
Edge Computing Aided Congestion Control using
Neuro-Dynamic Programming in NDN

Jin Qin∗, Yitao Xing∗, Wenjia Wei†, Kaiping Xue∗†‡
∗School of Cybersecurity, University of Science and Technology of China, Hefei 230027, China
†Department of EEIS, University of Science and Technology of China, Hefei 230027, China

‡Corresponding Author, kpxue@ustc.edu.cn

Abstract—Named data networking (NDN) is an emerging net-
work paradigm that decouples content from its storage location
by providing one or more content copies and distributing them
within the whole network. Congestion control is a fundamental
and important problem in NDN, but it has not been well
solved yet. Existing works can be divided into three main types,
receiver driven flow based control, hop-by-hop interest shaping
and hybrid control. While they are faced with more or less
high computational complexity, multi-content source and multi-
transmission path problems, we proposed our edge computing
aided congestion control scheme (EACC). The main idea is to
detect congestion along the transmission path and avoid it by
interest forwarding control at edge nodes. We add a new field to
data packet to record the congestion status of the transmission
path when it returns. After that, we deploy the core computing
functions of the solution at edge nodes, and formulate the interest
packet forwarding control into a local MDP (Markov Decision
Process) problem based on the returned path congestion status
and local user request information. Then we use neuro-dynamic
programming (NDP) to solve this decision problem and present
a practical implementation at edge nodes. The proposed scheme
is implemented in ndnSIM simulator and compared to other two
methods. Simulation results show the effectiveness of our scheme.

Index Terms—Named-Data Networking (NDN), congestion
control, Markov Decision Process (MDP), neuro-dynamic pro-
gramming (NDP)

I. INTRODUCTION

With the development of network technology and user
demands, information content services represented by online
videos and social networks have dominated Internet services.
Traditional TCP/IP networks is a host-centric communication
architecture. When faced with these new network applications,
it often encounters challenges such as redundant transmission,
multi-path transmission, and user mobility. Information centric
networking (ICN) is an emerging network paradigm that
decouples content from its storage location by providing one
or more content copies and distributing them within the whole
network. Contents can be cached on any device at any location
to meet the same request received in the future and reduce
redundant transmission in the network.

Named data networking (NDN) [1] is a promising imple-
mentation of ICN which follows the same basic philosophy
as it is a content centric architecture. Content acquisition in
NDN is based on an user-driven publish/subscribe model,
whereby users’ requests may be satisfied by any network
device. Interest packets and data packets are the two basic

types of data packets in NDN and they have an one-to-
one correspondence. At the same time, due to the content-
centric data acquisition and name-based forwarding control,
the transmission in NDN is quite different from that in
traditional TCP/IP networks. Receivers can get content from
the origin server or any intermediate node that has the cached
content and requests can be dynamically multi-path forwarded
because of the separation of routing and forwarding in NDN.

Due to these new features of transmission mentioned above,
traditional TCP congestion control [2] cannot be directly
applied to NDN. Different content sources and paths have
different RTTs, making RTO-based congestion detection un-
reliable and the rate control mechanism based on single
congestion control window no longer applicable. In addition,
the data packets in NDN transmission are not necessarily
ordered, which also makes the congestion detection based on
redundant ACK invalid. But on the other hand, NDN also has
its unique advantages when it comes to congestion control.
First, there is an one-to-one correspondence between interest
packet and data packet, so we can control and prevent the
congestion at the receiving end by controlling the request
rate. Second, intermediate nodes can also assist in congestion
control, such as feed back network status information, control
request forwarding rates and adjust forwarding strategies.

Existing works on NDN congestion control problem can
be divided into three main types: receiver driven flow based
control, hop-by-hop interest shaping control and the hybrid of
both. Receiver driven flow based control performs in a TCP-
like form and needs to maintain the state of each stream which
brings a large load. It also does not work well when the content
comes from multiple servers or multiple content caches. Hop-
by-hop control adjusts the forwarding rate and forwarding path
of interest packets at intermediate nodes, but it brings huge
computational burden to the core networks and cannot resolve
the root cause of the congestion, that is the interest requesting
rate of users exceeds the capacity of network. Besides, some
existing schemes do not pay attentions to content fairness and
user fairness.

