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Abstract—Recently, there have been many discussions in
mobile crowd-sensing about privacy-preserving truth discovery
because of its ability to extract truthful information from noisy
or biased sensory data without privacy breaches. However,
in practical applications, users (referred to as workers) may
report outliers due to device malfunction, malicious workers,
etc. These outliers will dramatically impact the accuracy of
the truth discovery result. Detecting outliers based on existing
privacy preservation schemes will carry an intolerable overhead,
dramatically reducing the system’s availability. In this paper, we
propose our privacy-preserving truth discovery scheme that can
detect outliers. Specifically, we adopt an anonymous mechanism
to achieve privacy preservation. Since the existing anonymous
mechanisms require huge overhead and do not work correctly
when some workers exit, they are difficult to be applied in
mobile crowdsensing systems. We design a lightweight and robust
anonymous mechanism based on the edge computing paradigm.
In addition, we eliminate the impact of outliers through outlier
detection to achieve robustness of truth discovery results. Finally,
we demonstrate the security of our scheme through security
analysis and the efficiency of our scheme in terms of computation
and communication overhead through extensive experiments.

Index Terms—mobile crowdsensing, truth discovery, privacy
preserving, outlier detection

I. INTRODUCTION

As mobile and portable devices are increasingly equipped
with various sensors, mobile crowdsensing is receiving more
and more attention as a cost-effective data collection and anal-
ysis paradigm. This paradigm leverages mobile users’ sensors
to observe targets and collect sensory data. However, due to
poor hardware quality, background noise, sensor calibration
errors, etc., the sensory data provided by users (referred to as
workers) often lacks sufficient accuracy. In order to discover
truth information(referred to as the inferred truths) about
objects from sensory data provided by multiple workers, truth
discovery has been proposed [1], [2]. It can extract inferred
truths from a large amount of sensory data with noise or bias
by estimating the reliability of different workers during the
computation.

However, the sensory data usually carry private information
about workers [3], such as human behavior and location infor-
mation. Cloud platforms may abuse this sensitive information,
damaging workers’ reputations and even putting workers at
risk. Therefore, privacy preservation is an essential issue in

mobile crowdsensing systems. In addition to privacy issues,
the sensory data reported by workers may contain outliers due
to possible device malfunction, operational error, etc. Worse,
malicious workers may deliberately report outliers to impact
crowdsensing tasks for illicit financial gain.

Some privacy-preserving truth discovery schemes have been
proposed to address the privacy issue, but it is difficult to detect
outliers in these schemes. Some schemes adopt homomorphic
encryption [4]–[7]. Since the sensory data is encrypted, detect-
ing outliers in these schemes will carry intolerable overhead.
Meanwhile, these encryption schemes have huge computation
and communication overhead. In masking or differential pri-
vacy schemes [8]–[11], it is difficult to detect outliers because
noise is added to each sensory data. However, leaving out
outliers in the truth discovery process will dramatically impact
the accuracy of the inferred truths.

Actually, in mobile crowdsensing systems, multiple workers
participate in the same observation task. If the server cannot
determine which worker the sensory data belongs to, it cannot
violate the worker’s privacy, even if the server gets the
plaintext sensory data. Therefore, in many scenarios (e.g., road
condition detection, temperature detection, etc.), anonymous
mechanisms can be employed to preserve workers’ privacy.

The scheme [12] employs anonymous mechanisms [13] to
preserve workers’ privacy in privacy-preserving truth discov-
ery. However, when some workers exited (dropped out or
actively exited) from the mobile crowdsensing systems, it
cannot correctly recover other workers’ sensory data. Mean-
while, since the length of the data vector computed and
transmitted by each worker is related to the whole number
of workers in the system, [12] requires large computation and
communication overhead on the workers and servers. So it
cannot be applied in mobile crowdsensing systems where the
workers are resource-constrained and may exit at any time. To
the best of our knowledge, in mobile crowdsensing systems,
there is no privacy-preserving truth discovery scheme that can
eliminate the impact of outliers.

To address the above challenge, we leverage the computing
power of cloud-edge architecture and construct a lightweight
privacy-preserving truth discovery scheme that is unimpacted
by worker exits and capable of detecting outliers. Specifically,
our contributions are summarized as follows:
• We propose a privacy-preserving truth discovery scheme978-1-6654-3540-6/22/$31.00 © 2022 IEEE



with robustness to outliers by adopting an anonymous
mechanism. In this way, the server can detect outliers
based on plaintext sensory data without requiring a huge
computational overhead.

