
FALCON: A Fourier Transform Based Approach for Fast and Secure
Convolutional Neural Network Predictions

Shaohua Li1 Kaiping Xue1 Bin Zhu1 Chenkai Ding1 Xindi Gao1 David Wei2 Tao Wan3

1University of Science and Technology of China 2Fordham University 3CableLabs
lshhsl@mail.ustc.edu.cn kpxue@ustc.edu.cn {cnzb01, chimkie, khronos}@mail.ustc.edu.cn

dsl.wei01@gmail.com t.wan@cablelabs.com

Abstract

Deep learning as a service has been widely deployed
to utilize deep neural network models to provide predic-
tion services. However, this raises privacy concerns since
clients need to send sensitive information to servers. In
this paper, we focus on the scenario where clients want to
classify private images with a convolutional neural network
model hosted in the server, while both parties keep their
data private. We present FALCON, a fast and secure ap-
proach for CNN predictions based on fast Fourier Trans-
form. Our solution enables linear layers of a CNN model
to be evaluated simply and efficiently with fully homomor-
phic encryption. We also introduce the first efficient and
privacy-preserving protocol for softmax function, which is
an indispensable component in CNNs and has not yet been
evaluated in previous work due to its high complexity.

1. Introduction

Deep learning has been applied to quite a few fields
to overcome the limitations of traditional data process-
ing methods, such as image classification [19, 17], speech
recognition [3, 4], medical diagnosis [28, 11], etc. Some
companies and institutions have also invested in deep learn-
ing technologies, and trained their own deep neural network
models to provide users with paid or free services. For ex-
ample, Google Vision [9] provides an API for image clas-
sification for developers and general users, and one can up-
load an image to the cloud to obtain the classification result
and its corresponding probability. Although these services
provide rich experiences to users, they also cause serious
privacy concerns because uploaded user data may contain
private information [29], such as face pictures and X-ray
images. Although many companies claim that they will
never leak or use users’ data for commercial purposes, the
increasing number of data leaks alert us that there is no
guarantee on what they promised [2].

Certainly, the clients’ input data is not the only sensi-
tive information, because for servers, their own models also
need to be protected from adversarial clients. First, models
may be trained with large amount of private data, e.g., med-
ical records to obtain a model for disease prediction. Thus,
sensitive information could be extracted from a trained
model if disclosed to a malicious client [30, 31]. Second,
model parameters and detailed prediction results, i.e., ac-
curate probabilities over all classes, can be used to gener-
ate adversarial examples to deceive deep learning models
[27, 8], to result in incorrect classification results. Third,
many prediction models themselves, even without consid-
ering sensitive training data, require intellectual property
protection and cannot be disclosed to third parties includ-
ing their clients [21, 18].

To tackle this problem, researchers have put forward
a secure deep learning scenario, where the server has a
model, the client has data, and these two interact in such
a way that the client can obtain the prediction result with-
out leaking anything to the server, while learning nothing
about the model. They usually use homomorphic encryp-
tion (e.g., CryptoNets [15]), secure multi-party computa-
tion [34] (e.g., MiniONN [21]), or their combination (e.g.,
GAZELLE [18]), for secure evaluation.

In this paper, we focus on the fast and secure solution
for Convolutional Neural Networks (CNNs), one of the
most important neural networks in deep learning. CNNs
are characterized by the spatial input data, such as images
and speeches. Typically, a CNN model consists of convolu-
tional, activation, pooling, and fully-connected layers, and
often follows by a softmax layer. Convolutional and fully-
connected layers have linear property, while activation and
pooling are nonlinear layers. The softmax layer is used to
normalize the output into probabilities, usually used as the
last layer of a CNN. The softmax layer is indispensable in
many use cases. For example, a CNN model classifies an
X-Ray image into “Pneumonia” with probability 5%. Al-
though “Pneumonia” is the top label, the real result indi-
cates that the patient probably has no such disease, and this

cannot be known without the probability output. Because
the softmax function involves division and exponentiation
that would introduce incredibly high overhead when evalu-
ating with privacy tools, the existing work, e.g., CryptoNets,
MiniONN and GAZELLE, used argmax function instead of
softmax to obtain only the top one label. We, however, pro-
pose a novel efficient protocol for the softmax layer.

In this paper, we propose FALCON for fast and secure
convolutional neural network predictions. Our contribu-
tions can be summarized as follows:

• For convolutional and fully-connected layers, we se-
cure them with fully homomorphic encryption and
achieve high efficiency by fast Fourier Transform (FFT)
based ciphertext calculation.

• For ReLU and pooling layers, we propose a secure two-
party computation protocol to evaluate them. Their
evaluation efficiency is further improved by our opti-
mized processing pipeline.

• For Softmax function, its secure evaluation has not
yet been addressed by any previous work. We pro-
pose an Approximate Theorem to simplify calculation
for softmax function, based on which we implement
the first secure and efficient two-party softmax compu-
tation protocol.

