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Abstract—Truth discovery is an effective method to infer
truthful information from a large amount of sensory data in
mobile crowdsensing systems. Privacy-preserving truth discovery
schemes require the cloud server not to access each worker’s
sensory data directly so that the privacy of sensory data can be
preserved. In some specific applications such as sparse mobile
crowdsensing, workers can only contribute sensory data on
a small part of sensing tasks, implying that the information
of which tasks are completed by a worker should also be
preserved. However, existing privacy-preserving truth discovery
schemes do not consider such sparse data scenarios in mobile
crowdsensing systems. In this paper, we first identify the privacy
issues in truth discovery when sensory data are sparse. To
address these issues, we design a privacy-preserving truth
discovery scheme by employing the additively homomorphic
cryptosystem and additive secret sharing with two non-colluding
servers. Through detailed analysis and extensive experiments,
we demonstrate that our proposed scheme can satisfy strong
privacy-preserving requirements with low computation and
communication overhead.

Index Terms—Truth Discovery, Privacy Preservation, Sparse
Data, Mobile Crowdsensing

I. INTRODUCTION

Over the past few years, developments in the field of cloud
computing and the Internet of Things have led to a growing
interest in mobile crowdsensing systems. In a typical mobile
crowdsensing system, the cloud server can analyze the sensory
data provided by a number of mobile devices (usually referred
to as workers, e.g., smartphones, wearables, and on-board
computers). Since the quality of sensory data provided by
different workers may vary greatly, how to derive the truthful
information from sensory data of different qualities becomes
a major obstacle. To address this challenge, an effective
method called truth discovery [1], [2] is proposed, where the
general principle is to calculate each worker’s reliability degree
(usually referred to as weight) before estimating the truths.

Although truth discovery can help cloud server to derive
truthful information in an effective way, it poses threats to
workers’ privacy directly. Several researchers [3]–[8] pointed
out that the data provided by workers are sensitive to some
extent, and designed diverse privacy-preserving truth discovery
schemes to assure workers’ privacy. These works mainly focus
on the privacy of workers’ sensory data, and some of them
(such as [6]–[8]) further aruge that the privacy of workers’
weights should also be preserved. So far, these schemes can
only be applied to the situation where workers have to execute
all sensing tasks. However, due to the variety of task types and

workers’ abilities, requiring each worker to execute all sensing
tasks seems unrealistic. Especially in the mobile crowdsensing
systems, it is quite common that a worker only executes partial
tasks for saving energy [9], [10]. Under these circumstances,
the sensory data provided by workers probably are only
concerned with partial sensing tasks, namely, the sensory data
are sparse. To the best of our knowledge, there has been little
discussion about privacy-preserving truth discovery in such a
sparse data environment.

In this paper, we focus on the privacy issues of sparse
data for truth discovery and propose a privacy-preserving truth
discovery scheme to handle these issues. In particular, our
contributions are summarized in the following:
• We identify the privacy requirements in the situation of

data sparsity for truth discovery and design an efficient
privacy-preserving truth discovery scheme.

• By employing additively homomorphic cryptosystem
and additive secret sharing with two non-colluding
servers, our proposed scheme can provide strong privacy
preservation for workers in an efficient way, where
workers do not need to calculate heavy cryptographic
operations and participate in the iteration phase.

• We conduct extensive experiments to evaluate the
performance of the proposed scheme. The results also
demonstrate that our design is efficient in terms of
computation and communication overhead.

The remainder of this paper is organized as follows.
Section II introduces the related work. The problem statement
is given in Section III. In Section IV, we briefly describe
the truth discovery algorithm, additively homomorphic
cryptosystem, and additive secret sharing adopted in this work.
Section V illustrates our proposed scheme in detail. After that,
system analysis and performance evaluation are provided in
Section VI and Section VII, respectively. Finally, Section VIII
concludes this paper.

II. RELATED WORK

Recently, several studies have attempted to employ
various methods such as cryptographic tools and data
perturbation techniques to assure privacy preservation for truth
discovery [3]–[8]. In general, these schemes can be categorized
into the single-server setting and two-server setting.

