
Low Priority Congestion Control for Multipath TCP
Yuan Zhang†, Jian Li‡∗, Jiayu Yang‡, Yitao Xing‡, Rui Zhuang‡, Kaiping Xue†‡∗

† Department of EEIS, University of Science and Technology of China, Hefei, Anhui 230027 China
‡ School of Cyber Security, University of Science and Technology of China, Hefei, Anhui 230027 China

∗ Corresponding author, lijian9@ustc.edu.cn, kpxue@ustc.edu.cn

Abstract—Many applications are bandwidth consuming but
may tolerate longer flow completion times. Multipath protocols,
such as multipath TCP (MPTCP), can offer bandwidth aggre-
gation and resilience to link failures for such applications, and
low priority congestion control (LPCC) mechanisms can make
these applications yield to other time-sensitive ones. Properly
combining the above two can improve the overall user experience.
However, the existing LPCC mechanisms are not adequate for
MPTCP. They do not take into account the characteristics of
multiple network paths, and cannot ensure fairness among the
same priority flows. Therefore, we propose a multipath LPCC
mechanism, i.e., Dynamic Coupled Low Extra Delay Background
Transport, named DC-LEDBAT. Our scheme is designed based
on a standardized LPCC mechanism LEDBAT. To avoid un-
fairness among the same priority flows, DC-LEDBAT trades
little throughput for precisely measuring the minimum delay.
Moreover, to be friendly to single-path LEDBAT, our scheme
leverages the correlation of the queuing delay to detect whether
multiple paths go through a shared bottleneck. Then, DC-
LEDBAT couples the congestion window at shared bottlenecks
to control the sending rate. We implement DC-LEDBAT in a
Linux kernel and experimental results show that DC-LEDBAT
can not only utilize the excess bandwidth of MPTCP but also
ensure fairness among the same priority flows.

Index Terms—multipath TCP, congestion control, less-than-
best-effort service

I. INTRODUCTION

Among the diverse Internet applications, some widely used
applications such as software updates, online system backup,
and peer-to-peer applications are bandwidth consuming but
not time-sensitive. The best-effort service provided by tra-
ditional congestion control mechanisms, aiming to have a
fair share of bandwidth on a common bottleneck, is not
adequate for such applications at the network-wide level. A
less-than-best-effort (LBE) service provided by low priority
congestion control (LPCC) mechanisms is an attractive choice
for these applications [1]. LPCC mechanism utilizes only the
excess bandwidth by detecting congestion early and yields
to high priority flows when sharing bottlenecks. This makes
LPCC mechanisms competent to transfer background traffic
and promising to improve network utilization. Among all the
LPCC mechanisms, Low Extra Delay Background Transport
(LEDBAT) [2] is the most popular one and similar algorithms
have been implemented and deployed in Apple devices for
software updates and BitTorrent’s uTP protocol.

However, with the popularity of bandwidth consuming
applications, the applications using LPCC mechanisms may
starve for a long time. Although these applications may tol-
erate longer completion times than others, unbearable waiting

can also affect the user experience. For example, Alice is using
WiFi to update software with LPCC mechanisms while Bob
is enjoying high-definition live video streaming via the same
WiFi access point. Due to the limited bandwidth provided by
the access point and the low priority characteristics of LPCC
mechanisms, Alice has to wait until Bob finishes watching.

With the prevalence of multihomed devices, using multiple
network interfaces to expand the available bandwidth is a
workable solution to the above problem. As an extension of
regular TCP, Multipath TCP (MPTCP) makes it possible to
use multiple network paths for more efficient resource uti-
lization [3]. Besides, as an IETF standard, MPTCP is already
commercialized by major software vendors, including KT and
Apple. Using MPTCP to provide an LBE service can offer
bandwidth aggregation for background traffic and significantly
reduce flow completion times. Meanwhile, MPTCP can offer
resilience to link failures for background traffic transport.
Further, a multipath LBE service can take full advantage of
the excess bandwidth without having a big impact on other
high priority flows, just like a bandwidth scavenger.