2. Related Work

CryptoNets [15] inspired us to process neural network
models securely with leveled homomorphic encryption
(LHE). Since only LHE is used, CryptoNets needs to re-
place nonlinear activation and pooling functions with linear
functions and re-train the model. SecureML [23] proposed
protocols based on secure two-party computation for train-
ing several kinds of machine learning models between two
non-colluding servers. DeepSecure [25] used Yao’s Garbled
Circuits only to enable scalable execution of neural network
models between semi-trusted client and server. Chameleon
[24] used additively secret sharing [6], Yao’s Garbled Cir-
cuits [34], and GMW protocol [16] to implement secure
CNN evaluation. But it requires an extra semi-honest third
party. MiniONN [21] transformed a neural network model
into an oblivious version, and used additively homomor-
phic encryption to generate multiplication triplets first, and
then evaluated the model using secure two-party computa-
tion efficiently. GAZELLE [18] utilized the fully homomor-
phic encryption and designed efficient schemes for privacy-
preserving convolution and matrix-vector multiplication op-
erations. GAZELLE used homomorphic encryption in con-
volutional and fully-connected layers, and secure two-party
computation in ReLU and pooling layers. Since MiniONN
and GAZELLE outperform all previous work, we compare
FALCON with them to show our performance superiority.

2.1. Building Blocks

2.2. Fast Fourier Transform

In image processing, the well-known fast Fourier Trans-
form (FFT) is an algorithm that can convert an image from
its space domain to a representation in the frequency do-
main and vice versa [33]. Letting f(x, y) denote the pixel
value of an image at point (x, y), after FFT, f(x, y) will turn
to Ff (u, v), which is a complex number. For simplicity, we
denote the FFT of input x as F(x). An important property
of the FFT used in this paper is linearity, i.e. for two inputs
x and y, we have:

F(x) + F(y) = F(x + y). (1)

FFT also has an important Convolution Theorem: the
convolutions in the space domain are equivalent to point-
wise products in the frequency domain. Denoting F−1 as
the inverse FFT, the convolutions between x and y can be
computed by:

x ∗ y = F−1(F(x) · F(y)). (2)

2.2.1 Lattice-based Homomorphic Encryption.

To implement privacy-preserving convolutions in FAL-
CON, we require two kinds of homomorphic operations:
SIMDAdd and SIMDMul. The SIMD here means we can
pack a vector of plaintext elements into a ciphertext, and
perform calculations on ciphertexts corresponding to each
plaintext element, which reduces required ciphertext size
and evaluation time. The SIMDAdd represents homomor-
phic addition between two ciphertexts, while the SIMDMul
represents homomorphic multiplication between a cipher-
text and a plaintext. All these requirements can be satis-
fied by modern lattice-based homomorphic encryption sys-
tems [14, 12, 7]. There are three required parameters in
these schemes, namely number of plaintext slots n, plain-
text module p, and ciphertext module q. Parameter n is the
maximum number of data that can be processed in SIMD
style. Parameter p limits the range of plaintext data. Param-
eter q can be calculated from given n and p. In this paper,
we denote the ciphertext of x as [x].

2.2.2 Secure Two-Party Computation.

Secure two-party computation protocols allow two parties
to jointly evaluate functions on each other’s private data
while preserving their privacy. Functions are represented
as boolean circuits and then computed by these protocols.
Yao’s Garbled Circuits is a representative implementation
of such protocols and will be used in this paper for the se-
cure computation between a client and a server.

The ABY framework [10] is an open source library that
supports secure two-party computation, and we use this li-
brary to implement secure ReLU, Max Pooling and softmax
layer. This library has encapsulated several basic operations

hf

…

w

h

Conv Layer

0

Activation Layer Pooling Layer

flatten 

FC Layer

il

0l

logits

Softmax

Softmax Layer

c

wf

k
Pneumonia 0.61

Cardiopathy 0.15

…

ReLU

Figure 1. An example of convolutional neural networks.

for secure computation, and we here introduce the opera-
tions used in this paper (Note that, the term “share’ used in
what follows means Yao sharing, which is a type of sharing
used by Yao’s Garbled Circuits.):

– ADDGate(a, b) performs an arithmetic addition on input
shares a and b, and returns the result as a share.
– SUBGate(a, b) performs an arithmetic subtraction on in-
put shares a and b, and returns the result as a share.
– GTGate(a, b) performs a ternary operation “a > b ? 1 :
0”, and returns 1 if a > b, 0 otherwise.
–MUXGate(a, b, s) performs as a multiplexer, and returns a
if s is 1, returns b if s is 0.

3. FALCON Execution Flow
Consider such a scenario that a doctor wants to learn the

potential disease a patient might have from an X-Ray im-
age, only knowing the top label without the corresponding
probability may lead to unreliable diagnostic result. For ex-
ample, the output top label “Pneumonia” with probability
“0.9” and “0.1” definitely have different meanings for treat-
ment. In this section, we will outline the execution flow
using the convolutional neural network shown in Fig. 1.
System model. We consider a client C who wants to predict
an input (e.g. an X-Ray image) with a convolutional neural
network model held by a server S. For client C, the input
is private. For server S, the parameters of convolutional and
fully connected layers are also private. Our design goal is
to preserve privacy for both parties when evaluating CNN
models. We assume that both C and S are semi − honest.
That is, they adhere to the execution flow defined by FAL-
CON protocols, while trying to learn the other party’s pri-
vate information as much as possible.
Privacy guarantees. For server S, FALCON protects the
following information about the model: all the weight pa-
rameters of convolutional and fully-connected layers, and
the filter size of convolutional layers. FALCON does not
hide the model architecture, i.e., the type of layer, layer size
(the number of neurons in a layer), and the number of lay-
ers. For client C, FALCON leaks no information about the
input content but do not protect the input size.
Execution flow at a high leverl.
At the beginning, C holds an input vector x and the private
key, and S holds the neural network model. To evaluate the
first layer, which is mostly a convolutional layer, C encrypts

the FFT of x, denoted by [F(x)], and transfers it to S. Then,
S and C together do the following:

1. (Evaluate the Conv layer) S feeds the convolutional
layer with [F(x)] and obtains the output [F(y)], where
y is the plaintext output. In order to compute the next
activation layer, S and C will each hold an additive
share of y, i.e., xS + xC = y. This can be done by
the proposed translation method. (See details in Sec-
tion 4.2.)