In the single-server-based schemes [3], [4], workers have to
participate in the iterative processes for weight update, which
implies that they would suffer from additional computing
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and communication overhead. To reduce the interactions of
workers, Miao et al. [5] proposed L-PPTD and L2-PPTD by
involving two non-colluding servers. After that, more and more
schemes [6]–[8] are designed under the two-server setting.
Overall, no matter the single-server-based schemes or two-
server-based schemes, all the previously mentioned methods
are based on the Conflict Resolution on Heterogeneous Data
(CRH) algorithm [1], which is a representative truth discovery
algorithm in recent years. Due to the limitation that each
worker has to provide sensory data of all sensing tasks in CRH
algorithm, the CRH-based privacy-preserving truth discovery
schemes fail to handle the sparse sensory data.

Fortunately, there is another truth discovery algorithm called
Confidence-Aware Truth Discovery (CATD) [2] for handling
sparse data. Zheng et al. [11] designed an encrypted truth
discovery based on CATD with two non-colluding servers,
where all procedures are conducted in the encrypted domain.
Their proposed scheme can realize strong privacy protection
for workers’ sensory data and weights by adopting Garbled
Circuit (GC). However, only achieving privacy preservation
of sensory data and weights is not enough in sparse
data situation, because the information of which tasks are
completed by a worker is also sensitive. Taking the sparse
mobile crowdsensing [12] as an example, the sensing tasks
are distributed in different locations of a spatial area. So that
workers cannot execute all tasks within a short period, which
leads to sparse sensory data. This research pointed out that
the information of which tasks are executed by a worker can
disclose the worker’s location privacy. Even though, their work
only focuses on the privacy requirements in sparse mobile
crowdsensing rather than designing the privacy-preserving
truth discovery scheme. To the best of our knowledge, there
still lacks discussions about the privacy issues for truth
discovery in the sparse data scenarios.

TABLE I
COMPARISON WITH VARIOUS SCHEMES

Schemes
Sensory

Data Privacy
Weight
Privacy

Sparse Data
Support

Indicator
Privacy

L-PPTD [5]
√ √

× -
L2-PPTD [5]

√
× × -

EPTD [4]
√ √

× -
RPTD-I [6]

√ √
× -

RPTD-II [6]
√ √

× -
InPPTD [7]

√ √
× -

Encrypted CATD [11]
√ √ √

×
Our Propsed Scheme

√ √ √ √

As listed in TABLE I, we present the comparison between
our proposed scheme with several state-of-the-art privacy-
preserving truth discovery schemes. The indicator privacy
means the privacy of which tasks are executed by a worker,
since we use an indicator to mark which tasks are completed
by a worker in this work. Only the encrypted CATD and our
proposed scheme can work in the sparse data scenarios, but
the encrypted CATD cannot guarantee the indicator privacy.

III. PROBLEM STATEMENT

A. System Model

In this paper, we call the sensing tasks as objects for
simplicity. As shown in Fig. 1, the participants are consisted
of a number of workers and two servers. In brief, workers
are responsible for collecting sensory data of different sensing
objects. Since most mobile devices are resource-limited, it
is not necessary for each worker to collect sensory data of
all sensing objects. To assure privacy preservation, workers
need to perturb their data before uploading. Upon receiving
the perturbed sensory data uploaded by workers, servers
start to execute the secure weight update and secure truth
update iteratively. In general, we assume that the servers
have sufficient computation and storage capabilities. These two
servers are denoted by S0 and S1, respectively.

Fig. 1. System Model

Assume that there are M objects to be sensed, and the
number of workers is K. We denote xkm as the sensory data of
object m provided by worker k. Due to the sparsity of sensory
data {xkm}Mm=1, we use an indicator vector [φk1 , . . . , φ

k
M ] to

mark the missing sensory objects where φkm = 1 means worker
k has collected the sensory data of object m, and φkm = 0
otherwise. Note that if φkm = 0, then the corresponding
xkm = 0. Besides, we use wk and x∗m to denote the weight
for worker k and the estimated truth for object m, receptively.

B. Design Goals

The main goal of our proposed scheme is to design a
privacy-preserving truth discovery scheme in the situation
where sensory data are sparse. Inspired by [12], the privacy of
indicator vector for each worker also needs to be considered
for sparse data. Therefore, the main goal is to protect workers’
privacy including sensory data, indicator vector, and weights
simultaneously. In addition, considering that most workers are
resource-limited, it is also necessary to reduce the computation
overhead and communication overhead on the workers’ side.