In order to effectively solve the congestion problem in NDN
and avoid bringing large computational complexity to core
networks at the same time, we propose our edge computing
aided congestion control scheme which named EACC in this
paper. The scheme can be divided into two main parts: (1) The
detection and feedback of path congestion information. We

978-1-7281-8298-8/20/$31.00 ©2020 IEEE

GL
O

BE
CO

M
 2

02
0

- 2
02

0
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

72
81

-8
29

8-
8/

20
/$

31
.0

0
©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
42

00
2.

20
20

.9
32

23
65

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 18,2021 at 02:14:08 UTC from IEEE Xplore. Restrictions apply.

detect the congestion at each intermediate node by monitoring
the buffer occupancy, and mark the information in the data
packets returned in real time for feedback. (2) Interest forward-
ing control at edge nodes. We formulate the forwarding control
of the edge node as an MDP problem, and schedule interest
packets based on the returned path congestion information and
local user requests. The goal of each decision is to maximize
the overall network revenue.

Compared with other existing solutions, we propose a new
idea to solve the congestion control problem in NDN. The
main contributions of this paper can be briefly summarized as
follows:

• We propose an edge computing aided congestion con-
trol scheme (EACC) in this paper. The core computing
unit is deployed at each edge router to control users’
optimal interest forwarding based on local information
and returned network congestion status. The forwarding
process of edge node is modeled as an MDP problem,
and its goal is to maximize the overall network revenue
under the precise of avoiding congestion. We solve the
decision problem using neuro-dynamic programming and
present a practical implementation at edge nodes.

• We detect local congestion information at intermediate
nodes by monitoring buffer occupancy and fill it into the
new field of data packets to feedback the congestion sta-
tus of corresponding path to edge routers. While ensuring
the accuracy and timeliness of congestion detection, it
also avoids bringing excessive computational complexity
to intermediate nodes.

• We implement the proposed congestion control scheme
in ndnSIM simulator and compare it with other two solu-
tions, ICP and Best Route, which are receiver driven flow
based control and built-in forwarding control respectively.
Simulation results verify the effectiveness and advantages
of EACC.

The rest of this paper is organized as follows: The back-
ground and related work are briefly described in Section
II. Our proposed congestion control scheme is presented in
Section III, followed by the performance evaluation in Section
IV. Finally, we conclude the paper in Section V.

II. BACKGROUND AND RELATED WORK

A. Congestion Control in NDN

In NDN, each forwarding interface of router has a corre-
sponding buffer. When data packets overflow the transmission
buffer, congestion may occur in the network. That is, when
the arrival rate of the data packet exceeds the processing rate
of the router or the forwarding rate of the link, it will cause
losses of data packets or interest packets due to congestion,
and then trigger retransmission.

In order to avoid interest flooding, the size of data packet
(or what we called data chunk) is usually set larger. Because
of this, the congestion in NDN mainly comes from data
chunks sent by content servers or the intermediate nodes
where contents copies are cached rather than interest packets

forwarded by users or downstream nodes. Data packets always
return along the inverse path of the interest packets and
there is an one-to-one correspondence between them, so we
can schedule and control the returned data by shaping the
forwarding of the interest packets.

B. Related Work

As mentioned before, existing congestion control works in
NDN is mainly categorized into three groups: receiver driven
flow based control, hop-by-hop control and hybrid control.

Receiver driven flow based control usually detects link
congestion through timeouts or feedback signals. ICP [3] is
a typical window-based receiver driven control scheme. It
follows the idea of TCP congestion control and applies the
AIMD (Additive Increase Multiplicative Decrease) strategy
to window adjustment. ICP uses delay as a signal to detect
congestion, and retransmits interests after timeout to ensure
transmission reliability. Mahdian et al. presented MIRCC [4]
which is a rate-based multi-path aware ICN congestion control
approach. MIRCC proposes an algorithm to calculate the rate
of each ICN link and and then introduces a method to make the
scheme multi-path aware. As data content in NDN may come
from multiple sources, there is no accurate RTT estimation,
which makes the scalability of receiver driven flow based
control is poor. In addition, receiver driven control is not
sensitive to the occurrence of congestion and usually has a
large lag.