However, the existing LPCC mechanisms are not adequate
for MPTCP. Specifically, these approaches do not take into
account the characteristics of multiple network paths and
cannot guarantee the fairness among same priority flows. For
example, as the most popular LPCC mechanism, LEDBAT
limits the queuing delay not to exceeding a predefined thresh-
old to utilize the excess bandwidth, and it relies heavily on
the correct measurement of the base delay to achieve its
low priority characteristics. Unfortunately, LEDBAT lacks a
mechanism to measure the base delay correctly, thus it suffers
from latecomer’s unfairness [4], [5]. Besides, LEDBAT does
not take into account the multipath characteristics. When
a single-path flow shares bottlenecks with more than one
multipath subflow, these subflows take more resources than
the single-path flow.

A desired multipath LPCC mechanism should satisfy the
following constraints: (1) A multipath low priority flow should
make full use of the excess bandwidth on all available network
paths and quickly yield to standard TCP flows when they
are sharing bottlenecks. (2) A multipath low priority flow
should remain fair to other flows of the same priority when
they are sharing one or more bottlenecks, as required by the
multipath congestion control constraint [6]: the use of multiple
paths must not unduly harm the single-path flow at shared
bottlenecks.

In this paper, we propose a novel multipath LPCC mech-

978-1-7281-8104-2/21/$31.00 ©2021 IEEE

anism named Dynamic Coupled LEDBAT (DC-LEDBAT).
Firstly, DC-LEDBAT trades little throughput for a precise
measurement of the base delay, which completely solves the
problem of latecomer’s unfairness inherited from LEDBAT.
Secondly, inspired by shared bottleneck detection mechanisms
designed for best-effort services [7], we design a queuing
delay-based bottleneck detection mechanism specifically for
low priority subflows. And then DC-LEDBAT uses a shared
bottleneck-based coupled congestion window (CWND) man-
agement mechanism to satisfy the multipath congestion control
constraint. We implement DC-LEDBAT in a Linux kernel with
MPTCP v0.95 [8] and evaluate its performance in two scenar-
ios from [7]: the Non-Shared Bottleneck (NSB) scenario and
the Shared Bottleneck (SB) scenario. The main contributions
of this paper are summarized as follows:

Subflow1

MPTCP	ServerMPTCP	Client

TCP		Client	1	

TCP		Client	2	

TCP	Server	1

TCP	Server	2	Router

Subflow2

Flow1

Flow2

(a) Non-shared bottleneck

MPTCP ServerMPTCP Client

TCP Client 2

TCP Server 1

TCP Server 2
 Router

TCP Client 1

(b) Shared bottleneck

Fig. 1. Evaluation scenarios.

• We analyze the benefits of MPTCP for background
traffic transport and illustrate latecomer’s unfairness and
multipath unfairness through experiments to show that
LEDBAT is not adequate for MPTCP.

• We propose a novel multipath LPCC mechanism named
DC-LEDBAT. It consists of a mechanism for precisely
measuring the base delay, a shared bottleneck detec-
tion mechanism that leverages the correlation of each
subflow’s queuing delay, and a shared bottleneck-based
coupled CWND management mechanism for low priority
flows’ fairness.

• By implementing DC-LEDBAT in the Linux kernel, we
evaluate its performance in two of the most common mul-
tipath scenarios. The results show that DC-LEDBAT can
make full use of the excess bandwidth while remaining
fair to the same priority flows.

II. BACKGROUND AND RELATED WORK

We first give a brief overview of LEDBAT [2]. LEDBAT
is a delay-based congestion control mechanism, and it uses
one-way delays instead of round-trip times (RTT) to adjust its
congestion window. With the goal of providing LBE services,
it uses a predefined queuing delay threshold to avoid con-
gestion and packet losses. Meanwhile, in order to utilize the
excess bandwidth more effectively, it uses a linear controller to
adjusts its CWND W (t) and keeps the queuing delay q(t) as
close to the threshold δ as possible. Unfortunately, LEDBAT
lacks a mechanism to equalize resource utilization amongst
LEDBAT flows [4], [5]. Carofiglio et al. [9] illustrated the
latecomer’s unfairness of LEDBAT due to its additive decrease
approach and proposed a multiplicative decrease approach
named fLEDBAT to alleviate this problem. However, we found

that even fLEDBAT cannot solve the problem thoroughly.
Latecomer’s unfairness still exists in multipath scenarios, and
we will illustrate it in Section III.

With the prevalence of multihomed devices and the wide ap-
plication of multipath protocols, some studies seek to combine
the LPCC mechanism with multipath protocols. Adhari et al.
[10] applied LEDBAT to SCTP and Montes et al. [11] used
a traditional congestion control mechanism for the primary
subflow and LPCC mechanisms for other subflows. Although
these approaches can improve throughput by using multiple
network paths, they may harm other low priority flows due to
the lack of a mechanism specifically designed for fairness of
the same priority flows.