• By designing an anonymous mechanism based on cloud-
edge architecture, we achieve more lightweight on the
workers and server-side. Meanwhile, our design is also
very robust against worker exits.

• We prove that our scheme is secure through security
analysis. Meanwhile, Through extensive experiments, we
prove that our scheme is efficient regarding computational
and communication overheads and robustness.

The remainder of this paper is organized as follows. Sec-
tion II introduces the related work. Section III presents our
models and design goals. In Section IV, we introduce some
preliminaries. After that, we describe our scheme in Section V.
We analyze its security in Section VI and evaluate its per-
formance in Section VII. Finally, we conclude this work in
Section VIII.

II. RELATED WORK

Recently, truth discovery [1], [2] has received considerable
attention from researchers due to its efficiency in extracting
truthful information from large amounts of noisy or biased sen-
sory data. However, in mobile crowdsensing systems, workers
submit sensory data that usually carry private information
about the workers.

Researchers have proposed many truth discovery schemes
to preserve privacy with concerns about privacy breaches,
where [4]–[7] achieve privacy-preserving by adopting ho-
momorphic encryption. Miao et al. [4] first proposed a
privacy-preserving single-server truth discovery system, but
their scheme requires workers to be involved in numerous
computations and communication processes. Zhang et al. [7]
adopted a cloud-edge architecture to improve the scalability
of the privacy-preserving truth discovery system. The schemes
of [5], [6] shift the computation overhead from the workers to
the server-side by adopting two non-colluding servers. How-
ever, all of these homomorphic encryption schemes require
huge computational overhead. Some researchers have adopted
masking to preserve the privacy of workers. The schemes [8],
[9] avoid the huge computational overhead of adopting ho-
momorphic encryption through multiple rounds of communi-
cation between worker and server. However, workers are free
to modify their weights, which causes these schemes to work
correctly only when workers are not evil. Some schemes [10],
[11] adopt differential privacy to reduce workers’ and server-
side’s overhead while preserving workers’ privacy. However,
these schemes require adding noise to workers’ sensory data to
preserve privacy, which inevitably reduces the accuracy of the
inferred truths. In summary, these schemes mentioned above
can preserve the privacy of workers, but they fall short of
efficiency or accuracy, and it is difficult to detect outliers on
these schemes due to encryption or added noises.

Anonymous mechanisms [13] are also a common approach
to preserving workers’ privacy. Since the anonymous mech-

anisms delink workers’ sensory data from their identity, it
allows the worker’s plaintext sensory data to be available
while preserving the worker’s privacy. However, in anony-
mous mechanisms, a trustworthy centralized data publisher
is usually required to collect the workers’ sensory data and
then anonymize it, which is often difficult to be satisfied in
mobile crowdsensing systems. Zhang et al. [14] proposed a
scheme to delink worker data from worker identity, which
does not require a centralized data publisher. Tang et al. [12]
established a privacy-preserving truth discovery scheme by
adopting an anonymous mechanism inspired by [14]. However,
the scheme [12] cannot correctly recover the sensory data of
other workers when there are some workers exited. Mean-
while, the workers and server-side have a large computation
and communication overhead. This is because each worker’s
length of the data vector computed and transmitted is related
to the whole number of workers in the system. Therefore, it
is not suitable for mobile crowdsensing systems. To the best
of our knowledge, there is no existing privacy-preserving truth
discovery scheme that can eliminate the impact of outliers in
mobile crowdsensing systems.

III. PROBLEM STATEMENT

A. System Model

The entities in our system include many workers, some edge
nodes (ENs), and a cloud server (CS), and the relationship
between them is shown in Fig. 1.
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Fig. 1. System Model

• Workers: Workers are data providers who sense objects
and report sensory data to EN through their devices.
These devices are usually resource-constrained in terms
of computation and communication. In addition, workers
may exit from the system at any time.

• Edge Node (EN): EN aggregates the sensory data re-
ported by workers and uploads the results to CS. Mean-
while, ENs negotiate the index location, which is used to
anonymize the workers’ sensory data.