Hop-by-hop control adjusts node’s interest forwarding rate
or policy based on the local congestion information detected
at each intermediate node. HoBHIS [5] is a rate-based hop-
by-hop congestion control mechanism, which calculates the
available capacity of each CCN router in a distributed manner
to adjust its session interest rate and therefore dynamically
adjusts its data rate and transmission buffer occupancy. Wang
et al. [6] analyzed the relationship between interest packets
and data packets and pointed out that both the two kinds of
packets have an impact on congestion. And based on this, they
proposed a scheduling method that guarantees fairness. Hop-
by-hop control is more like a best-effort forwarding adjustment
which cannot fundamentally resolve congestion, because the
root cause of congestion is that users’ request rate is too high.

Hybrid control is usually a combination of the above two
control ideas. Schneider et al. proposed PCON [7] which uses
packet delay detection based on the CODEL queue without
the need to assume link BDP and availability information
are already known, and the user request rate adjustment and
multi-path forwarding adjustment are both triggered by marked
packets after congestion occurs. Yang et al. [8] added a
penalty factor term to each congested link and modeled it as
a global optimization problem according to the corresponding
cost. The problem is solved using partial dual decomposition.
Compared with the other two kinds, hybrid control is more
comprehensive, but at the same time, it has higher complexity
and brings additional communication overhead.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 18,2021 at 02:14:08 UTC from IEEE Xplore. Restrictions apply.

III. OUR PROPOSED SCHEME

In this section, we describe the design and implementation
of our proposed EACC congestion control scheme.

A. Motivation and overview

Congestion control is a fundamental and very important
problem in NDN, but it has not been well solved yet. While
existing works are faced with more or less bothers of high
computational complexity, multi-content source and multi-
transmission path problems, we try to propose a solution to
avoid these problems as much as possible while ensuring
efficiency. The main design goals of our scheme can be
summarized into the four points: lightweight, low latency, high
efficiency and user fairness.

In order to achieve the above goals, we design EACC from
two aspects. Firstly, we detect congestion by monitoring the
buffer occupancy at intermediate nodes and the information
is carried in the return data packets. This ensures EACC is
lightweight and low latency. Secondly, we deploy the core
computing unit at each edge router to control users’ optimal
interest forwarding. The forwarding process of edge nodes is
modeled as an MDP problem and we give a practical solution
using neuro-dynamic programming. Each user request will
bring an independent event to trigger the decision, achieving
the fairness between requests. These ensure the high efficiency
and user fairness of EACC.

B. Detection and feedback of path congestion

Content

Name

Signature&Signed

Info
Data

Congestion

tag

Congestion

info

Fig. 1. Data Packet format

We first record and feedback the path congestion status
information corresponding to each interface of edge nodes.
The buffer occupancy is detected at each intermediate node,
and when the local congestion occurs, the signal is transmitted
to downstream by marking data packets. We add congestion-
tag and congestion-info fields in the packet header to record
the congestion information on the path, which is shown in
Fig. 1. The tag field equals to 0 or 1 where 1 means congestion
on at least one link on the entire path. And the info field
is a 8-bit field, whose the i-th bit equals to 1 indicates that
there is congestion on the i-th hop link from the current node.
The processing steps of the info field are: First, when the
node receives a data packet, if its congestion-tag equals to
1 and there are more than one egress faces, the info field
will be shifted to the right by 1 bit. Second, if there is local
congestion, the first bit of the congestion-info field of outgoing
data packets will be set to 1 and turn the congestion-tag
into 1. The overall architecture of the congestion information
feedback is shown in Fig. 2. Edge router R1 will receive data
packets with congestion information 01000000 from path R1-
R2, and data packets with congestion information 10000000
and 10100000 from path R1-R5.