One of the major challenges in the application of a multipath
protocol is to be friendly to a single-path one. If we only
focus on the advantages of multipath without considering
the fairness constraints, then it would be contrary to the
design principles of multipath protocols. To design a multi-
path LPCC mechanism, we get inspiration from bottleneck
detection mechanisms designed for best-effort services. These
mechanisms seek to ensure bottleneck fairness. The bottleneck
fairness is that a multipath flow gets a fair share with a
single-path flow at each individual bottleneck, which means
a set of subflows only get one share when they are sharing
a bottleneck. To satisfy bottleneck fairness, Hassayoun et al.
[7] used RTTs and packet losses to detect shared bottlenecks,
Ferlin et al. [12] leveraged the statistical properties of one-
way delay (OWD) and interaction between the server and
the client for detection, Wei et al. [13] introduced explicit
congestion notification (ECN) signal as a basis and Hayes
et al. [14] even used the method of wavelet transform to
improve accuracy. Unfortunately, all these approaches are
tightly coupled with best-effort services and they fall short
in leveraging the characteristics of low priority subflows. For
a multipath LPCC mechanism, we need a simpler and more
targeted approach to detect shared bottlenecks.

III. MOTIVATION

In this section, we highlight the benefits and constraints
faced by multipath background traffic transport and illustrate
the problems of existing approaches through some exper-
iments. We follow the standard of LEDBAT and set the
threshold δ to 100 ms.

S
en

d
in

g
 R

at
e

Queuing in the Buffer

E
st

im
at

ed
 O

W
D

Base OWD

Time

Sending Rate

Estimated OWD
Base OWD + Target Threshold

Link Capacity
Reduce the Queue Length

(a) Low priority flow: ideal case

S
en

d
in

g
R

at
e

Link Capacity

E
st

im
at

ed
 O

W
D

Base OWD + Target Threshold

Time

Buffer

Overflow

Packet Loss

Base OWD

Sending Rate of the Low Priority Flow

Sending Rate of the High Priority Flow

Estimated

OWD

(b) Coexistence of different priority
flows: ideal case

Fig. 2. Ideal low priority congestion control.

0 5 0 1 0 0 1 5 0 2 0 00
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0
1 2 0 0 0
1 4 0 0 0

Th
rou

ghp
ut

[K
B/s

]

T i m e [s]

 F l o w 1
 S u b f l o w 1

(a) Latecomer’s unfairness

0 5 0 1 0 0 1 5 0 2 0 00
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

s u b f l o w 1E s t i m a t e d b a s e O W DOW
D [

ms
]

T i m e [s]

 F l o w 1
 S u b f l o w 1

f l o w 1E s t i m a t e d b a s e O W D

(b) Estimated OWD

0 2 0 4 0 6 0 8 0 1 0 00
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0

Th
rou

ghp
ut [

KB
/s]

T i m e [s]

 S u b f l o w 1 S u b f l o w 2
 T o t a l S i n g l e P a t h

(c) Multipath unfairness

Fig. 3. Unfairness among the same priority flows in the NSB scenario.

A. Combining the advantages of LPCC and multiple paths

Fig. 2 schematically depicts the ideal LPCC mechanism.
Fig. 2(a) shows the sending rate and the estimated OWD for
a low priority flow. The sender tries to make the sending
rate close to link capacity while monitoring the OWD not
to exceed the predefined threshold. And Fig. 2(b) shows the
low priority flow competing with a high priority flow using a
traditional, loss-based congestion control mechanism. An ideal
LPCC mechanism should do no harm to high priority flows
and improve the bandwidth utilization.

MPTCP can offer bandwidth aggregation, more efficient
resource utilization, and resilience to link failures. Meanwhile,
MPTCP is a transport layer protocol, which is transparent to
upper-layer applications. All these characteristics are adequate
for background traffic transport. A multipath LPCC mecha-
nism can meet the diverse needs of users and further improve
the overall user experience.

