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A B S T R A C T

By integrating the traditional power grid with information and communication technology, smart grid achieves
dependable, efficient, and flexible grid data processing. The smart meters deployed on the user side of the smart
grid collect the users' power usage data on a regular basis and upload it to the control center to complete the smart
grid data acquisition. The control center can evaluate the supply and demand of the power grid through aggre-
gated data from users and then dynamically adjust the power supply and price, etc. However, since the grid data
collected from users may disclose the user's electricity usage habits and daily activities, privacy concern has
become a critical issue in smart grid data aggregation. Most of the existing privacy-preserving data collection
schemes for smart grid adopt homomorphic encryption or randomization techniques which are either impractical
because of the high computation overhead or unrealistic for requiring a trusted third party.

In this paper, we propose a privacy-preserving smart grid data aggregation scheme satisfying Local Differential
Privacy (LDP) based on randomized responses. Our scheme can achieve an efficient and practical estimation of
power supply and demand statistics while preserving any individual participant's privacy. Utility analysis shows
that our scheme can estimate the supply and demand of the smart grid. Our approach is also efficient in terms of
computing and communication overhead, according to the results of the performance investigation.
1. Introduction

The smart grid is the next-generation power grid that combines
modern Information and Communication Technology (ICT) to provide
more intelligent services, such as end-to-end connectivity and real-time
data management [1]. Smart meters installed in each home communi-
cate electricity consumption data to the control center regularly in a
smart grid. The control center collects data from smart meters, analyzes it
statistically, and supervises the smart grid's electricity generation,
transmission, and distribution [2–4]. Through the smart grid, the control
center can estimate the power consumption of the grid and formulate a
dynamic pricing strategy.

Despite the promise of the smart grid, the reported data from smart
meters always contain private information from consumers. It is possible
to analyze a user's electricity usage pattern using these data, posing a
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serious threat to his or her privacy [5–7]. For example, a user's daily
routine can be easily inferred from the electricity usage pattern, and
adversaries can analyze whether he/she is at home or not.

Many privacy-preserving data aggregation schemes in the smart grid
have been proposed. For example, homomorphic encryption is
commonly employed in data aggregation to protect data privacy [3,
8–12]. Homomorphic encryption allows entities to convert plaintext
operations into matching ciphertext operations. The smart meters
encrypt the data and send the ciphertext to the aggregator using homo-
morphic encryption, particularly semi-homomorphic encryption such as
the Paillier cryptosystem, which permits additional operations on the
ciphertext. Then the aggregator integrates the ciphertext gathered from
smart meters and decrypts the aggregation result. Homomorphic
encryption-based schemes make it possible to preserve a single user's
data privacy. However, a common issue is that homomorphic encryption
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places a significant computational burden on smart meters, which typi-
cally lack appropriate processing power. Moreover, given the fact that
smart meters submit data periodically and frequently, homomorphic
encryption is not a practical solution for privacy preservation.

Another technique for preserving data privacy in smart grid is to use
data masking [13–16]. In these schemes, submitted power data is pro-
tected by masking values. Usually, there exists an entity distributing a
series of masking values to the smart meters and aggregator. Each smart
meter obfuscates the data with the masking value. Then the aggregator
can obtain the true result by eliminating the masking values. An exem-
plary realization of this technique is through Differential Privacy (DP)
[17,18]. DP[19] is a mathematically rigorous framework for privacy
protection that has been used in a variety of large-scale data aggregation
and processing applications that require privacy protection. Random
noise, such as Laplacian noise, is commonly used to mask data presented
in DP methods. The need for a trusted third party (i.e., a curator) to
distribute the noise value is a common difficulty in these schemes.
However, this assumption is not always feasible. Although some solu-
tions do not require the use of a trusted third party, distributed ap-
proaches usually result in increased user communication overhead.

Local Differential Privacy (LDP) [20–25] has recently gotten a lot of
attention in academia and industry. LDP's main idea is that users perform
local random perturbations on their data. As a result, without relying on a
trusted third party, local differential privacy allows for
privacy-preserving data collection and aggregation. Furthermore, as
compared to techniques that use homomorphic cryptosystems, the
computation overhead is substantially lower. A typical example of LDP
implementation is the RAPPOR [23] developed by Google. RAPPOR
enables the Google browser to collect statistical information from
end-users while providing strong privacy protection. However, most LDP
schemes focus on frequency estimation and distribution estimation and
mainly deal with discrete category data.