R4R3R2

R1

R5 R6

Marked

Data

Marked

Data

Fig. 2. Congestion info piggyback

When congestion occurs at a hop on the path, the specific
information will be marked in data packets and delivered
downstream until the edge node. When edge node receives
these tagged packets, it calculates the total congestion cost on
the egress path based on the information it carries.Then, the
total path congestion cost at the edge node is calculated as:

cp =
∑
i

βi−1xi, (1)

where xi represents the value of the i-th bit of the info field
and β is the discount factor that is set to 0.7 in our scheme.
Edge node uses the maximum congestion cost received in
the average VRTT (Virtual Round-Trip Time) period as the
final congestion cost of the egress path corresponding to the
interface. When performing interest forwarding, we consider
the actual available bandwidth of the current link as

b
′

l =
bl

1 + cpl
. (2)

C. Interest forwarding control at edge nodes

1) Problem formulation: Based on the feedback congestion
information and local user information, we formulate the
interest forwarding control at edge nodes as an MDP (Markov
Decision Process) problem similarly to [9]. For a given edge
router, it is assumed that the router has a set of interfaces
denoted by L = {1, 2, . . . , l, . . . , L}, where the egress path
bandwidth corresponding to the interface l is Bl. For the
contents in NDN, we assume that they can be divided into
M = {1, 2, . . . ,m, . . . ,M} categories in total, and for the
same type of content, they have the same bandwidth require-
ments and benefits. For a request for category m content,
suppose its bandwidth requirement is bm, and the problem
is modeled as follows.

Let slm(t) denotes the number of m-type requests that have
been forwarded but have not received data on path l at time
t, then the state space S is:∑

m

slm(t) ∗ bm ≤ Bl, l ∈ L. (3)

Then we define three basic events and two additional events,
that is, the correction events caused by the congestion cost
are: the basic events include el,m,0, el,m,1 and el,m,2. el,m,0

indicates that the corresponding data from the upstream is
received, el,m,1 indicates that the request can be matched
locally, otherwise it is indicated as an event el,m,2 which

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 18,2021 at 02:14:08 UTC from IEEE Xplore. Restrictions apply.

means select the path l to forward the user request. The
correction events include el,0,1 and el,0,0. el,0,1 indicates that
the congestion cost increases, which is equivalent to a virtual
request on the path l without return of data, and el,0,0 indicates
that the congestion cost decreases, which is equivalent to that
some or all of the virtual requests are satisfied. The whole
event sets are represented as:

E = {el,m,0, el,m,1, el,m,2, el,0,0, el,0,1|∀l ∈ L,∀m ∈ M}.

Based on the above types of events, the corresponding set of
actions is as follows

A = {a0, . . . , al, . . . , aL+l, . . . , a2L+1, a2L+2},

which respectively represents the actions “response to content
requirements”, “choose path l to forward requests”, “choose
path l to forward virtual requests”, “response to virtual request-
s” and “reject requests”. To be noticed, event el,m,0 or event
el,0,0 will not trigger a decision but just update the network
status of the node.

The reward function r(s, e, a, s′) is defined as bellow

r(s, e, a, s′) = I1 ∗ (cm + ul,m) + I2 ∗ vl,m − I3 ∗ pm, (4)

where pm is the rejection cost when the interest is denied by
edge router, cm is the transmission benefit which equals to
the content provider’s economy benefit, ul,m represents the
user benefit when the request is forwarded through path l.
vl,m equals to 0 when l is the corresponding feedback path,
otherwise it is negative. I1, I2, I3 are three 0 or 1 variables
which satisfy I1+I2+I3 = 1. When they are equal to 1, they
respectively stand for forwarding ordinary interest , forwarding
virtual interest and rejecting interest.

After defining the reward function r(s, e, a, s′), the change
in state s(t) is a finite-state continuous-time MDP under a
given policy µ, and s(t0) is the initial state. The long-term
average reward of the process with strategy µ is

v(µ, s0) = lim
N→∞

1

tN
∗ E(

N∑
n=0

r(s(tn), e(tn), a(tn), s(tn+1)).