2. (Evaluate the ReLU layer) For the ReLU layer, S and
C run the designed boolean circuits for the ReLU func-
tion. Note that, we still require that the output value is
additively shared by two parties. (See details in Section
4.3.2.)

3. (Evaluate the pooling layer) Evaluating the mean
pooling function on two additive shares is simple. We
can have these two parties perform mean pooling on
their shares respectively. For Max Pooling, we also de-
sign boolean circuits to realize it. Note that, the same as
ReLU, we need to ensure that S and C additively share
the output value. (See details in Section 4.3.3.)

4. (Evaluate the FC layer) Typically, a FC layer is treated
as matrix multiplication. In our design, we first convert
this layer into an equivalent Conv layer and then use
the same method in the convolutional layer to evaluate.
Note that the input to this layer is additively shared by S
and C, so we need to translate from shares to ciphertexts
as described in Section 4.1. (See details in Section 4.4.)

5. (Evaluate the softmax layer) The input to softmax
function is generally the output of a FC layer. In our
design, we first have S and C additively share the input.
Then we disassemble the softmax function into a max
and an inner product function to enable the client C to
efficiently obtain the target class with probability. (See
details in Section 4.5.)

4. FALCON Design
4.1. Setup

Before moving on to the implementation details of each
layer, we first introduce the encryption method and the
translation between a ciphertext and additive shares. At the
beginning, the client C holds the input x and needs to trans-
fer its ciphertext to the server S. In our design, all cipher-
texts correspond to plaintext data in the frequency domain.

That is, for input x of size w × h, the client C first per-
forms FFT to obtain F(x), and then encrypts it to [F(x)].
The F(x) inherits the size of x, but every element of it is
a complex number, e.g. F(x)0,0 = a + bj where a and
b are real numbers. Note that we cannot apply homomor-
phic encryption directly to complex numbers. Thus, we let
the client C encrypt the real parts (e.g., a) and the imagi-
nary parts (e.g., b) into two ciphertexts respectively. That
is, for every element in F(x), C packs all the real parts into
a plaintext vector and encrypts this vector, which is denoted
as [F(x)R]. Accordingly, the ciphertext of all the imaginary
parts is denoted as [F(x)I]. All the ciphertexts involved in
the FALCON have this form.

The output of a linear layer, i.e., convolutional and fully
connected layer, is a ciphertext, while the input to a non-
linear layer is additive shares. Therefore, before feeding
the output of a linear layer into a non-linear layer, we need
to translate from a ciphertext to additive shares. Assume
that the output of a linear layer is [F(y)], which is actually
[F(y)R] and [F(y)I], the goal of server S and client C is
to respectively obtain xS and xC, satisfying xS + xC = y
and guaranteeing no information about y will be exposed
to either S or C. In order to achieve this goal, S generates a
random vector r of the same size to y, and performs the FFT
to obtain F(r)R and F(r)I . Using the SIMDAdd, S adds
these values to the ciphertext homomorphically to obtain
[F(y)R−F(r)R] and [F(y)I −F(r)I]. Recall the linearity
of the FFT shown in Eq. 1, we have [F(y)R − F(r)R] =
[F(y− r)R] and [F(y)I −F(r)I] = [F(y− r)I].

The client C decrypts them and combines the imaginary
parts with the real parts to obtain F(y − r), and then per-
forms the inverse FFT to get (y − r). Letting xS = r and
xC = (y− r), we have the y be additively shared.

To translate from additive shares to ciphertexts, namely
feed the output of non-linear layer to linear layer, we can
run the reverse of above process. Note that FALCON works
in Zp, where p is the selected plaintext module for ho-
momorphic encryption. For any intermediate value xm,
xm < bp/2c implies xm is positive, otherwise negative.

4.2. Secure Convolutional Layer

The input image (or feature map) to a Conv layer is x
of size w × h × c, where w and h are respectively width
and height and c is the number of channels. We assume
that there are a total of k filters (or kernels) in a Conv layer,
each of which has a size of fw×fh×c. In this part, we first
introduce a simple case where the input has single channel
(c = 1) and the layer has only one filter (k = 1) to present
our key idea. Then we describe a more general case where
c > 1 and k > 1.