Note that the lazy workers are not involved, because this
issue can be solved by integrating incentive mechanism [7].
In addition, the issues of inferring missing data from historical
data records are challenging and not considered in this work.

C. Threat Model

In the proposed scheme, we assume that all entities are
semi-honest, which means that both workers and servers will



honestly execute the protocols, but they will also try to infer
private information about participants. For each participant in
this system, we assume that there always exist secure channels
among workers, S0, and S1. Besides, similar to other two-
sever-based schemes [6], [13], the two servers are assumed
not to collude with each other in this system.

IV. PRELIMINARIES

A. CATD

In general, the truth discovery algorithm CATD [2] consists
of two parts: weight update and truth update.

1) Weight Update: Given the truthful information {x∗m}Mm=1,
the weight for each worker k is computed as

wk =
χ2
(1−α/2,

∑M
m=1 φ

k
m)

M∑
m=1

φkm(xkm − x∗m)2
.

Note that χ2 denotes the Chi-squared distribution, and the
system-wide constant α is known as the significance level
which is usually a small number such as 0.05.

2) Truth Update: Given the weight wk for each worker k,
the truth for each object m is computed as

x∗m =
K∑
k=1

wkx
k
m/

K∑
k=1

φkmwk.

In real practice, weight update and truth update should be
executed iteratively to achieve more accurate results until the
convergence criteria are met.

B. Additively Homomorphic Cryptosystem

Let M denote the message space, C denote the ciphertext
space, an additive homomorphic cryptosystem consists of the
following four probabilistic poly-time algorithms.
• Setup(1κ) → pp: Taken the input of security parameter
κ, the algorithm returns the public parameter pp. Unless
otherwise stated, pp is implicitly fed in the following
algorithms.

• KeyGen(1κ) → (pk, sk): Taken the input of security
parameter κ, the algorithm returns the public key pk and
private key sk.

• Encpk(m) → c: Given the message m ∈ M, the
encryption algorithm outputs c which is the ciphertext
of message m.

• Decsk(c) → m: Given the ciphertext c, the decryption
algorithm outputs the corresponding plaintext m.

We claim that the above public-key cryptosystem is
additively homomorphic if it satisfies the following properties
for some operators ⊕ and ⊗ in probabilistic polynomial time.
• ∀m1,m2 ∈ M, given two ciphertexts c1 = Encpk(m1)

and c2 = Encpk(m2), it holds that Decsk(c1 ⊕ c2) =
m1 +m2.

• ∀m ∈ M, given a constant a and a ciphertext c =
Encpk(m), it holds that Decsk(a⊗ c) = a×m.

C. Additive Secret Sharing

Secret sharing is one of the most important tools in secure
multi-party computation. The additive secret sharing means
that a secret x can be randomly split into n shares, for example
x = x0 + x1 + . . . , xn−1. The only approach to recover the
secret is to collect all n shares. In this paper, we just pay
attention to the situation where n = 2. That is, the data owner
can randomly split a secret data x into two additive shares x0
and x1, namely, x = x0 + x1. For each server Si (i ∈ {0, 1})
owns the share xi, the secret x cannot be recovered without
the help of S1−i. In the rest of the paper, we use a share to
represent an additive share for simplicity.

V. THE PROPOSED SCHEME

A. Overview

As we mentioned above, our privacy-preserving truth
discovery scheme is designed for scenarios where the sensory
data provided by workers are sparse. In the proposed scheme,
workers need to upload indicator vectors to mark which
objects they observed. To satisfy the privacy requirements, it
is necessary to protect the privacy of indicator vectors, sensory
data, and workers’ weights in the same time.

For the sake of illustration, we choose a widely used
additively homomorphic cryptosystem called the Paillier
cryptosystem [14] to formulate the homomorphic operations.
In brief, ∀m1,m2,m ∈ M, given the corresponding
ciphertexts c1, c2, c and a constant a, it always holds that

Decsk(c1 × c2) = m1 +m2,Decsk(c
a) = a×m.

Note that the above Paillier cryptosystem only works over
integers, while the sensory data in our scheme may be floating-
point numbers. To handle this situation, a typical approach is
to round the floating-point numbers by multiplying a factor L,
and the final results can be recovered by dividing L [7], [11].