We propose a practical and efficient privacy-preserving data aggre-
gation technique for demand estimate, taking into account the need for
data privacy protection and the limited computation capabilities of smart
meters in the smart grid (in numerical values). Data privacy can be
preserved without the use of a trusted third party by including LDP in
data aggregation. When compared to approaches based on encryption
algorithms, the processing overhead for each smart meter is acceptable.
Furthermore, our scheme has built-in support for users’ dynamic joining
and quitting, which comes at a low additional cost. At the same time, we
investigate the non-general scenario, based on the previous conference
version, through which our scheme may meet the more typical situation
of smart grid data aggregation supply and demand estimation. The major
contributions of our scheme are as follows:

● We propose an LDP-based lightweight privacy-preserving data ag-
gregation scheme in the smart grid, in which smart meters can per-
turb their generated data by randomized response locally without
involving a trusted third party, and the scheme can effectively support
users dynamically joining and exiting without involving much extra
overhead.

● To assure the usability of aggregated data, we develop a simple but
effective data discretization algorithm based on the conditional
probability that may reduce the difference between the aggregation
results and the real data aggregation results. In such a way, our
scheme largely increases the statistical accuracy of data aggregation
results. Furthermore, based on the suggested scheme, we analyze
more unique cases in smart grid data aggregation and present a
grouping approach for large-scale data aggregation, allowing our
scheme to handle the majority of smart grid scenarios.

● We implement our proposed scheme on a typical processor and
perform performance and security analysis, which shows that the
proposed solution has less computation and communication overhead
while ensuring utility and privacy protection.
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This paper inherits the basic idea of our conference paper [26], which
received the best track paper in MSN 2020. They differ mainly in the
following aspects: We further consider the scenario of industrial power
consumption data aggregation and analysis, where the data range is
larger. To ensure the utility of aggregation results, we propose the
grouping approach to improve the usefulness of aggregation results, in
which the complete data range is divided into different groups, to ensure
the usability of aggregation results. When the users perturb their data
locally, they first determine which group their data belong to and then
perturb the data in a specific group according to the protocol. Meanwhile,
we implement our extended scheme on a typical processor and analyze
the utility of the extended scheme. We conduct more analysis to further
compare the data aggregation error between the un-grouped and the
grouped cases.

The rest of this paper is organized as follows. The related work of
privacy-preserving data aggregation schemes in smart grid and LDP is
given in Section 2. Then we describe the problem model, including the
network model and security assumption of our work in Section 3. Pre-
liminaries related to our scheme are given in Section 4. And details of our
LDP-based data aggregation scheme are shown in Section 5. In Section 6,
we further propose a more universal privacy preserving data aggregation
scheme considering more special scenarios in smart grid. Privacy and
utility analysis are given in Section 7. Then we give the performance and
security analysis in Section 8. Finally, we conclude our work in Section 9.

2. Related work

2.1. Privacy-preserving data aggregation in the smart grid

Data aggregation is a basic service in the smart grid, and privacy
protection is one of its primary considerations. To this end, many
privacy-preserving data aggregation schemes have been proposed [27,
28]. Homomorphic encryption is one of the most popular methods
adopted in privacy-preserving data aggregation schemes, which allows
computation on the ciphertext. In Ref. [11], Paillier cryptosystem [29] is
introduced to construct a privacy-preserving aggregation scheme for a
secure smart grid. In what follows, many other Refs. [9,30] based on
Paillier cryptosystem have proposed to protect data privacy under
various conditions in smart grid. Some schemes are based on other
public-key homomorphic encryption schemes, such as
Boneh-Goh-Nissim (BGN) homomorphic encryption algorithm [31,32]
and lattice algorithm [2]. Despite its effectiveness in preserving privacy,
a practical concern is that the public key-based homomorphic encryption
brings too much computation overhead to the smart meters. The smart
meter installed in a user's house has limited computing resources, which
is costly to conduct encryption functions. Moreover, data acquisition in
the smart grid is quite frequent, which means that the smart meter must
run encryptions frequently. Therefore, it is impractical to utilize homo-
morphic encryption to protect data privacy in the smart grid scenario.

Researchers also proposed some schemes based on data masking [13,
15,18,33,34]. In these schemes, the data submitted by users are masked
by a masking value, thus the other entities cannot access the real value
without knowing the masking value. In Refs. [15,34], schemes satisfying
differential privacy were proposed. These schemes reduce the computa-
tion overhead on smart meters while achieving privacy protection.
However, in some of these masking schemes such as [15], a trusted third
party is needed for generating and distributing the masking value. This
brings in a new problem that it is hard to find such a trusted party in the
real world. There are also some distributed schemes [14] that do not
depend on a trusted third party. The masking value is generated by
negotiation between users, but it increases the communication cost be-
tween users. Besides, existing DP-based schemes are inefficient when it
comes to the changing set of users. That is to say, when a user joins or
leaves the system, new values should be generated and distributed,
increasing the communication overhead.
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2.2. Local differential privacy