B. The Quest for Fairness of the Low Priority Flows

An important criterion for designing a congestion control
mechanism is to ensure fairness of the same priority. Due
to the characteristics of LPCC mechanisms, the aggressive
slow start phase is replaced by an additive increase approach.
Besides, the additive decrease approach cannot reduce the
queue length rapidly at bottleneck links. LEDBAT suffers
from latecomer’s unfairness. Carofiglio et al. [9] proposed a
multiplicative decrease approach named fLEDBAT. To verify
whether fLEDBAT is adequate for MPTCP, firstly, we conduct
experiments in the NSB scenario. The links are set to 100
Mbps and RTT (from each client to the corresponding server)
is 40 ms, which means the base OWD is 20 ms. The single-
path fLEDBAT flow 1 starts at 0 s and the multipath flow starts
at 10 s. The experiment is repeated many times and several
of them show obvious latecomer’s unfairness. The latecomer’s
throughput after 50s shows much higher than the original flow
in Fig. 3(a) and we can see from Fig. 3(b) that sometimes
even multiplicative decrease cannot correctly measure the base
delay. Secondly, we conduct experiments in the SB scenario
with 8 Mbps links (Fig. 1(b)) to reveal the unique issue of
multipath with the same conditions as the former. To avoid
the influence of latecomer’s unfairness, we set the base OWD
measured in the algorithm as a fixed value (same as the base

OWD). As shown in Fig. 3(c), the multipath flow takes up
twice the bandwidth of the single-path flow.

In order to make better use of MPTCP for background traffic
transport and meet the corresponding constraints, it is urgent to
design an adequate multipath LPCC mechanism for MPTCP.

IV. DC-LEDBAT: SYSTEM DESIGN AND
IMPLEMENTATION

A. Overview

DC-LEDBAT combines a set of mechanisms to solve the
issues mentioned in Section III. It is designed based on
LEDBAT, which consists of a base OWD measurement mech-
anism, a shared bottleneck detection mechanism, and a shared
bottleneck-based coupled congestion control mechanism to
make full use of the multipath excess bandwidth and ensure
fairness among the same priority flows.

In order to completely avoid latecomer’s unfairness, we
introduce a Probe-OWD phase, which is inspired by BBR
[15] and successful application of multipath BBR [16]. In this
phase, we make a trade-off between throughput and the precise
measurement of the base delay. We set the CWND to the initial
value in the Probe-OWD phase, which quickly reduces the
queue length and makes the corresponding subflow measure
the correct base OWD. After introducing the Probe-OWD
phase, there are two cases that cause a significant reduction
in the queuing delay. The first one is multiplicative decrease
and the second one is the Probe-OWD phase. We treat both of
them as queue reduction signals. By analyzing the correlation
between each subflow’s queue reduction signals, we can
simply and efficiently judge whether a set of subflows are
sharing bottlenecks. To achieve bottleneck fairness mentioned
in Section II, a newly designed coupled CWND management
mechanism based on the total CWND and the ratio of each
subflow’s CWND to its RTT is used for the subflows within the
same set. Detailed descriptions are presented in the following
subsections.

B. Probe-OWD Phase

Whether it is an approach of a larger additive decrease
gain or an approach of multiplicative decrease, the basic
idea of them is to heuristically decrease the CWND to a
more appropriate value when the queuing delay exceeds the
predefined threshold δ. We follow this basic idea and make

some improvements. In absence of packet losses (if congestion
losses occur, the main task of low priority flows is to quickly
yield to standard flows rather than discuss fairness among low
priority flows), a latecomer may mistakenly take the sum of
the correct base OWD and δ as the estimated base OWD in the
worst case. The queuing delay may approach 2δ as a result.

In order to precisely measure the base delay, what we should
do is to make the queue depleted as soon as possible. Thus,
we introduce a Probe-OWD phase into DC-LEDBAT. We use
TSbaseOWD , reT , now, and TSPO to denote the timestamp
of the base OWD last time, the time threshold to re-measure
the base OWD, the current timestamp, and the timestamp of
the start time of the Probe-OWD phase. For a certain subflow,
when now − TSbaseOWD > reT , it should enter the Probe-
OWD phase to reduce the queue length and set TSPO = now.
The CWND is set to the initial value in the Probe-OWD phase
and this phase lasts for 2δ to make sure that the queue is
depleted.

