Chainlink 2.0: Next Steps in the Evo-
lution of Decentralized Oracle Networks;” https://research.
chain.link/whitepaper-v2. pdf, White Paper, accessed on
Sept., 2022.

FIGURE 5. Time cost of the network test and Evidence function in audit
protocol: a) time cost of network test; b) average delay of Evidence.

(a)

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300 350 400 450 500

tim
e

co
st

 (s
)

miners

γ=0.1% γ=0.2% γ=0.3% γ=0.4% γ=0.5%

0

0.5

1

1.5

2

2.5

2% 4% 6% 8% 10% 12% 14%

av
er

ag
e d

el
ay

 o
f E

vi
de

nc
e

(s
)

proportion of miners selected into committee

network test
contract execution

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:19:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • July 2023148

Biographies
Xinyi Luo (lxy0213@mail.ustc.edu.cn) received her B.S. degree
in Information Security from School of the Gifted Young, Uni-
versity of Science and Technology of China (USTC) in July,
2020. She is currently working toward the Ph.D degree in the
School of Cyber Science and Technology, USTC. Her research
interests include Network security and Cryptography.

Kaiping Xue [M’09, SM’15] (kpxue@ustc.edu.cn) received his
bachelor’s degree from the Department of Information Secu-
rity, University of Science and Technology of China (USTC), in
2003 and received his Ph.D. degree from the Department of
Electronic Engineering and Information Science (EEIS), USTC,
in 2007. Currently, he is a Professor in the School of Cyber
Science and Technology, USTC. His research interests include
future Internet architecture design, transmission optimization,
and network security.

Jian Li [M’20] (lijian9@ustc.edu.cn) received his bachelor’s
degree from the Department of Electronics and Information
Engineering, Anhui University, in 2015, and received his Ph.D

degree from the Department of Electronic Engineering and
Information Science (EEIS), University of Science and Technol-
ogy of China (USTC), in 2020. He is currently a research asso-
ciate with the School of Cyber Science and Technology, USTC.
His research interests include future Internet architecture design
and quantum networking.

Rruidong Li [SM’07] (lrd@se.kanazawa-u.ac.jp) received his
bachelor’s degree in engineering from Zhejiang University,
China, in 2001, and received his Ph.D degree from the Univer-
sity of Tsukuba in 2008. Currently, he is an associate professor
in College of Science and Engineering, Kanazawa University,
Japan. His research interests include big data networking, infor-
mation-centric network, network security, and quantum Internet.

David S.l. Wei [SM’07] (wei@cis.fordham.edu) received his
Ph.D. degree in Computer and Information Science from the
University of Pennsylvania in 1991. He is currently a Professor
of Computer and Information Science Department at Fordham
University. His research interests include cloud computing, big
data, and quantum networking.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:19:29 UTC from IEEE Xplore. Restrictions apply.