Local differential privacy [20,35] has been proposed to provide pri-
vacy protection for distributed scenarios where users perturb their data
locally and upload it without any trusted third party. Different from a
centralized differential privacy framework, in which the data are per-
turbed at the aggregator side. Users perform randomized perturbations
on their data locally without noise dispersed from other entities in the
local differential privacy framework, ensuring that the aggregator has no
access to the user's original data. At present, most of the schemes satis-
fying LDP are realized by the Randomized Response (RR) [36,37]. Other
schemes are based on information compression [38] and other distur-
bance mechanisms to achieve local differential privacy. RR is initially
designed for sensitive questions with binary answers “yes” or “no”. Users
can choose whether to upload the original answer or the reversed
response depending on coin-flipping. RR is then easily extended to make
statistics on categorical data for frequency estimation. RAPPOR [23]
developed by Google. inc encodes data as a Bloom filter and makes the
randomized response on each Bloom filter bit. RAPPOP realized
privacy-preserving data aggregation and analysis for data categories,
frequencies, and other set statistics in crowdsourcing. Wang et al. [24]
proposed a protocol for finding frequent items in the set-valued LDP
setting. Ren et al. [39] focused on the high-dimensional crowdsourced
data publication with a guarantee of LDP. In Ref. [22], discrete distri-
bution estimation based on the k-subset mechanism satisfying LDP has
been proposed. In Ref. [40], the author focused on the frequency and
mean estimation for key-value type data with LDP. Most of the works on
LDP focus on frequency estimation and distribution estimation for
discrete categorical data. In this paper, we propose a demand estimation
scheme for the LDP-perturbed numerical data that is aggregated in a
smart grid.

3. Problem model

3.1. Network model

We simplify the network model of data acquisition in the smart grid.
The networkmodel consists of three kinds of entities in our system, Smart
Meter (SM), Gateway (AG), and Control Center (CC). The whole orga-
nization of the model is shown in Fig. 1. What follows are their functions
and roles.

● Smart Meter (SM): SM is an intelligent device that is installed in each
user's house. It has limited computing power, thus, the computation
burden on the meter side should be as small as possible. The smart
meter collects and submits the power consumption data of a single
user. For clarity, we treat the “smart meter” and “user” the same and
may use them interchangeably.
Fig. 1. System model.
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● Gateway (AG): The gateway acts as an aggregator in the smart grid
system. It collects and aggregates data submitted from smart meters.
After aggregation, it sends the aggregated result to the control center
for further analysis.

● Control Center (CC): CC connects with all AGs and collects the data
of total power consumption from AGs. Then, CC formulates a power
dispatching strategy and adjusts electricity prices.

The smart meter installed in each house reports the electricity con-
sumption data to the control center periodically in the smart grid. The
aggregator collects and aggregates data submitted from smart meters.
After aggregation, it sends the aggregated result to the control center.
The control center gathers all the data submitted from smart meters,
performs statistical analysis, and thenmanages the smart grid's electricity
generation, transmission, and distribution.
3.2. Security assumption

Electric supply companies manage the CC and AG in the smart grid.
Therefore, the CC and AG can be called honest but curious. They will
process the data in accordance with the data aggregation methodology,
but they are also concerned about user data privacy. When the control
center and the gateway perform data statistics and analysis duties on the
smart grid, there should be a plan in place to ensure that the original data
provided by users is not obtained.

Users are treated as honest participants who process and submit
generated power consumption data to the gateways in accordance with
the protocol; nonetheless, they are concerned about data privacy.

In addition, we consider attackers who acquire and observe data
uploaded by users in our system. The attackers who intercept and tamper
with the user's data are not taken into account. We believe that secure
communication channels exist between users and aggregators.
3.3. Security and design goals

Based on the above assumption of each entity in the smart grid sys-
tem, our scheme is proposed to achieve the following goals:

● Data privacy. The data collected by aggregator may disclose users'
privacy. Therefore, during the data aggregation, the privacy of users'
data should be preserved. The aggregator should know nothing about
any particular user's data but the final aggregation result. It is worth
noting that data aggregation tasks in smart grids are periodic and
frequent, so it is also necessary to ensure that the privacy of user data
will not be disclosed in the long-term collection process.

● Practicability. Data is submitted on a regular and frequent basis in the
smart grid. As a result, data processing and submission efficiency
become critical. The calculation overhead of each smart meter should
be manageable because the smart meter does not have a lot of
computing power. Furthermore, the communication overhead be-
tween users should be kept to a minimum.

● No need for a trusted third party. Users tend to be skeptical that the
entities who have access to their data will threaten their data privacy,
and in the real world, it is unrealistic to assume a trusted third party.
The assumption of a trusted third party is not realistic in practice.
Therefore, our proposed scheme should not rely on a trusted third
party.