To reduce the complicated operations on the workers’ side,
we shift all heavy cryptographic operations to the servers’
side. In other words, workers only need to generate shares and
upload them to two servers respectively. After that, the truths
can be estimated by two servers. The whole procedure can be
divided into 5 phases: Initialization, Report, Pre-Processing,
Secure Weight Update and Secure Truth Update.

B. Initialization Phase

In this phase, S0 first generates an asymmetric key pair
(pk, sk) of the additively homomorphic cryptosystem by
invoking KeyGen(·). Then S0 sets a small number for the
significance level α (α is set to 0.05 by default) and randomly
generates the initial truths {x∗m}Mm=1. Finally, S0 publishes the
public key pk along with the significance level α, and sends
the initial truths to S1.

C. Report Phase

In this phase, each worker collects sensory data for distinct
objects. Taking worker k as an example, after obtaining a set
of sensory data {xkm}Mm=1 and generating an indicator vector



{φkm}Mm=1, worker k computes yk = χ2
(1−α/2,

∑M
m=1 φ

k
m)

. Then

for each object m, worker k computes φ̃km = φkm/yk. After
that, worker k computes the shares of xkm, φkm and φ̃km.
Namely, xkm = xkm,0 + xkm,1, φkm = φkm,0 + φkm,1, φ̃km =

φ̃km,0+φ̃
k
m,1. Finally worker k uploads {xkm,0, φkm,0, φ̃km,0}Mm=1

to S0, {xkm,1, φkm,1, φ̃km,1}Mm=1 to S1. When the uploading
process is complete, worker k can go offline.

D. Pre-Processing Phase

We emphasize that this phase is executed by S0. For worker
k, S0 first computes Ck0 as:

Ck0 = Encpk

[
M∑
m=1

φ̃km,0
(
xkm,0

)2]
.

Then S0 encrypts {xkm,0, (xkm,0)2, φ̃km,0, φ̃km,0 · xkm,0}
M,K
m,k=1

respectively. These ciphertexts are typically denoted by
Cpack1. Finally, S0 sends {Ck0 }Kk=1 and Cpack1 to S1.

E. Secure Weight Update Phase

In this phase, upon receiving the ciphertexts, S1 computes
Ck1 ,Ck2 ,Ck3 ,Ck4 as follows.

Ck1 =
M∏
m=1

[
Encpk

[(
xkm,0

)2]φ̃k
m,1

]
,

Ck2 =

M∏
m=1

[[
Encpk

(
xkm,0

)]2(xk
m,1−x

∗
m)φ̃

k
m,1

]
×

M∏
m=1

[[
Encpk

(
φ̃km,0x

k
m,0

)]2(xk
m,1−x

∗
m)
]
,

Ck3 =
M∏
m=1

[
Encpk

(
φ̃km,0

)(xk
m,1−x

∗
m)

2
]
,

Ck4 = Encpk

[
M∑
m=1

φ̃km,1
(
xkm,1 − x∗m

)2]
.

To preserve the privacy of workers’ weights, S1 chooses a
random value bk and computes the ciphertexts Ck as

Ck =
(
Ck0 · Ck1 · Ck2 · Ck3 · Ck4

)bk
.

Finally S1 sends {Ck}Kk=1 to S0. After receiving {Ck}Kk=1,
S0 decrypts Ck with its private key and obtains the perturbed
weight w̃k of worker k as follows,

w̃k =
1

Decsk (Ck)
=
wk
bk
. (1)

F. Secure Truth Update Phase

In the truth update phase, S0 first encrypts {w̃k}Kk=1

and {w̃k · xkm,0, w̃k · φkm,0}
M,K
m,k=1 respectively. The sets of

ciphertexts are denoted by Cpack2. Finally S0 sends Cpack2
to S1.

After receiving the ciphertexts, S1 computes Cm5 and Cm6
as follows,

Cm5 =
K∏
k=1

[[
Encpk

(
w̃k · xkm,0

)
· [Encpk (w̃k)]x

k
m,1

]bk]

= Encpk

[
K∑
k=1

wkx
k
m

]
,

Cm6 =
K∏
k=1

[[
Encpk(w̃k · φkm,0) · [Encpk(w̃k)]

φk
m,1

]bk]

= Encpk

[
K∑
k=1

wkφ
k
m

]
.