The most direct solution is the reverse dynamic program-
ming algorithm, which needs to traverse all feasible actions
in each state. If for any policy x, there is v(µ∗) > v(µ), the
policy µ∗ is called the average cost optimal policy, and the
optimal performance value is η∗. The corresponding Bellman
[10] equation is

v∗τ(s) + h∗(s) = E(max
a∈A

[r(s, e, a, s′) + h∗(s′)]), (5)

h∗(s) is the optimal state value function, and τ(s) is the state
dwell time. The optimal policy µ∗ can be obtained as

µ∗(s, e) = argmax
a∈A

[r(s, e, a, s′) + h∗(s′)]. (6)

2) Neuro-Dynamic Programming solution: Standard dy-
namic programming can be used to solve the above model,
but it requires complex calculation and may cause dimen-
sional disaster. So here we consider using neuro-dynamic

programming (NDP) [11] [12] to solve this MDP model. The
architecture of NDP is shown in Fig. 3, which includes four
parts: feature extraction, function approximation, parameter
update, and decision module.

Value

function

x(s) a

Action

s

State
function

approximation

feature

extraction

parameter

update

decision

module

vector

q q

q

Fig. 3. Architecture of NDP

Feature extraction refers to the process of transforming
the input state s into a feature vector x(s). This module
is the core module of the NDP algorithm and the goal of
feature extraction is to represent the feature vector with the
smallest dimension as possible without feature loss. Based on
the characteristics of NDN, we here extract the feature vector
as follows. xlm represents the bandwidth consumption on path
l caused by m type contents and xlm = slm∗bm. xl represents
the total bandwidth consumption on path l and xl =

∑
m xlm.

x(s) = [1, . . . , 1, x11, . . . , xlm, . . . , xLM , x2
1, . . . , x

2
L]

T

The calculation complexity is more considered when select-
ing approximation function, so we choose a linear function
as the approximate state value function here with h̃(s,θ) =
θx(s). θ is a parameter vector defined as

θ = [θ(1), . . . , θ(L), θ(11, b), . . . , θ(lm, b), . . . , θ(LM, b),

θ(1, b, b), . . . , θ(L, b, b)].

Then the approximate function can be expressed as

h̃(s,θ) =
∑
l

θ(l) +
∑
l

∑
m

[θ(lm, b)xlm] +
∑
l

[θ(l, b, b)x2
l].

The main task of the parameter update module is to reduce the
error between the approximate value function and the optimal
value function. Parameter update is a supervised iterative
process with feedback and here we use the simplest TD(0)
method to update parameter θ. The k-th update rule and the
optimal average reward ṽ are defined as follows

θk = θk−1 + γkdk ▽θ h̃(stk−1
,θk−1), (7)

ṽk = ṽk−1 + ηk(r(stk−1
, e, atk−1

, stk)− (tk − tk−1)ṽk−1),

where γk and ηk are the small step size parameters, dk is the
time difference, and ▽α can help accelerate the convergence.
The definition of dk is

dk = r(stk−1
, e, atk−1

, stk)− (tk − tk−1)ṽk−1

+h̃(stk ,θk−1)− h̃(stk−1
,θk−1).

(8)

Substituting the optimal difference function h̃(s,θ) above to
obtain the optimal strategy is

µθ(s, e) = argmax
a∈A

[r(s, e, a, s′) + h̃(s′,θ)]. (9)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 18,2021 at 02:14:08 UTC from IEEE Xplore. Restrictions apply.

3) Decision process: Finally, the decision process can be
summarized in the following Algorithm 1:

Algorithm 1: Decision process of interest forwarding
control at edge nodes.

Input: initial state: s0, initial parameter vector: θ0;
initial approximate value function: h̃(s0,θ0);
set step length sequence γi = 1/i, ηi = 1/i;
Iteration number i = 1;

1 while given s ∈ S, e ∈ E do
2 //new interest arrival event
3 if e = el,m,2, l ∈ L,m ∈ M then
4 obtain an approximate optimal solution µθ(s, e)

according to equation (9),
5 end
6 //congestion price increase event
7 if e = el,0,1, l ∈ L then
8 turn the event into series of virtual requests on the

corresponding path, obtain an approximate optimal
solution µθ(s, e) according to equation (9),

9 end
10 //congestion price decrease or data event
11 if e = el,0,0 or el,m,0, l ∈ L,m ∈ M then
12 update network status and free up bandwidth,
13 end
14 Update transfer status after taking action and recalculate

the parameter vector θ according to equation (7), and then
modify the approximation value function h̃(s,θ).