Simple Case (c = 1, k = 1). Firstly, client C performs
FFT on input x of size w × h to obtain F(x)R and F(x)I ;
server S performs FFT on filter fi of size fw × fh to obtain

F(fi)R and F(fi)I . Secondly, client C encrypts FFT results
as [F(x)R] and [F(x)I], and sends them to server. Assum-
ing the convolution result of x and fi is y, server S does the
following calculations:

[F(y)R] = [F(x)R]⊗F(fi)R ⊕ [F(x)I]⊗ (−F(fi)I),
[F(y)I] = [F(x)R]⊗F(fi)I ⊕ [F(x)I]⊗F(fi)R,

where “⊗” represents SIMDMul, and “⊕” represents SIM-
DAdd. Then S generates a random vector r of size w × h,
and encrypts its FFT values as [−F(r)R] and [−F(r)I]. Fi-
nally, S sends the following two ciphertexts to C:

[F(y− r)R] = [F(y)R]⊕ [−F(r)R],
[F(y− r)I] = [F(y)I]⊕ [−F(r)I].

Client C decrypts the ciphertexts, combines the real parts
with the imaginary parts, and performs the inverse FFT to
obtain (y − r), which is set to C’s share xC. Then, server S
sets r to its share xS. At this point, the convolutional layer
has been evaluated, and the result y is additively shared by
S and C.

General Case. In order to present our idea clearly, we first
explain how to calculate the convolution in the plaintext do-
main and then the ciphertext domain.
(Plaintext domain) For the filter fi (i ∈ [1, k]) that contains
c channels fi1, fi2, · · · , fic, and the input x that contains c
channels x1, x2, · · · , xc, firstly, c × 2-D filters and c × 2-D
inputs are transformed using the FFT, then the correspond-
ing channels are multiplied to get c intermediate results. Fi-
nally, these intermediate results are added to obtain the final
output in the frequency domain.
(Ciphertext domain) Consider these 2-D filters and inputs
as c independent groups, server S applies the calculation
process shown in the simple case to these groups to get c
intermediate ciphertexts, and then returns them to client C
after masking with random vector r. C decrypts these ci-
phertexts and adds them up in the plaintext domain. Let y
denote real output values, then at this point, shares of S and
C are respectively r and y-r.

Security analysis. The input data of client C, weight pa-
rameters, and the size of filters require protection. Since
the input data remain encrypted during the evaluation of
server S, the data are protected. Client C only obtains the
masked convolutional result, and thus learns nothing about
the weight parameters. Because filters are padded into the
same size with the input, their size is also preserved.

4.3. Secure Activation Layer & Pooling Layer

In what follows, we first introduce the data preprocess-
ing, which translates additive shares to Yao sharing. It also
guarantees that Yao sharing lies in [0, p). Then we present
implementations for ReLU and Max Pooling.

...

...

FFT

FFT

...

+

iFFT

convolution

*

Figure 2. The convolution operations for multiple channels in plaintext.

ADD

SUB

GT

MUX
x_C

x_S

p

Figure 3. Boolean circuits for data preprocessing.

Listing 1. Function description of data preprocessing.

4.3.1 Data preprocessing.

Assume that xC = {xC
1 , x

C
2 , · · · , xC

N} and xS =
{xS

1, x
S
2, · · · , xS

N} are the additive shares held by client C
and server S, respectively. Since both xC

i and xS
i belong to

[0, p), we have xC
i + xS

i belongs to [0, 2p). Since FALCON
works in Zp, we need to limit the sum of two input shares to
[0, p). The illustration of boolean circuits for data prepro-
cessing is shown in Fig. 3 and the pseudocode is shown in
Listing 1. We first use ADDGate to recover true value (line
4) and judge if it exceeds p or not (line 5). A MUXGate is
then used to select x or p − x (line 7). All calculations are
performed on Yao sharings and leak no information.

4.3.2 Secure ReLU layer.

Typically, Conv layers and non-last FC layers are followed
by ReLU layer, which is f(x) = max(x, 0). In our setting,
the input x is additively shared by client C and server S,
i.e. xC + xS = x. Our aim is to enable that C and S addi-
tively share max(x, 0). That is, C holds max(x, 0)− r while
S holds r, where r is randomly generated by S. The pseu-
docode is shown in Listing 2. The first GTGate performs a
great-than operation (>) (line 6), and the output is passed to
MUXGate to select the positive x or 0 as the result (line 7).

4.3.3 Secure pooling layer.

Pooling layer performs down-sampling by dividing the in-
put into rectangular pooling regions and computing the
mean or maximum of each region. To evaluate mean
pooling, we can simply let client C and server S com-
pute the mean value of their respective shares. Our fo-
cus is the evaluation of Max Pooling. Letting xregion =

Listing 2. Function description of ReLU.

{x1, x2, · · · , xk} be one of the rectangular pooling regions,
our aim is to calculate max(x1, x2, · · · , xk). The pseu-
docode of designed boolean circuits is shown in Listing 3.

Since the input has been limited from 0 to p/2 by ReLU,
we can iteratively compare two elements to obtain the max
element with GT and MUX circuits without considering the
existence of negative elements (line 11-14). Because com-
parisons are performed inside each region, we pack N ele-
ments into k vectors of size N/k via SubsetGate (line 9).