The worst latecomer entering the Probe-OWD phase makes
several low priority flows see the correct base OWD, and they
update TSbaseOWD . This distributed coordination allows the
entire system to get the correct base OWD. Besides, it can
also make DC-LEDBAT robust to delay variations due to re-
routing.
C. Shared Bottleneck Detection for DC-LEDBAT

After introducing the Probe-OWD phase in DC-LEDBAT,
we focus on the issue shown by Fig. 3(c). To achieve bottle-
neck fairness mentioned in Section II, we leverage the queuing
delay to detect whether subflows share bottlenecks. Since the
additive decrease approach cannot reduce the queuing delay
in time, we adopt the multiplicative decrease approach in DC-
LEDBAT. And we can estimate the queuing delay q(t) as
follows:

q(t) = OWDnow − baseOWD , (1)

where OWDnow denotes the OWD estimated by the most
recently arrived packet. When there are only low priority flows,
q(t) will show regular changes. Typically, when q(t) < δ, the
additive increase of the CWND causes q(t) to approach δ
and when q(t) > δ, the multiplicative decrease of the CWND
makes q(t) fall rapidly below δ (Fig. 3(b)). In addition, the
Probe-OWD phase makes q(t) close to 0. We treat multiplica-
tive decrease (MD) and the Probe-OWD phase as queue reduc-
tion signals. When DC-LEDBAT subflows share bottlenecks
with standard TCP flows, there will be packet losses and q(t)
will far exceed δ. So we treat the queuing delay continuously
greater than δ and packet losses as congestion signals. DC-
LEDBAT only does the shared bottleneck detection when there
is no congestion signal. When a certain subflow i generates
a queue reduction signal, DC-LEDBAT monitors the status of
all other subflows. For any other subflow in this multipath
connection, we assume that it shares the same bottleneck with
the subflow i if either of the following situations occurs:

We use TSqrMD , TSqrPO , and q(t + 1) to denote the
timestamp when queue reduction signals (MD and Probe-
OWD) occur and the estimated queuing delay within next RTT.

• MD queue reduction signal occurs at the same time.
Since the RTT of each subflow may be different, here
“same” is a broader concept. For example, subflow i and
subflow j have their own RTT. At TSqrMD,i , subflow i
generates the MD queue reduction signal. If TSqrMD,j −
TSqrMD,i < RTT j , we think these two subflows are
sharing bottlenecks.

• The queue reduction signals of a certain subflow
lead to a reduction in the queuing delay of any
other subflow that does not have these signals. Due
to the existence of the additive increase, the queuing
delay of a subflow that traverses independent bottlenecks
does not reduce in absence of congestion and queue
reduction signals. We still illustrate this case with two
subflows (i and j). At TSqrMD,i or TSqrPO,i , subflow i
generates a queue reduction signal. If subflow j does not
generate a queue reduction signal in TSqrMD,i +RTT j
or TSqrPO,i + RTT j and q(t + 1)j < q(t)j , subflow i
and subflow j are sharing bottlenecks.

In order to reduce the misjudgment, we need to double-
check the result. If some subflows are judged to be sharing
bottlenecks for the first time, DC-LEDBAT will repeat the
above steps. If both judgments are sharing bottlenecks, DC-
LEDBAT will couple these subflows. Otherwise, DC-LEDBAT
will continue to monitor the status of these subflows until
the last two judgments are consistent. Based on this result,
DC-LEDBAT decides whether to couple or decouple the
subflows. Besides, in response to changes in bottlenecks, DC-
LEDBAT will re-execute the shared bottleneck detection after
any subflow enters the Probe-OWD phase.
D. Congestion Window Management

DC-LEDBAT adjusts the CWND in the same manner as
fLEDBAT before the shared bottleneck detection mechanism
works:

W (t+1) =

1
2W (t) if packet loss,
W (t) + α 1

W (t) if ∆(t) ≥ 0,

W (t) + α 1
W (t) + ζ∆(t)

δ if ∆(t) < 0,

(2)

where ∆(t) = δ−q(t) denotes the estimated distance from the
predefined threshold and ζ denotes the multiplicative decrease
gain [9].