● Support dynamic changes of users. In a smart grid, users may join or quit
the system, so the aggregation scheme should accommodate the dy-
namic change of users. One data aggregation task in a smart grid often
requires thousands of users to participate. Therefore, when the users
change dynamically, the system's extra computation and communi-
cation cost should be as small as possible. More specifically, when
some users join or leave the system, the other users in the system do
not need to renegotiate new parameters.
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4. Preliminaries

4.1. Local Differential Privacy (LDP)

The formal definition of local differential privacy is as follows:

Definition 1. For any user i, an algorithm M satisfies ε-local differ-
ential privacy (ε-LDP), where ε� 0, if and only if for any two data records
Xi, Xj, and for any possible outputs ~X 2 RangeðMÞ,

Pr½MðXiÞ¼ ~X�⩽eε � Pr½MðXjÞ¼ ~X�

where value ε is called the privacy budget. It can be seen that LDP
ensures that algorithm M satisfies ε-LDP by controlling the similarity of
the output results of any two records. In a nutshell, the adversary seeing
~X cannot determine whether the input is Xi or Xj. For more details about
local differential privacy, refer to the introduction and summary of LDP
in Ref. [35].
4.2. k-Randomized Response (k-RR)

The k-Randomized Response (k-RR) is a typical randomized response
scheme for aggregating and analyzing discrete categorical data. The
perturbation function is defined as: For any input R 2 X and its corre-
sponding output R

0 2 X , there exists

PðR0 jRÞ ¼

8>><
>>:

p ¼ eε

k � 1þ eε
; R

0 ¼ R

q ¼ 1
k � 1þ eε

; R
0 6¼ R

where ε is the privacy budget and k ¼ jXj.
The k-RR satisfies ε-LDP since for any inputs R1, R2 and output R0,

there exists

PðR0 jR1Þ
PðR0 jR2Þ �

p
q
¼ eε

To estimate the frequency of R 2 X , the aggregator counts how many
times R is submitted as C(R), and then computes

ΦðRÞ ¼ CðRÞ � nq
p� q

where n is the total number of the users, Φ(R) is the estimation of the
number of users whose input value is R.

As analyzed in Ref. [37], the estimation variance is

VarðΦðRÞÞ ¼ n � k � 2þ eε

ðeε � 1Þ2

the variance grows while the number of categories becomes large. When
the number of the category is not large, the k-RR has good performance in
frequency estimation.

References [36,41] provide more details about k-Randomized
Response (k-RR).

5. Scheme description

Before we describe our scheme in detail, we first present the overview
of our scheme, which shows the core techniques and functional features.

5.1. Overview

The CCmust obtain statistical data on power use over time in order to
estimate the smart grid's power consumption. Our goal is to design a
smart grid data aggregation scheme that is efficient and practical. The
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main idea is to discretize data and estimate the total or average power
consumption by analyzing data frequency through RR. However, a
straightforward combination of data discretization and RR will make the
scheme lose great data precision. To increase aggregation accuracy, we
propose a special data discretization scheme to reduce the accuracy loss.
We develop a data aggregation approach that meets LDP for numerical
data by combining it with a randomized answer.

In our scheme, the smart meter first transforms the generated data
according to a specific probability, which is dependent on the generated
data, before the operation of a randomized response. Specifically, the
actual generated data are first converted into discrete values. Then RR is
performed on the transformed discrete data. Then, the aggregator col-
lects and analyzes the data submitted from users in the system, and es-
timates the frequency of each discrete value. Finally, the aggregator gets
the statistical results and completes the demand estimation of the smart
grid. Fig. 2 shows the process of the data aggregation scheme.

Note that the discrete interval division in our scheme needs not to be
the same, and the aggregator can decide it according to the data analysis
demand.

5.2. System initialization phase

In the system initialization phase, the control center first determines
the parameters such as the legal range of data uploaded by users, the
privacy budget ε, and the time interval of data collection tasks.

Since power consumption data that are generated by smart meters are
always in a certain range, it is reasonable to assume that the raw data
submitted by honest users are within the interval [0, m]. Then the CC
divides the interval into [0, s), [s, 2s),…, [(d� 1)s, ds], assuming that d ¼�
m
s

�
. For the sake of presentation clarity, the interval is split evenly into

several subintervals. In practice, the CC can divide the intervals into
arbitrary lengths according to the demand. Note that ds will be larger
than m when m cannot be divisible by s, but it will not influence the
correctness of our scheme. We record the set of boundary values of all
subintervals as X and the number of natural number elements in a sub-
interval as |X|. In this case, X ¼ {0, s, 2s, …, ds} and |X| ¼ d þ 1.