4.3.4 The Optimized ReLU and Max Pooling layers.

In a typical processing pipeline, a ReLU layer is followed
by a Max Pooling layer, and the basic operation of both is
max(). Assume that xregion = {x1, x2, · · · , xk} is one of
the rectangle pooling regions but has not applied to ReLU.
Then, the final output of the Max Pooling layer should be

max (max (x1, 0) ,max (x2, 0) , · · · ,max (xk, 0)) ,

where the inside max() corresponds to the ReLU function
while the outside is the Max Pooling function.We can find
that this process is equivalent to the following one:

max (max (x1, x2, · · · , xk) , 0) ,

where the inside max() can be considered as the Max Pool-
ing function while the outside as the ReLU. Based on this
observation, reversing the position of ReLU layer and Max
Pooling layer in the processing pipeline will reduce the
number of max() operations. An example is shown in
Fig. 4. In fact, this trick has been proposed in the study of
deep learning [1]. Nevertheless, due to the fact that ReLU
and Max Pooling functions are relatively much cheaper than
the heavy Conv and FC layers in the plaintext domain, this
optimization has been discarded. However, in the ciphertext
domain, all these functions have great impacts on the overall
performance. We report and utilize this optimization here to
further improve the FALCON performance. With this ap-

Listing 3. Function description of Max Pooling.

Listing 4. Function description of our Max Pooling and ReLU.

proach, we can see that the number of max() operations in
the Max Pooling layer does not change, but the ReLU layer
is reduced greatly. For a Max Pooling layer with (2× 2) re-
gion with a stride of 2, our method can save 75% of ReLU
operations. The pseudocode is shown in Listing 4. We first
apply Max Pooling operations to obtain max values of each
region (line 9-14), and ReLU operations follow to filter out
all negative values (line 16-17).

-5 5 6 -3

3 12 -7 7

-2 -7 -3 -9

9 -6 -1 -6

ReLU

0 5 6 0

3 12 0 7

0 0 0 0

9 0 0 0

12 7

9 0

Max Pooling

-5 5 6 -3

3 12 -7 7

-2 -7 -3 -9

9 -6 -1 -6

12 7

9 -1

Max Pooling 12 7

9 0

ReLU

Original:

Ours:

Figure 4. Original ReLU and Max Pooling v.s. Ours.

4.3.5 Output circuits for ReLU and Max Pooling

The original outputs of ReLU or Max Pooling circuits are
in the form of Yao sharing. Our aim is to additively share
the result between C and S. This can be achieved by taking
the output y and a random vector (−r mod p) generated by
S as two inputs of data preprocessing circuits, the result of
which is (y− r mod p) and is sent to C.

Security analysis. Since ReLU and Max Pooling layers do
not have private model parameters, we only focus on the
confidentiality of the input. Due to the security of Yao’s
Garbled Circuits, the input data are hidden.

4.4. Secure Fully Connected Layer

Normally, a FC layer can be treated as multiplication of a
weight matrix and an input vector, and this can be executed
very fast in the plaintext domain. However, in the ciphertext
domain, this kind of multiplication is expensive. Inspired
by the observation that FC layers can be viewed as convo-
lutional layers with filters that cover the entire input regions
[22], we propose an efficient solution by transforming the
FC layer to the convolutional layer first, then utilizing the
acceleration method in Section 4.2 to evaluate the FC layer.

4.5. Secure Softmax Layer

In classification CNNs, the last FC layer is always fol-
lowed by a softmax layer to generate probability distribu-
tion over K different possible classes. However, to our best
knowledge, in all previous work, researchers presented that
the server can return logits to the client, who could obtain
probabilities by performing softmax function locally, e.g.
GAZELLE, or the client runs argmax using secure two-
party computation to only obtain the classification result
without knowing logits and probabilities, e.g. MiniONN.
The main reason why these schemes bypass the encrypted
computation is that implementing softmax function would
introduce high computation complexity, no matter using ho-
momorphic encryption or secure two-party protocols.

This high computation overhead is due to the division
and exponentiation operations in the softmax function and
we thus propose a division and exponentiation free protocol
in FALCON. We notice that in a client-server scenario, by
only accessing prediction results, C is able to extract model
information [32, 30, 26]. To tackle this issue, S can only
return necessary results, i.e., the class to which the input
belongs and its corresponding probability, to C. Softmax
function is given by

f(x)i =
exi∑K

k=1 e
xk

, for i = 1, 2, · · · ,K,

where f(x)i is the probability that the input belongs to the
class i. Letting the target class be t, our aim is to calculate
pt = ext∑K

k=1 exk
. Before moving to the detailed protocols,

we first give the following theorem:

Theorem 1. (Approximation Theorem) For pt = ext∑K
k=1 exk

,

where xt = max(x1, · · · , xK), and p′t = ext∑
xk≥xt−m

exk
,

where m ≥ ln
[
(10l − 1)(K − 1)

]
and l ≥ 1, we have

|pt − p′t| ≤ 10−l.

(The proof can be found in the full version [20].)
This theorem shows that in the case of a precision re-

quirement of 10−l, we can replace pt with p′t. In another
word, we can set a threshold xt −m to filter all values less
than xt −m. Also, p′t can be written as

p′t =
ext∑

xk≥xt−m
exk

=
ext/ext−m∑

xk≥xt−m
exk/ext−m

=
em∑

xk≥xt−m
exk−(xt−m)

,

where all the intermediate values are limited to
[
e0, em

]
,

which enables us to use a small bit length to evaluate the
secure softmax with Yao’s Garbled Circuits. For example,
for l = 10−3 and K = 100, we have m ≥ ln(10−3 ∗ 100−
100) ≈ 11.52, and e12 takes only 18 bits, while the original
xt may reach up to > 100 [8] and e100 takes 145 bits. Based
on the above analysis, the outline protocol of our proposed
secure softmax is as follows:

1. Let [F(x)], where x = {x1, x2, · · · , xK} be the input
to the softmax layer. Server S masks it with a random
vector r, and sends [F(x − r)] to client C. Then S sets
its share to xS = r = {r1, r2, · · · , rK} mod p.