After the shared bottleneck detection mechanism groups the
subflows, we need to carefully adjust the CWND. The increase
of a subflow’s CWND depends on three parameters: (i) the
minimum RTT (RTTmin) of subflows in the same set, (ii)
the total CWND of all subflows in this set, (iii) the sum of
the ratio of each subflow’s CWND to its RTT within the set.
For a certain set Sn, a subflow i ∈ Sn adjusts its CWND
W i(t) for each ACK as follows (we only show the ∆(t) ≥ 0
case, the rest are the same as eq. (2):

W i(t+ 1) = W i(t) +
αSn

WSn

, (3)

where:
WSn

=
∑
i∈Sn

Wi(t), (4)

αSn =
1

RTTmin

∑
i∈Sn

Wi(t)
RTTi

. (5)

We give this window increase approach mainly by com-
bining the existence of a global stable state of fLEDBAT
mechanism and the constraints of MPTCP coupled congestion
control mechanisms. It has been proved in [9] that the system
will reach a stable state if all flows are in the following states
(we assume that there are N flows at the bottleneck):

W ∗i (t)

RTT ∗i
=
C

N
, and Q∗ = Cδ +

Nαδ

ζT
, (6)

where W ∗i (t) and RTT ∗i denotes the stationary value of the
CWND and RTT of subflow i. Q,C, and T denote the queue
length, the bottleneck capacity, and the propagation delay.
Under the premise of the existence of a stable state, what we
need to do further is to make the performance of a certain set of
multipath subflows the same as a single-path one. To achieve
this goal, we make the total CWND increase rate of each set
of subflows equal to that of the best single-path fLEDBAT
flow. Because a certain set of subflows have the same queuing
delay when they are sharing a bottleneck, these subflows
multiplicative decrease their CWND almost simultaneously.
Coupled with the same increase rate as the best single-path
fLEDBAT, the performance of these subflows in the system
is the same as the best single-path one. Thus, we get the
following equation:∑

i∈Sn

αSn
Wi(t)

WSn
RTTi

= max
i∈Sn

αTCP

RTTi
, (7)

where αSnWi(t)
WSnRTT i

denotes the CWND increase rate of subflow
i, αSn

WSn
denotes the increase value of the CWND for each

ACK, RTT i on the denominator is to normalize the time, and
Wi(t) on the numerator denotes how many ACKs arrive per
RTT i on subflow i. Generally, αTCP is equal to 1 and we
get eq. (5) by rearranging eq. (7).

V. PERFORMANCE EVALUATION

We evaluate the performance of DC-LEDBAT in our testbed
with mini PCs. As shown in Fig. 1(a) and Fig. 1(b), the testbed
has two most common topologies when using MPTCP. We
implement DC-LEDBAT in the Linux kernel with MPTCP
v0.95 [8] and use tc to set different network conditions.

A. Performance analysis of DC-LEDBAT

The primary evaluation index of an adequate multipath
LPCC mechanism is yielding to traditional congestion control
mechanisms when sharing bottlenecks. To verify this, we con-
duct an experiment in which the DC-LEDBAT flow coexists
with high priority flows in the NSB scenario (Fig. 1(a)). The
MPTCP client and server are connected via two 8 Mbps links.
The multipath LEDBAT flow starts at 1 s, after which the
two TCP clients and servers respectively transfer data through
Cubic flow (standard TCP flow) for 25 s. And Fig. 4 shows

that DC-LEDBAT can improve throughput by using multiple
network paths while ensuring its low priority characteristics.

0 2 0 4 0 6 0 8 00
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0

Th
rou

ghp
ut

[K
B/s

]

T i m e [s]

 S u b f l o w 1 S u b f l o w 2 T o t a l T C P C u b i c 1 T C P C u b i c 2

Fig. 4. Coexistence with high priority flows.

We further conduct some experiments to show the scalabil-
ity of DC-LEDBAT in the NSB scenario, and the links are
set to 10 Mbps. We use multiple processes on the MPTCP
client to simultaneously download files from the MPTCP
server. Each connection has two subflows, and we test the
coexistence of up to 5 multipath connections. As shown in Fig.
5, DC-LEDBAT can keep good fairness of the same protocol.
However, as the number of connections increases, the overall
bandwidth utilization decreases slightly. This is mainly due
to the introduction of the Probe-OWD phase, and it will be
studied in the next subsection.

B. Solve the problem of latecomer’s unfairness

In this subsection, We conduct some experiments to prove
that the Probe-OWD phase is superior in solving the problem
of latecomer’s unfairness. In contrast to the previous experi-
ment shown in Fig. 3(a) and Fig. 3(b), the network conditions
are set to the same parameters. Besides, we set reT to 10s (the
same as BBR [15]). The single-path fLEDBAT flow 1 starts at
0s and the DC-LEDBAT flow starts at 15 s. Subflow 1 shares
a bottleneck with flow 1 and the result is shown in Fig. 6.
Compared with Fig. 3(a), it is obvious that DC-LEDBAT has
no latecomer’s unfairness and our design goal is achieved by
introducing the Probe-OWD phase.