Then, the CC broadcasts the interval [0, m], the subintervals [0, s), [s,
2s), …, [(d � 1)s, ds] and the privacy budget ε to gateways and all of the
smart meters in the system.

Algorithm 1. Data perturbation algorithm



Fig. 2. Process of the data aggregation scheme.
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5.3. Data submission phase

For a user ui with power consumption data xi that belongs to the
subinterval ½�xis

� � s; ð�xis
� þ 1Þ � sÞ, user ui generates the data to be sub-

mitted to the gateway according to the following steps. For the conve-
nience of scheme description, we express this subinterval as [u, v), where
u ¼ �xi

s

� � s and v ¼ ð�xis
� þ 1Þ � s.

1. First, user ui discretizes the actual numerical data xi that smart meter
generated to a natural number x0

i with the conditional probability
pðx0

i jxiÞ, which is computed according to the value xi as follows:

pðx0
ijxiÞ ¼

8><
>:

v� xi
v� u

; x
0
i ¼ u

xi � u
v� u

; x
0
i ¼ v

We can see that xi is discretized to the boundary value of the interval
to which xi belongs.

2. Then, user ui uses the discretized value x0
i to generate the submitted

data by k-RR with a certain probability. We consider the final result
calculated by ui as yi 2 X, of which the corresponding probability is as
follows:

8 ε
pðyijx0iÞ ¼
>><
>>:

p ¼ e
jXj � 1þ eε

; yi ¼ x
0
i

q ¼ 1
jXj � 1þ eε

; yi 6¼ x
0
i ; yi 2 X

3. Finally, user ui (smart meter) submits the perturbed result yi to the
gateway for data aggregation.

5.4. Data aggregation and analysis

After receiving yi from all users in its administrative region, the
gateway aggregates and analyzes these data. Since each yi 2 X, the
gateway can get the total power consumption by counting the frequency
of each element in X. We denote the frequency of each element Xj 2 X, 0�
j � |X| as C(Xj). The gateway computes

ΦðXjÞ ¼ CðXjÞðjXj � 1þ eεÞ � n
eε � 1

Φ(Xj) is the estimated value for the frequency of each element Xj.
Then, the gateway can estimate the total power consumption as
337
R ¼
Xj¼jXj

j¼1
yj �ΦðyjÞ
Then, the gateways in the system send the total power consumption
data R and the estimated valueΦ(Xj) for the frequency of each element Xj
to the CC, which can then get statistical information by analyzing, such as
the average and peak of the power consumption.

In addition to aggregating power consumption data, CC can require
gateways to perform other statistical analyses of the power consumption
in the smart grid such as mode analyses. CC can get a wealth of power
consumption information for improving its services.

6. Further discussion of the aggregation scheme

In Section 5, we introduce our data aggregation scheme in detail. The
data aggregation scheme we proposed can fit the smart grid's general
supply and demand estimation scenario. When the data range becomes
large and the number of subintervals increases greatly, as analyzed in
Ref. [37], the accuracy of the k-RR deteriorates when the number of
subintervals increases. For example, when aggregating the power con-
sumption data of industrial power consumption in smart grid, the value
range of power consumption data is much larger than that of ordinary
residents. In this case, the consideration for more subintervals is
necessary.

To solve the problem that the accuracy of the scheme decreases when
the number of subintervals increases, we propose an extended solution.
As analyzed in Ref. [37], when the number of subintervals, specifically,
when |x| < 3eε þ 2, the result of k-RR is acceptable. We consider using
the grouping method to divide the whole data value range.

In the system initialization phase, the control center first determines
the privacy budget ε, the CC determines the appropriate number of
subintervals d according to the selection of privacy budget where d < 3eε

þ 2 and the subinterval length s. Then, using the number of subintervals
d and the subinterval length s to divide the whole data range [0, m] in to
several groups, the group quantity is t ¼ �

m
d � s

�
. Mark each group as gk, 1�

k � t. Then, the CC broadcasts the interval [0, m], the privacy budget ε,
and the division of groups and subintervals to gateways and all of the
smart meters in the system.

During the data submission phase, the user ui first determines the
group to which the generated data belongs gi ¼

� xi
d � s

�
. The sub interval

within the group is ½
j
xi�gi � ds

s

k
� s; ð

j
xi�gi � ds

s

k
þ 1Þ � sÞ. In this case, u ¼

j
xi�gi � ds

s

k
� s and v ¼ ð

j
xi�gi � ds

s

k
þ 1Þ � s. Then, the user perturbs the data xi

according to the data perturbation algorithm proposed according to Al-
gorithm 1. After perturbing the data, user ui submits the perturbed result
yi and the group number gi to which the data belongs to the gateway for
data aggregation.