Finally, S1 sends {Cm5 }Mm=1 and {Cm6 }Mm=1 to S0. Then S0

decrypts these ciphertexts and obtains the estimated truth as
follows,

x∗m =
Decsk(C

m
5 )

Decsk(Cm6 )
=

K∑
k=1

wkx
k
m/

K∑
k=1

wkφ
k
m. (2)

VI. SYSTEM ANALYSIS

A. Correctness
Since the correctness of decryption can be guaranteed by

the additively homomorphic cryptosystem, we only need to
prove that the Eq. 1 and Eq. 2 hold. The correctness of Eq. 2 is
straightforward, here we give the correctness analysis of Eq. 1.
According to the properties of the additively homomorphic
cryptosystem, we have

Ck0C
k
1 = Encpk

[
M∑
m=1

φ̃km,0
(
xkm,0

)2
+ φ̃km,1

(
xkm,0

)2]

= Encpk

[
M∑
m=1

φ̃km
(
xkm,0

)2]
,

Ck3C
k
4 = Encpk

[
M∑
m=1

(
φ̃km,0 + φ̃km,1

) (
xkm,1 − x∗m

)2]

= Encpk

[
M∑
m=1

φ̃km
(
xkm,1 − x∗m

)2]
.

Since φ̃km(xkm,0)
2 + 2φ̃kmx

k
m,0

(
xkm,1 − x∗m

)
+ φ̃km(xkm,1 −

x∗m)2 = φ̃km(xkm,0 + xkm,1 − x∗m)2, then we can further obtain

Ck =
(
Ck0 · Ck1 · Ck2 · Ck3 · Ck4

)bk
=

[
Encpk

[
M∑
m=1

φ̃km(xm,0 + xm,1 − x∗m)2

]]bk

= Encpk

[
bk

M∑
m=1

φ̃km(xm − x∗m)2

]
.

Hence, the perturbed weight w̃k can be written as

w̃k =
1

Decsk (Ck)
=

1

bk
M∑
m=1

φ̃km(xm − x∗m)2
=
wk
bk
.

Therefore, the correctness of Eq. 1 holds.



B. Security Discussion

Note that our design goal is to protect the privacy of
sensory data, indicator vectors and weights for each worker
simultaneously. According to the threat model in Section III-C,
each entity is assumed to be semi-honest, and two servers are
non-colluding. Since workers do not take part in the iteration
phase, we only need to consider that the privacy of xkm, φkm
and wk are not disclosed from the views of S0 and S1.

For S0, it only knows {xkm,0, φkm,0, φ̃km,0}Mm=1, Ck, Cm5
and Cm6 . S0 can decrypt Ck, Cm5 , Cm6 , and further obtain
the perturb weight w̃k along with the aggregation information

such as
K∑
k=1

wkx
k
m and

K∑
k=1

wkφ
k
m. Since xkm,1 and φkm,1 are

generated randomly from additive secret sharing by worker k,
bk is chosen randomly by S1. Without knowing xkm,1, φkm,1
and bk, S0 cannot infer xkm, φkm and wk for worker k.

For S1, it only knows {xkm,1, φkm,1, φ̃km,1}Mm=1, Ck0 , Cpack1
and Cpack2. Similarly, since xkm,0 and φkm,0 are generated
randomly from additive secret sharing by worker k, S1 cannot
infer xkm and φkm for worker k without knowing xkm,0 and
φkm,0. Note that Ck0 , Cpack1 and Cpack2 are ciphertexts under
additively homomorphic cryptosystem, S1 has no mechanism
to decrypt them without the private key sk, and hence cannot
learn worker’s weight wk even it knows the ciphertext Ck.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
scheme in terms of accuracy, convergence, computation
overhead, and communication overhead. All procedures are
conducted on a computer with an Intel Core i5-10400 CPU
(4.30 GHz) and 16GB RAM running Linux operation system.
We invoke the Python-Paillier library [15] for rapidly building
advance cryptosystems (key size is set to 2048 bits by default).
All experiments are executed 10 times and we take the
average results. For the sake of illustration, we use γ to
denote the sparsity of sensory data. γ is defined as γ =

1−(
M∑
m=1

K∑
k=1

φkm)/(M ·K). Hereafter, unless otherwise stated,

the default sparsity is set to 0.2 by default.