1 3 50
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0
2 2 0 0
2 4 0 0

Th
rou

gh
pu

t [K
B/s

]

N u m b e r o f m u l t i p a t h f l o w s

E a c h c o l u m n r e p r e s e n t s t h e
t h r o u g h p u t o f a m u l t i p a t h f l o w

(t w o s u b f l o w s)

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

 O v e r a l l b a n d w i d t h u t i l i z a t i o n

Ba
nd

wi
dth

 ut
iliz

ati
on

Fig. 5. Fairness of multiple DC-
LEDBAT flows.

0 5 0 1 0 0 1 5 0 2 0 00
2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0
1 2 0 0 0

Th
rou

gh
pu

t [K
B/s

]

T i m e [s]

 F l o w 1
 S u b f l o w 1

Fig. 6. Throughput comparison be-
tween DC-LEDBAT subflow 1 and
fLEDBAT flow.

The Probe-OWD phase trades bandwidth for precise mea-
surement of base OWD. This experiment is to show that the
Probe-OWD phase does not have a big impact on throughput.
We continue to use the same network conditions, and we sep-
arately test the performance of fLEDBAT and DC-LEDBAT
in the NSB scenario. We conduct the experiment 10 times and
average the results. In each experiment, we use the MPTCP
client and server to transfer data for 200 s. As shown in Table I,
the ratio of the total throughput of the above two mechanisms

is 97.8%, and it can be concluded that the Probe-OWD phase
has just a minor impact on throughput.

TABLE I
THROUGHPUT COMPARISON BETWEEN FLEDBAT AND DC-LEDBAT.

Mechanism
Throuphput

Subflow 1 Subflow 2 Total

fLEDBAT 94.00 Mbps 93.94 Mbps 187.94 Mbps
DC-LEDBAT 91.92 Mbps 91.86 Mbps 183.78 Mbps

C. Bottleneck fairness achieved by DC-LEDBAT

Sharing bottlenecks between subflows is a common situation
when using MPTCP. In order to illustrate DC-LEDBAT can
achieve bottleneck fairness, we conduct experiments in both
SB (Fig. 1(b)) and NSB (Fig. 1(a)) scenarios. To compare with
Fig. 3(c), we set the network conditions to be the same. The
links are set to 8 Mbps and RTT is 40 ms.

0 2 0 4 0 6 0 8 0 1 0 00
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0

Th
rou

ghp
ut

[K
B/s

]

T i m e [s]

 S u b f l o w 1 S u b f l o w 2
 T o t a l S i n g l e P a t h

Fig. 7. Throughput comparison in the
SB scenario.

0 2 0 4 0 6 0 8 0 1 0 00
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0

Th
rou

gh
pu

t [K
B/s

]

T i m e [s]

 S u b f l o w 1 S u b f l o w 2
 T o t a l S i n g l e p a t h

Fig. 8. Throughput comparison in the
NSB scenario.

As shown in Fig. 7, from about 40 s, DC-LEDBAT’s two
subflows and single-path LEDBAT flow achieve a dynamic
equilibrium. Further, we calculate the average throughput
from 40 s to 100 s, the average throughput of subflow 1,
subflow 2, total of DC-LEDBAT, and single-path fLEDBAT
is 236.14KB/s, 263.11KB/s, 499.25KB/s, and 475.73KB/s.
Due to the shared bottleneck-based coupled congestion control
mechanism, DC-LEDBAT judges that subflow 1 and subflow
2 share a same bottleneck and controls their CWND in-
crease rate. Consequently, DC-LEDBAT shows the multipath-
friendliness that fLEDBAT does not possess.

Finally, to prove that DC-LEDBAT does not have misjudg-
ment of shared bottleneck in the NSB scenario. We use the
same network conditions in the SB scenario. The single-path
flow 1 starts at 0 s and the DC-LEDBAT flow starts after a
period of time. Fig. 8 shows that subflow 1 and flow 1 have
an equal share of the bandwidth of the upper link in Fig. 1(a)
while subflow 2 can make full use of the bandwidth of the
lower link. This is in line with our design goals.