15 Increase the iteration number i = i+ 1.
16 end

D. User sending rate adjustment

For the user’s own sending rate, we use the modified
traditional AIMD sending window adjustment strategy. The
growth of the user window is triggered by each return of
data, and the decrease is triggered by feedback information
or RTO timeout. When the resource reaches the upper limit,
edge nodes will reject new requests and then feedback signals
to users. And because the cost and latency of interacting with
edge nodes is low, it can speed up in the window growth stage
to increase the utilization of edge access links. Besides, it is
shown in subsection-C that the scheduling of edge nodes is
triggered by single request event, so the scheme can ensure
that requests of different users are fair and the adaptability of
user access and departure.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme. We conduct experiments based on ndnSIM (version
2.7, a ns-3 based NDN simulator) under the Ubuntu 18.04
virtual machine and compare our scheme to ICP [3] and
BestRoute. ICP is a typical receiver driven control method
and BestRoute is the built-in forwarding scheme in NDN.
The simulation topology is shown in Fig. 4, where “ER”
represents an edge router, “R” represents a core router, and
“CP” corresponds to a content provider. The topology includes
the several typical scenarios in NDN such as multi-source,
multi-path and shared bottleneck links, so it can also be
extended to more complex topologies.

CP2

ER1

ER2
R5R4

R3

R2

R1

ER

CP

ER

CP

ER1 R1 R3

CP2

R4

CP1

Fig. 4. Simulation scenario

Here we set the capacity of each link to 10Mbps and the
propagation delay to 10ms. Each edge node deploys two users
to send interest packets at the same rate, and the sending rate is
equal to the number of requests per user per second. There are
four types of content, and the data size corresponding to each
content is 1, 2, 3, and 4 KB respectively. The user’s requests
for different contents are distributed in proportion. We set up
different initial user interest sending rates and conduct serval
simulations. Each simulation lasts for 10s. Then we compare
the different schemes in terms of content acquisition delay,
end-to-end retransmission and link utilization.

100 200 300 400 500

30

40

50

60

70

80

A
v
e

ra
g

e
 d

e
la

y
 (

m
s
)

Initial User Sending Rate (Interests/s)

 EACC

 ICP

 BestRoute

Fig. 5. Average data acquisition delay

We first compare the content acquisition delay with different
initial user sending rates. The average end-to-end delay refers
to the average of data acquisition time of all the interest
requests sent by four different consumers accessed to the edge
routers respectively. As it is shown in Fig. 5, EACC has the
best performance, and this advantage is more obvious when
the user sending rate is higher. This is because EACC has
effectively controlled the forwarding of interest in the vicinity
of the source, and only continues to forward requests when
the link resources are sufficient, ensuring that each sent request
can be effectively satisfied. ICP can achieve good results when
the network resources are sufficient, but it can not deal well
with complex multi-path scenario when the traffic load is
heavy. BestRoute only regulates and controls the forwarding
of interest packets at intermediate nodes, which is a best-effort

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 18,2021 at 02:14:08 UTC from IEEE Xplore. Restrictions apply.

solution. It cannot effectively solve the problem from the root
cause that is user requests exceed the network capacity.

100 200 300 400 500

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

N
u

m
b

e
r

o
f
re

tr
a
n

s
m

is
s
io

n
s

Initial User Sending Rate (Interests/s)

 EACC

 ICP

 BestRoute

Fig. 6. Number of end-to-end retransmissions.

Secondly, we compare the number of end-to-end data re-
transmissions, that is the number of users’ re-requests caused
by packet losses or timeouts. As we can see from Fig. 6,
when network resources are sufficient, all three schemes have
good performance. But with the increase of user sending rate,
the performances of ICP and BestRoute decrease significantly.
This is because they, especially the BestRoute strategy, cannot
effectively control the number of user requests injected into
the network.The returned data packets will compete with each
other for link resources, resulting in a large number of packet
losses and retransmissions. On the contrary, EACC filters
user requests at edge nodes, effectively reducing transmission
pressure and avoiding data transmission exceeding network
capacity.