2. The client C decrypts [F(x − r)] and per-
forms the inverse FFT to obtain (x − r).
Then C sets its share to xC = x− r =
{x1 − r1, x2 − r2, · · · , xK − rK} mod p.

3. Now C and S interact with each other to find the maxi-
mum value xt and decide which xi can be ignored ac-
cording to the selected integer m, and set the ignored
one and the left xi to 0 and m − (xt − xi), respec-
tively. To be noted, the plaintext modulo is converted
to (m + 1), and there no longer exist negative values.
At the end of this procedure, C and S hold newly gen-
erated shares, xS = {r′1, r′2, · · · , r′K} mod (m+1) and
xC = {x′1 − r′1, x

′
2 − r′2, · · · , x′K − r′K} mod m + 1,

where x′i is 0 or m− (xt− xi) and r′i is randomly gen-
erated by S.

4. Next, to calculate the denominator of p′t, client C and
server S first calculate

exC
= {ex′1−r′1 , ex′2−r′2 , · · · , ex′K−r′K} and

exS
= {er′1 , er′2 , · · · , er′K}.

Then, they use Yao’s Garbled Circuits to calculate the
denominator of p′t. The boolean circuits used here for
Yao’s Garbled Circuits can be simply implemented
with ADDGate, MULGate and MUXGate, and we
ignore the details here. The xC and xS are used to
guarantee that every e(x

′
i−r
′
i mod m+1)+(r′i mod m+1)

does not exceed em+1 and decide whether to drop it.
The final calculation result, i.e., the denominator of p′t,
will be obtained by C.

At this point, since the numerator em is public and C has
the denominator of pt, C is able to calculate p′t. Note that,
the potential leakage resulting from p′t is out of scope of this

paper. Actually, it is a general problem of neural networks
[27]. Since the numerator of p′t, i.e. em, is public and con-
tains no information about p′t, the possible information that
could infer from the denominator of p′t is equal to p′t.

Security analysis. The possible privacy leakages are from
x1, x2, · · · , xK as they are all that used by the client to cal-
culate the final result. In our design, xi, i ∈ [1,K] remains
shared throughout the calculation, which means the client
can only obtain xi−ri. Since ri is a random number gener-
ated and kept by the server, xi is protected from the client.

5. Performance Evaluation
We implemented FALCON in C++. For fast Fourier

Transform (FFT), we used FFTW library [13]. For
additively homomorphic encryption, we used the Fan-
Vercauteren (FV) scheme [5]. For secure two-party com-
puting, we used Yao’s Garbled Circuits implemented by the
ABY framework [10]. Specifically, the number of slots n,
the plaintext module p, and the ciphertext module q are
needed for the initialization of the FV scheme. We chose
n = 2048, which means we can process up to 2048 ele-
ments in parallel, and the ciphertext module q was set to
1152921504382476289. The plaintext module p was set to
1316638721, which has 30-bit length and is enough for all
the intermediate values.

We tested FALCON on two computers, both of which are
equipped with Intel i5-7500 CPU with 4 3.40 GHz cores and
8GB memory, and have Ubuntu 16.04 installed. We let one
be the client C and the other play as the server S. We took
experiments in the LAN setting similar to previous work
[21, 18]. Each experiment was repeated for 100 times and
we report the mean in this paper.

5.1. Benchmarks for Layers

Here we introduce the performance of FALCON on in-
dividual layers. Since GAZELLE is the best known related
work, we compare FALCON with it in all layers except the
softmax layer, which is not implemented by GAZELLE. For
benchmarking, all input data to each layers are randomly
sampled from [0, p). Parameters of Conv and FC layers are
chosen from the CIFAR-10 model stated in Section 5.2.

We present the benchmarks for Conv and FC layers in
different input sizes. As shown in Table 1, for Conv layers,
we show the online running time with input (w × h × c)
and filter (fw × fh × c, k) using different frameworks. For
fully-connected layers, we report the running time with the
input vector of length li and the output vector of length
lo. Note that, the setup phases involve performing FFT on
filters and encrypting random values for masking, and the
online phases take only the server’s computation into ac-
count. As one can see from Table 1, FALCON outperforms
GAZELLE in both setup and online phases. Especially for

online phases, our efficient Conv and FC implementations
offer us over 10× less runtime.

Table 1. Benchmarks and Comparisons for Conv and FC.
Layer Input Filter/Output Framework Time (ms)

setup online

Conv
Layer

(28× 28× 1) (5× 5× 1, 5)
GAZELLE
FALCON

11.4
3.1

9.2
0.25

(16× 16× 128) (3× 3× 128, 128)
GAZELLE
FALCON

3312
615

704
51.2

FC
Layer

2048 1
GAZELLE
FALCON

16.2
1.2

8.0
0.1

1024 16
GAZELLE
FALCON

21.8
9.6

7.8
0.8

In Table 2, we report the running time and commu-
nication overhead of setup and online phases for ReLU
and Max Pooling layers. Comparing to data preprocess-
ing, the online communication overhead of ReLU and Max
Pooling operations is almost negligible. We can also see
that the optimized Max Pooling and ReLU operations have
reduced the computation and communication overhead in
all phases. Therefore, in ReLU and MaxPooling layers,
FALCON which uses the optimized version outperforms
GAZELLE which uses the original version.