The gateway collects all data submitted by smart meters in the system
and does the aggregation. For each group gk, 1 � k � t, the aggregator
estimates the frequency of data in each group separately. We mark the j-
th element of group k as Xkj, 1 � k � t, 0 � j � d. The frequency of each
element is C(Xkj). Then, the gateway computes

ΦðXkjÞ ¼ CðXkjÞðd � 1þ eεÞ � ngk
eε � 1

The total power consumption is

R ¼
Xk¼t

k¼1

Xj¼d

j¼1
ykj �ΦðykjÞ

In this case, for the convenience of description, we still divide the
whole data interval equally. In practical application, the control center
can select the interval that is not evenly divided according to the
situation.
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7. Privacy and utility analysis

In this section, we analyze and evaluate the privacy and utility of our
scheme, and prove that our scheme meets the proposed design goals. We
first consider the privacy protection and accuracy of our scheme. Then,
we analyze how our scheme supports the dynamic changing of users.
Finally, we give the discussion for a situation of unevenly distributed
intervals.

7.1. Privacy analysis
Theorem 1. The proposed smart meter data processing scheme satisfies
ε-local differential privacy.

Proof. In our scheme, the process of generating yj from x0
i satisfies the k-

Randomized Response given in Section 4. Assuming that any two elements xi,
xj in X, we can have

PrðxijxÞ
PrðxjjxÞ �

eε

jXj�1þeε

1
jXj�1þeε

¼ eε

In our scheme, the final submitted data yi satisfies

PðyijxiÞ ¼

8>>>><
>>>>:

v� xi
v� u

� pþ xi � u
v� u

� q; yi ¼ u

xi � u
v� u

� pþ v� xi
v� u

� q; yi ¼ v

q; yi 6¼ u; v

We assume that xi � u � v � xi, and there is

PðyijxiÞ
Pðy0ijxiÞ

�
v� xi
v� u

� eε

jXj � 1þ eε
þ xi � u

v� u
� 1
jXj � 1þ eε

1
jXj � 1þ eε

¼ v� xi
v� u

� eε þ xi � u
v� u

� eε

It is easy to prove that when v � xi � xi � u, Pðyi jxiÞ
Pðy0i jxiÞ

� eε also establishes.

Therefore, the proposed scheme satisfies ε-local differential privacy.

The data collected by the control center are locally perturbed and
satisfy LDP. Therefore, CC can only aggregate and analyze the data
submitted by all smart meters to obtain the statistical results of the data,
but cannot know the original data content of a single user. Overall, data
privacy can be guaranteed in our scheme. Moreover, due to the user's
special discretization before a randomized response to the data, the same
data has the probability of being converted to different outputs. During
the long-term collection of user data, the user's data privacy will not be
destroyed.

7.2. Accuracy analysis
1 https://pypi.org/project/phe/1.0/.
Theorem 2. The data discretization in our scheme does not reduce the
statistical accuracy of data.

Proof.When user ui discretizes the raw data xi 2 [u, v), u, v 2 X, he gets u
with probability v�xi

v�u and gets v with probability xi�u
v�u , therefore, the expectation

of xi is

Eðx0iÞ ¼ u � v� xi
v� u

þ v � xi � u
v� u

¼ xi

The expectation of x0
i is equal to xi, thus, there is no accuracy loss in the

process of discretization.

When the users’ data are not uniformly distributed, the expectation of
x

0
i is not equal to xi if the data is simply discretized instead of adopting our

proposed algorithm, which increases deviation between the data aggre-
gation result and actual aggregation result.
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7.3. Support for user dynamics

The join and exit of smart meters in the smart grid may participate in
data aggregation. Each smart meter in the system can conduct dis-
cretization and perturbation locally with the input: data range, the di-
vision of subintervals, and the privacy budget, making it very convenient
for new users to join the system.

When there exist users exiting the system or failing to submit data, as
long as CC collects enough amount of data from other smart meters in the
smart grid, it can still aggregate and analyze the data normally to obtain
the estimation of power supply and demand of the smart grid. Therefore,
our scheme has good support for users’ joining and exiting in the smart
grid.

7.4. Situation of unevenly distributed interval

In Section 5, we divide the interval of submitted data equally to
explain the scheme's content more clearly. While in practice, the interval
can be distributed into uneven subintervals. The AG can reduce the in-
terval near the average power consumption of users according to the
experience. The data range [0, m] can be divided into ½0;m1Þ½m1;m2Þ…
½mj; mj þ 1Þ; …; ½md1Þ; m�, where the size of each subinterval can be
different. This will not threaten users' data privacy or reduce the utility of
aggregation results, and at the same time, CC can analyze the general
power consumption habits of users in the region to a certain extent.