A. Accuracy

Since the CATD [2] is adopted as the fundamental truth
discovery algorithm in our proposed scheme, we first measure
the accuracy of estimated ground truth between our proposed
scheme and the baseline algorithm. Similar to [6], [7], we
use the Root of Mean Squared Error (RMSE) defined as

(
M∑
m=1

(x∗m − x̂m)/M)
1
2 to evaluate the deviation between the

estimated truths {x∗m}Mm=1 and the ground truths {x̂m}Mm=1.
In this experiment, the number of objects is fixed as 20,
the number of workers varies from 10 to 50. As shown in
Fig. 2a, we observe that the proposed scheme achieves a
similar accuracy to the baseline algorithm. Additionally, the
estimated truths are closer to the real ground truths with the
increase in the number of workers. To further analyze the
impact of sparsity γ for accuracy, we conduct the experiment

(a) Accuracy Comparison with CATD (b) The Impact of Different Sparsity

Fig. 2. Accuracy Evaluation

under different sparsity settings from 0.2 to 0.6. The results in
Fig. 2b show that in a high sparsity situation, it is necessary
to recruit more workers to get more accurate results.

B. Convergence

As for convergence, we use
M∑
m=1

(xtm − xt−1m )2 as the

convergence value in the t-th iteration, where xtm is the
estimated truth in t-th iteration and x0m is initialized randomly.
In this experiment, the number of workers and objects are
fixed as 10 and 20 respectively. As illustrated in Fig. 3, the
convergence speed is very fast at the first few iterations.
Meanwhile, the sparsity has little impact on the convergence.

Fig. 3. Convergence Evaluation

C. Efficiency Evaluation

In this part, we measure the performance of computation
overhead and communication overhead respectively. TABLE II
lists the computation overhead of workers and S0 in non-
iteration phases including the report phase and pre-processing
phase with the different number of objects and workers.
We observe the computation cost of workers is negligible
compared to S0 since there are no heavy cryptographic
operations on the workers’ side.

As for the iteration phase, we measure the computation
cost of S0 and S1 under different numbers of workers
and objects for each iteration. As shown in Fig. 4, the
computation cost for S1 is much less compared to S0 under
some conditions. For the communication overhead, TABLE III
reports the communication overhead for each entity in different



TABLE II
COMPUTATION OVERHEAD IN NON-ITERATION PHASES (S)

Number of Workers and Objects
Report Phase Pre-Processing Phase

Workers S0

K = 10

M = 20 0.0011 6.93
M = 40 0.0011 20.98
M = 60 0.0012 34.86

M = 20

K = 20 0.0049 14.04
K = 40 0.0059 42.41
K = 60 0.0104 70.92

(a) K = 10 (b) M = 20

Fig. 4. Computation Overhead for Each Iteration

phases. It is clear that the communication overhead in the
iteration phase is less than that in the non-iteration phase.
Note that the alternative privacy-preserving truth discovery
scheme [11] based on CATD is implemented by GC.
However, the computation cost of GC generation and the
communication of GC transmission are huge. We demonstrate
that the computation overhead and communication overhead
on the workers’ side are lightweight, and the communication
overhead between two servers is also acceptable for truth
discovery in reality.

TABLE III
COMMUNICATION OVERHEAD (KB)

Number of Workers and Objects
Report Phase Pre-Processing Phase Iteration Phase

Workers to Servers S0 to S1 S0 to S1 S1 to S0

K = 10

M = 20 9.60 8.08 3.44 0.04
M = 40 19.20 16.08 6.80 0.72
M = 60 28.80 24.08 10.16 1.04

M = 20

K = 20 19.20 16.16 6.72 0.48
K = 40 38.40 32.32 13.28 0.64
K = 60 57.60 48.48 19.84 0.80

VIII. CONCLUSION

In this paper, we proposed a privacy-preserving truth
discovery scheme targeted for privacy-preserving problems
in sparse data scenarios. Firstly, we carefully discussed
the privacy issues for truth discovery when sensory data
provided by workers are sparse. After that, we presented a
scheme to guarantee these requirements by utilizing additively
homomorphic cryptosystem based on the CATD framework.
Finally, through the analysis of security, our proposed scheme
achieves strong privacy protection of workers’ sensory data,

weights, and indicator vectors simultaneously. Extensive
experiments also indicate that the computation overhead of
workers and the communication overhead in the iteration phase
are lightweight, which implies that the proposed scheme is
practical in real mobile crowdsensing systems.
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