Table 2. Benchmarks for ReLU and Max Pooling.

Operation Number of
Inputs

Time (ms) Comm (MB)
setup online setup online

Data
Preprocessing

1000
10000

32.3
265.5

14.5
136.4

4.82
48.2

1.45
14.9

ReLU
1000
10000

9.82
96.2

4.20
43.2

1.95
19.2

0.01
0.11

MaxPooling
1000
10000

12.1
100

5.6
45.5

1.94
20.0

0.01
0.12

ReLU+MaxPooling
1000
10000

21.9
196.3

9.8
88.7

3.89
39.2

0.02
0.23

Optimized
MaxPooling+ReLU

1000
10000

12.5
134.3

5.2
54.4

2.44
24.4

0.02
0.14

We tested the performance of our proposed protocol for
softmax function in different settings. As shown in Table 3,
both runtime and communication overhead of setup and on-
line phases grow with the precision l and the number of
classes K. These overhead is relatively small compared
with other layers in FALCON.

Table 3. Benchmarks for the Softmax.
Precision Classes Time (ms) Comm (MB)

setup online setup online

10−2
10

100
1000

8.56
58.7
574.8

3.89
24.5

254.6

0.996
9.96
99.6

0.0294
0.294
29.4

10−4
10

100
1000

8.66
60.3
588.0

4.02
26.7

257.6

0.996
9.96
99.6

0.0294
0.294
29.4

5.2. Evaluations on Real Models

We evaluated the performance of FALCON on two
datasets, MNIST and CIFAR-10. CNN models for them
are both from [21]. The CNN model for MNIST takes a
gray scale image with size 28× 28 as input and has 2 Conv,

2 FC, 3 ReLU and 2 Max Pooling layers; The CNN model
for CIFAR-10 takes a three channel image of size 32×32×3
as input and has 7 Conv, 1 FC, 7 ReLU and 2 Mean Pooling
layers. We show runtime cost and communication overhead
in both setup and online phases. To be noted, for the fairness
of comparison, softmax layer is excluded in both models.

Table 4. Performance Comparison on MNIST and CIFAR-10.

CNN Framework Time (s) Comm (MB)
setup online total setup online total

MNIST
MiniONN
GAZELLE
FALCON

3.58
1.09
0.64

5.74
0.28
0.18

9.32
1.37
0.82

20.9
40.5
40.5

636.6
21.6
21.6

657.5
62.1
62.1

CIFAR-10
MiniONN
GAZELLE
FALCON

472
15.5
10.5

72
4.25
3.31

544
19.8
13.8

3046
906
906

6226
372
372

9272
1278
1278

Since efficient and secure implementation for Conv and
FC layers are the main advantage in FALCON, in order to
highlight them, we replace implementations for ReLU and
Max Pooling in GAZELLE with the optimized version. The
results are shown in Table 4. When evaluating the online
overhead on both models, FALCON is running over 30×
faster than MiniONN while reducing communication over-
head by over 97%. The significant improvement in run-
ning time is due to the repeatedly use of FFT and lattice-
based homomorphic encryption, which saves many multi-
plications over ciphertexts.

5.3. Prediction Accuracy on Real Models

Since we treat decimal numbers as integers by proper
scaling, there might have accuracy concerns on the en-
crypted models. However, experimental results in Fig. 5
show that the loss of accuracy in FALCON is negligible,
and different schemes achieve nearly the same results.

Table 5. Prediction Accuracy on MNIST and CIFAR-10.
Plaintext MiniONN GAZELLE FALCON

MNIST 99.31% 99.0% 99.0 99.26%
CIFAR-10 81.61% 81.61 % 81.60 81.61%

6. Conclusion
In this paper, we presented a fast and secure evaluation

approach for CNN predictions. For linear layers including
Conv and FC, our FFt-based scheme achieves a low latency
performance. For non-linear layers including ReLU and
Max Pooling, we provided a detailed implementation for
our optimized processing pipeline. For the softmax layer
that has not been studied in previous work, we introduced
the first efficient and privacy-preserving protocol.

Acknowledgements This work is supported in part by the
National Natural Science Foundation of China under Grant
No. 61972371 and Youth Innovation Promotion Associ-
ation of the Chinese Academy of Sciences (CAS) under
Grant No. 2016394. K. Xue is the corresponding author
of this paper.

References
[1] Execution order of relu and max-pooling. https:

//github.com/tensorflow/tensorflow/
issues/3180. Accessed Nov. 11, 2019.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
learning with differential privacy. In Proceedings of the 23th
ACM Conference on Computer and Communications Secu-
rity (CCS’16), pages 308–318. ACM, 2016.

[3] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang,
Li Deng, Gerald Penn, and Dong Yu. Convolutional neural
networks for speech recognition. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 22(10):1533–
1545, 2014.

[4] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anub-
hai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper,
Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep
speech 2: End-to-end speech recognition in english and man-
darin. In Proceedings of the 33rd International Conference
on Machine Learning (ICML’16), pages 173–182, 2016.