8. Performance evaluation

This section will analyze our scheme's accuracy and efficiency
through comprehensive measurements. We first analyze the accuracy
performance with different privacy budgets ε and the number of sub-
intervals s. Then, we analyze the utility of the extended scheme in the
case of the large data range. Then, we compare the scheme proposed in
Section 5 with two typical data aggregation schemes [13,18] in the smart
grid in terms of computation overhead and communication overhead. In
Ref. [13], smart meters' data privacy protection is realized by generating
and distributing random numbers for each smart meter in advance. In
Ref. [18], the smart meters add noise to raw data and upload it to the
gateway through homomorphic encryption, and then the gateway ob-
tains the final result through calculation on the ciphertext.

The experiments below are implemented on a standard 64-bit Win-
dows 10 system with a 3.00 GHz Intel Core i5 processor. Our scheme is
implemented by Python (with version 3.7). The homomorphic encryp-
tion we use is Paillier encryption from the phe library1 of Python. If there
are no additional statements in the experiments, the number of users we
set is 1,000 in an aggregation task, and the submitted data range from
0 to 100 divided into 10 subintervals.

8.1. Utility analysis

To assess the value of our scheme's statistical outcomes, we consider
different privacy budgets ε and numbers of subintervals s. We produce
1,000 numbers at random in the range [0,100] to simulate 1,000 user
data in data aggregation jobs with an accurate aggregation result of
48,155. As shown in Fig. 3 and Fig. 4, the circle dotted line represents the
actual value of the data aggregation task.

We first evaluate the impact of privacy budgets on statistical analysis,
and Fig. 3 shows the results under different privacy budgets. With the
same number of subintervals s, the larger the privacy budget ε is, the
closer the statistical results are to the real value. This result is consistent
with the expectation of theoretical analysis. When the privacy budget ε is
small, the probability of the submitted data falling into other intervals is
much greater than that of the original interval, which makes the

https://pypi.org/project/phe/1.0/


Fig. 3. Statistical result with the relationship of privacy budget and
data accuracy.
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estimated value largely deviate from the real value. When the privacy
budget is larger than 1.5, the error of the statistical results obtained by
our scheme is relatively small, and the data accuracy is guaranteed. In the
real world, the gateway can set different privacy budgets for different
situations, so as to ensure the privacy of users’ data in different degrees
under the condition of data utility.

Then, we test the relationship between subinterval number and data
utility, and Fig. 4 shows the results with different subinterval numbers s.
When ε ¼ 1, the results fluctuate as the subinterval number grows. When
the value of the privacy budget is reasonable (larger than 1.5 according to
the aforementioned experiment), the results keep steady with acceptable
errors. Thus, the subinterval number is not the main factor that in-
fluences the utility performance.
8.2. Utility analysis for the situation of large range of values

In this section, we analyze the scheme's utility in the case of a large
data range. We randomly generate 10,000 numbers in [0,1000] to
simulate ten thousand user data in data aggregation tasks, the privacy
budget ε is set as 2, and the correct mean value is 497.555. In this case,
the number of subintervals becomes large without the proposed grouping
method. As shown in Fig. 5 and Fig. 6, the circle dotted line represents
the actual value of the data aggregation task.
Fig. 4. Statistical result with the relationship of subinterval number and
data accuracy.

339
Fig. 5 shows the actual mean value and the estimated mean value
without the groupingmethod. The line with a diamond-shaped dot shows
the mean estimation under different subinterval numbers. As the number
of subintervals increases, the utility of the aggregation result reduces. It
can be seen in the figure when the number of subintervals is more than
50. The estimation error becomes larger and it is consistent with the
theoretical analysis, as in our simulation 3eε þ 2 ¼ 24.17. Under normal
circumstances, in smart grid data acquisition scenarios, the data range
will not be too large, the number of subintervals can be kept in the
appropriate range, and the data utility is guaranteed. As the number of
subintervals increases, the user's data is disturbed into other intervals
with a greater probability. When there are multiple subintervals, the
error between the statistical results and the real value will increase. As
shown in Fig. 5, when the number of intervals is larger than 40, the error
of statistical results increases, and the utility of statistical results de-
creases. Consequently, if the data range is vast, we need to consider the
problem that the error increases when the number of subintervals
increases.

Fig. 6 shows the comparison between estimation with the grouping
method and without the grouping method. We make experiments and
analyses on the cases of 5, 10, and 20 groups. With the reduction in the
length of subintervals, the number of subintervals in each group in-
creases. Experimental results show that when the data range is large, the
grouping method can greatly improve the utility of data aggregation
results. Because of the adoption of grouping, the number of subintervals
in each group can remain in an appropriate range, which reduces the
error of the estimated value. After grouping, the estimation error of the
mean value is greatly reduced, and the data utility is guaranteed when
the length of subintervals decreases.