In summary, DC-LEDBAT not only maintains the low
priority characteristics of LEDBAT, but also makes full use of
the advantages brought by multiple network paths. Meanwhile,
DC-LEDBAT satisfies bottleneck fairness of the multipath
congestion control mechanism.

VI. CONCLUSION

In this paper, we gave the design criterions of multipath
LPCC mechanisms and proposed a novel mechanism named
DC-LEDBAT. DC-LEDBAT takes advantage of MPTCP’s
aggregation bandwidth and it also ensures fairness of the

same priority at the connection level. DC-LEDBAT avoids
latecomer’s unfairness by introducing the Probe-OWD phase,
which enables the subflows to precisely measure the base
OWD. Then, it uses a shared bottleneck detection mechanism
specifically for low priority flows by analyzing the queuing
delay. And it ensures bottleneck fairness by using a dynamic
coupled CWND management mechanism. Our experimental
results showed that DC-LEDBAT is an adequate multipath
LPCC mechanism for background traffic transport.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China under Grant No. 61972371 and
Youth Innovation Promotion Association Chinese Academy of
Sciences (CAS) under Grant No. Y202093.

REFERENCES

[1] D. Ros and M. Welzl, “Less-than-Best-Effort Service: A Survey of
End-to-End Approaches,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 2, pp. 898–908, 2013.

[2] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, “Low Extra
Delay Background Transport (LEDBAT),” IETF, RFC6817, 2012.

[3] A. Ford, C. Raiciu, M.Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” IETF, RFC 6824,
2013.

[4] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “LEDBAT: The New
BitTorrent Congestion Control Protocol,” in Proceedings of the 19th
International Conference on Computer Communications and Networks
(ICCCN). IEEE, 2010, pp. 1–6.

[5] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti, “The Quest
for LEDBAT Fairness,” in Proceedings of the 2010 IEEE Global
Telecommunications Conference (GLOBECOM). IEEE, 2010, pp. 1–6.

[6] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” IETF, RFC6182, 2011.

[7] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic Window Coupling
for Multipath Congestion Control,” in Proceedings of the 19th IEEE
International Conference on Network Protocols (ICNP). IEEE, 2011,
pp. 341–352.

[8] C. Paasch, S. Barre, and et al., “Multipath TCP in the Linux Kernel.”
[Online]. Available: https://www.multipath-tcp.org

[9] G. Carofiglio, L. Muscariello, and et al., “Rethinking the Low Extra
Delay Background Transport (LEDBAT) Protocol,” Computer Networks,
vol. 57, no. 8, pp. 1838–1852, 2013.

[10] H. Adhari, S. Werner, T. Dreibholz, and E. P. Rathgeb, “LEDBAT-MP
– On the Application of "Lower-than-Best-Effort" for Concurrent Mul-
tipath Transfer,” in Proceedings of the 28th International Conference on
Advanced Information Networking and Applications Workshops (AINA).
IEEE, 2014, pp. 765–771.

[11] I. Montes, R. Parmis, R. Ocampo, and C. Festin, Multipath Bandwidth
Scavenging in the Internet of Things. Springer International Publishing,
2015, ch. Internet of Things. User-Centric IoT, pp. 297–304.

[12] S.Ferlin, Ã. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl, “Revisiting
Congestion Control for Multipath TCP with Shared Bottleneck Detec-
tion,” in Proceedings of the 35th Annual IEEE International Conference
on Computer Communications (INFOCOM), 2016, pp. 1–9.

[13] W. Wei, K. Xue, J. Han, D. S. Wei, and P. Hong, “Shared Bottleneck-
Based Congestion Control and Packet Scheduling for Multipath TCP,”
IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp. 653–666,
2020.

[14] D. A. Hayes, M. Welzl, S. Ferlin, D. Ros, and S. Islam, “Shared
Bottleneck-Based Congestion Control and Packet Scheduling for Multi-
path TCP,” IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp.
2229–2242, 2020.

[15] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” Communications of the
ACM, vol. 60, no. 2, pp. 58–66, 2017.

[16] J. Han, K. Xue, Y. Xing, J. Li, W. Wei, D. S. Wei, and G. Xue,
“Leveraging coupled bbr and adaptive packet scheduling to boost
mptcp,” IEEE Transactions on Wireless Communications, pp. 1–1, 2021.