[5] Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and
Vincent Zucca. A full rns variant of fv like somewhat ho-
momorphic encryption schemes. In Proceedings of the 23rd
International Conference on Selected Areas in Cryptography
(SAC’16), pages 423–442. Springer, 2016.

[6] Dan Bogdanov, Sven Laur, and Jan Willemson. Share-
mind: A framework for fast privacy-preserving computa-
tions. In Proceedings of the 13th European Symposium on
Research in Computer Security (ESORICS’08), pages 192–
206. Springer, 2008.

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(leveled) fully homomorphic encryption without bootstrap-
ping. ACM Transactions on Computation Theory, 6(3):13:1–
13:36, 2014.

[8] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In Proceedings of the 38th
IEEE Symposium on Security and Privacy (SP’17), pages
39–57, 2017.

[9] Google Cloud. Vision api - image content analysis. https:
//cloud.google.com/vision/, 2018. Accessed
Nov. 11, 2019.

[10] Daniel Demmler, Thomas Schneider, and Michael Zohner.
Aby-a framework for efficient mixed-protocol secure two-
party computation. In Proceedings of the 22nd An-
nual Network and Distributed System Security Sympo-
sium(NDSS’15), 2015.

[11] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko,
Susan M Swetter, Helen M Blau, and Sebastian Thrun.
Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 542(7639):115–118, 2017.

[12] Junfeng Fan and Frederik Vercauteren. Somewhat practi-
cal fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

[13] FFTW. Fast fourier transform. http://www.fftw.org,
2018. Accessed Nov. 11, 2019.

[14] Craig Gentry, Shai Halevi, and Nigel P Smart. Fully ho-
momorphic encryption with polylog overhead. In Proceed-

ings of the 31st Annual International Conference on the The-
ory and Applications of Cryptographic Techniques (EURO-
CRYPT’12), pages 465–482. Springer, 2012.

[15] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin
Lauter, Michael Naehrig, and John Wernsing. Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In Proceedings of the 33rd Inter-
national Conference on Machine Learning (ICML’16), pages
201–210, 2016.

[16] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to play any mental game. In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing (STOC’87), pages
218–229. ACM, 1987.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the 29th IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’16), pages 770–778, 2016.

[18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. GAZELLE: A low latency framework for se-
cure neural network inference. In Proceedings of the 27th
USENIX Security Symposium (USENIX Security’18), 2018.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems (NIPS’12), pages 1097–1105, 2012.

[20] Shaohua Li, Kaiping Xue, Chenkai Ding, Xindi Gao,
David SL Wei, Tao Wan, and Feng Wu. FALCON:
A fourier transform based approach for fast and secure
convolutional neural network predictions. arXiv preprint
arXiv:1811.08257, 2018.

[21] Jian Liu, Mika Juuti, Yao Lu, and N Asokan. Oblivious neu-
ral network predictions via MiniONN transformations. In
Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS’17), pages 619–631. ACM,
2017.

[22] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition(CVPR’15), pages 3431–3440, 2015.

[23] Payman Mohassel and Yupeng Zhang. Secureml: A system
for scalable privacy-preserving machine learning. In Pro-
ceedings of the 38th IEEE Symposium on Security and Pri-
vacy (SP’17), pages 19–38. IEEE, 2017.

[24] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M Songhori, Thomas Schneider, and Farinaz
Koushanfar. Chameleon: A hybrid secure computation
framework for machine learning applications. arXiv preprint
arXiv:1801.03239, 2018.

[25] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz
Koushanfar. Deepsecure: Scalable provably-secure deep
learning. arXiv preprint arXiv:1705.08963, 2017.

[26] Ahmed Salem, Yang Zhang, Mathias Humbert, Mario Fritz,
and Michael Backes. Ml-leaks: Model and data indepen-
dent membership inference attacks and defenses on machine
learning models. arXiv preprint arXiv:1806.01246, 2018.

[27] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and
Michael K Reiter. Accessorize to a crime: Real and stealthy

https://github.com/tensorflow/tensorflow/issues/3180
https://github.com/tensorflow/tensorflow/issues/3180
https://github.com/tensorflow/tensorflow/issues/3180
https://cloud.google.com/vision/
https://cloud.google.com/vision/
http://www.fftw.org

attacks on state-of-the-art face recognition. In Proceedings
of the 23rd ACM Conference on Computer and Communica-
tions Security (CCS’16), pages 1528–1540. ACM, 2016.

[28] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep
learning in medical image analysis. Annual Review of
Biomedical Engineering, 19:221–248, 2017.

[29] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep
learning. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS’15), pages
1310–1321. ACM, 2015.

[30] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. In Proceedings of the 38th IEEE Sympo-
sium on Security and Privacy (SP’17), pages 3–18, 2017.

[31] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov.

Machine learning models that remember too much. In Pro-
ceedings of the 24th ACM Conference on Computer and
Communications Security (CCS’17), pages 587–601. ACM,
2017.

[32] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Stealing machine learning models via
prediction apis. In Proceedings of the 25th USENIX Security
Symposium (USENIX Security’16), pages 601–618, 2016.

[33] Shmuel Winograd. On computing the discrete fourier trans-
form. Mathematics of computation, 32(141):175–199, 1978.

[34] Andrew Chi-Chih Yao. How to generate and exchange se-
crets. In Proceedings of the 27th Annual Symposium on
Foundations of Computer Science (FOCS’86), pages 162–
167. IEEE, 1986.