8.3. Computation overhead

In this section, we analyze and compare our scheme with Gope's
scheme [13] and Bao's scheme [18].

Table 1 shows the comparison result of the computation overhead of
smart meters and aggregators (gateways in our scheme). Smart meters
and aggregators only need to conduct real number addition and multi-
plication several times, which leads to little computation overhead. In
Gope's Scheme, smart meters will conduct one hash operation to preserve
privacy, and aggregators are required to conduct n hash operations and
symmetric encryptions. Bao's scheme includes some exponentiation and
multiplication over a cyclic group G. Fig. 7 shows experimental results.
The overhead of exponentiation and multiplication over G are much
larger than other operations, Bao's scheme consumes the longest time
Fig. 5. Statistical result with the relationship of subinterval quantity and data
utility without grouping.



Fig. 6. Statistical result with the relationship of subinterval quantity and data
utility comparison.

Table 1
Computation overhead comparison.

Scheme Operations

Smart Meter Aggregator

Gope's Scheme [13] H n(SE þ H)
Bao's Scheme [18] 2aCe þ Cm (n � 1)Cm

Our Scheme 3ADD þ 1MUL |X|(4ADD þ 3MUL)

a We denote hash, symmetric encryption, exponentiation over a cyclic group G,
multiplication over G, number of user, real number addition and real number
multiplication as H, SE, Ce, Cm, n, ADD, MUL, respectively.

Fig. 8. Computation overhead of the aggregators with varying numbers of
smart meters.
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during the aggregation process. However, benefitting from the light-
weight real number addition and multiplication, our scheme has the best
performance, with 0.022 5 ms time cost at smart meters and 0.045 4 ms
time cost at aggregators.

Fig. 8 shows the overall computation overhead of the aggregators
with varying numbers of smart meters participating in the data aggre-
gation process. When the number of smart meters participating in the
task is not large, the computation costs of the three schemes are all
acceptable. However, the computation overhead of Gope's scheme and
Bao's scheme will grow approximately linearly as the number of
participating meters grows. While the computation overhead of the
Fig. 7. Computation overhead of different entities.
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aggregators remains stable, the reason is that the aggregators only have
to count the number of each discrete value and calculate the final result.
Consequently, the computation overhead is much smaller than schemes
based on cryptography algorithm.

In the real-world smart grid system, the number of smart meters
participating in data aggregation tasks is often very large. Moreover, the
tasks of data aggregation are often very frequent in the smart grid, which
requires the computation overhead of every single data aggregation task
to be as small as possible. By analyzing computing overhead, we can
conclude that our scheme is more efficient and practical than other
schemes in the real-world smart grid system.
8.4. Communication overhead

In this section, we look at our scheme's communication overhead and
compare it to two others. Fig. 9 shows the entire communication over-
head of a single aggregating process with a various numbers of partici-
pating smart meters. Because of the vast range of communication
overhead, we use logarithmic coordinates to show experimental results.

For fairness consideration, in Gope's scheme, we only consider the
communication cost in the data aggregation part of the scheme. As shown
in Fig. 9, the communication overhead of these three schemes increases
with the increasing number of smart meters. Because there is no
Fig. 9. Communication overhead with varying numbers of smart meters.
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encryption in our scheme, only the division of the interval, the privacy
budget, perturbed data, and aggregation results must be transmitted
during the aggregation process. Considering the large volume of
ciphertext, our scheme has the lowest communication overhead. While in
Gope's scheme, besides necessary perturbed data and aggregation results,
it needs to transmit two extra hash values and one ciphertext. Thus, the
communication overhead of Gope's scheme is larger than ours. Bao's
scheme introduces encryption based on a cyclic group G, of which the
overall communication overhead is (2n þ 2) ⋅ LG, leading to the largest
communication overhead. Here LG is the output of the modular operation
in G assumed to be 1024 bit.

9. Conclusions

In this study, we proposed a privacy-preserving data aggregation
scheme for the smart grid. Considering the limited computation ability of
smart meters, we reduced the computational burden of smart meters that
participate in data aggregation tasks. By designing a special data dis-
cretization algorithm and random response mechanism, the scheme
achieves the privacy-preserving smart grid data aggregation satisfying
the LDP. Furthermore, we consider more special scenarios, which enable
our scheme to cope with the special situation of large data range in the
smart grid data aggregation scenario. Unlike existing schemes based on
masking values, our scheme can run normally without a trusted third
party. Users need not negotiate for the masking values, and our scheme
can also deal with users’ joining and exiting in the smart grid. Through
the comprehensive analysis, our scheme is shown to be privacy-
preserving with less computation and communication overhead
compared with other available literature.
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