100 200 300 400 500

0

9

18

27

36

45

54

63

72

81

90

99

U
ti
liz

a
ti
o

n
 o

f
lin

k
s
 (

%
)

Initial User Sending Rate (Interests/s)

 EACC

 ICP

 BestRoute

Fig. 7. Average utilization ratio of links

Finally, we compare the link utilization ratio under the
three different schemes. As shown in Fig. 7, BestRoute has
the highest average links utilization. As users’ request rates
increase, the traffic load of links under BestRoute strategy
will increase rapidly and cause packet loss and large content
acquisition delay. ICP adjusts the user sending rate according
to network conditions, which can also reduce the traffic load.

As for EACC, the main idea is to avoid congestion. EACC
controls the traffic load in the whole network by filtering
interests at edge nodes, thereby ensuring lower transmission
delay and quality of service.

V. CONCLUSION

In this paper, we proposed a novel scheme based on path
congestion detection and edge forwarding control to solve the
congestion control problem in NDN. We performed congestion
detection at each intermediate node and feeded the information
back to edge nodes hop by hop through the marked data pack-
et. We formulated the interest forwarding control at edge node
into a MDP problem based on the local request information
and feedback congestion status, and we solved the problem
with neuro-dynamic programming algorithm using the TD(0)
update method. Finally, we evaluated the performance of our
proposed mechanism by comparing it with two other methods.
Simulation results show that our scheme has good performance
in terms of delay, data retransmission and link utilization.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China under Grant No. 61972371
and Youth Innovation Promotion Association of the Chinese
Academy of Sciences (CAS) under Grant No. 2016394.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke et al., “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
2014.

[2] V. Jacobson, “Congestion avoidance and control,” SIGCOMM Comput.
Commun. Rev., vol. 18, no. 4, pp. 314–329, Aug. 1988.

[3] G. Carofiglio, M. Gallo, and L. Muscariello, “Icp: Design and evaluation
of an interest control protocol for content-centric networking,” in 2012
Proceedings IEEE INFOCOM Workshops, March 2012, pp. 304–309.

[4] M. Mahdian, S. Arianfar, J. Gibson, and D. Oran, “Mircc: Multipath-
aware icn rate-based congestion control,” in Proceedings of the 3rd ACM
Conference on Information-Centric Networking, New York, NY, USA,
2016, p. 110.

[5] N. Rozhnova and S. Fdida, “An effective hop-by-hop interest shaping
mechanism for ccn communications,” in 2012 Proceedings IEEE INFO-
COM Workshops, March 2012, pp. 322–327.

[6] Y. Wang, N. Rozhnova, A. Narayanan, D. Oran, and I. Rhee, “An
improved hop-by-hop interest shaper for congestion control in named
data networking,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 55–60, Aug. 2013.

[7] K. Schneider, C. Yi, B. Zhang, and L. Zhang, “A practical congestion
control scheme for named data networking,” in Proceedings of the 3rd
ACM Conference on Information-Centric Networking, 2016, p. 2130.

[8] W. Yang, Y. Qin, and Y. Yang, “An interest shaping mechanism in
ndn: Joint congestion control and traffic management,” in 2018 IEEE
International Conference on Communications (ICC), May 2018, pp. 1–
6.

[9] J. Yao, B. Yin, and X. Tan, “A smdp-based forwarding scheme in named
data networking,” Neurocomputing, vol. 306, pp. 213 – 225, 2018.

[10] R. Bellman, “On the theory of dynamic programming,” Proc Natl Acad
Sci, vol. 38, no. 8, pp. 716–719, Aug. 1952.

[11] P. Marbach, O. Mihatsch, and J. N. Tsitsiklis, “Call admission con-
trol and routing in integrated services networks using neuro-dynamic
programming,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 2, pp. 197–208, 2000.

[12] K. Zhu, Y. Ran, E. Yang, and J. Yang, “Joint admission control
and routing via neuro-dynamic programming for streaming video over
sdn,” in 2017 13th International Wireless Communications and Mobile
Computing Conference (IWCMC), 2017, pp. 20–25.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 18,2021 at 02:14:08 UTC from IEEE Xplore. Restrictions apply.