• Cloud Server (CS): CS aggregates the results uploaded
by ENs to obtain anonymized workers’ sensory data and



performs outlier detection and truth discovery to get the
inferred truths.

In this work, the inferred truth for the object m is referred to
as x∗m. Suppose there are M objects (denoted {o1, o2, ...oM})
and K workers (denoted {u1, u2, ...uK}) in the system, the
sensory data of worker uk for object om is referred to
as xkm. Besides, we use E = {E1, E2...En} and GEi

to
denote the ENs and the number of workers maintained by
Ei, respectively. GEi

can be different for each EN.

B. Threat Model

In mobile crowdsensing systems, similar to previous
works [7], [11], we assume ENs and CS will perform the
protocol honestly, but they will also be curious about workers’
privacy. Workers’ privacy is defined as their sensory data and
weights can only be accessed anonymously. Meanwhile, there
is no collusion between ENs and CS. In addition, outliers
may appear in the sensory data reported by workers due to
device errors, worker operation errors, malicious workers, etc.
Each entity in the system is incapable of breaking the Deci-
sional Diffie-Hellman (DDH) assumption [15] and performing
ciphertext-only attacks (COA).

C. Design Goals

• Privacy-Preservation: The proposed scheme should en-
sure that workers’ weights and sensory data are not leaked
to ENs and other workers and that all workers’ data is
anonymous to CS. In addition, the inferred truths should
not be revealed to ENs and workers.

• Robust: The proposed scheme should be able to detect
outliers and eliminate the impact of outliers on the
accuracy of the inferred truths. In addition, workers’ exit
from the crowdsensing system at any time should not
impact the outlier detection and truth discovery process.

• Efficiency: The proposed scheme should be efficient
regarding computational and communication overhead on
the worker and server-side.

IV. PRELIMINARIES

A. Truth Discovery

Truth discovery obtains the inferred truths by iteratively
carrying the weight update step and the truth update step, the
details of these two steps are as follows:

1) Weight Update: In this step, given the currently inferred
truths {x∗m}Mm=1 and the workers’ sensory data {xkm}

k=K

k=1 . The
weight of worker k is computed as

wk = log(

∑K
k=1

∑M
m=1 d(x

k
m, x

∗
m)∑M

m=1 d(x
k
m, x

∗
m)

),

in this paper, we adopt the distance function by the squared
distance d(xkm, x

∗
m) = (xkm − x∗m)2.

2) Truth Update: After the weight update step, each inferred
truth is computed as

x∗m =

∑K
k=1 x

k
mwk∑K

k=1 wk
.

Truth discovery iterations perform the above two-step until
it satisfies the convergence condition, which is usually a
predefined number of iterations or the change of inferred truths
between two iterations. Since there is no need to encrypt the
sensory data, our scheme uses the same method for fractions
and integers without loss of precision.

B. Key agreement

Key agreement is a common method of establishing shared
secrets between two parties. Secrets shared between parties
can be used for secure communication or as random seeds
for masking. In this paper, we adopt the Diffie-Hellman key
agreement [15] to establish a shared secret. The key agreement
consists of the following three algorithms:
• KA.param(1λ) 7→ (G, g, p): Generate a group G with

prime order q and a generator g by security parameter λ.
• KA.gen(G, g, p) 7→ (SKi, PKi): Generate a public-

private key pair by taking G, g, p as input.
• KA.agree(SKi, PKj) 7→ Sij : Given the private key
SKi of client i and the public key PKj of client j to
get a shared secret Sij .

V. THE PROPOSED SCHEME

A. Overview

As discussed above, we aim to detect outliers and improve
the efficiency of privacy-preserving truth discovery in mobile
crowdsensing systems.

Our system includes many workers, some ENs, and a CS.
The system flow is shown in Fig. 1. Initially, each entity is
initialized with the public parameters published by CS. During
each truth discovery task, the ENs negotiate indexes by random
permutation function and then assign a local index to each
worker they maintain. Each worker adds random numbers to
their sensory data and anonymizes it according to the received
index, then reports the result to EN. Workers can remain offline
after completing the reporting process until they are involved
in the next truth discovery. Each EN preliminarily aggregates
the results reported by the workers. After that, each EN masks
the aggregated results and sends them to CS. CS performs
further aggregation and eliminates the random numbers of
workers to obtain anonymized data for all workers. Finally,
CS removes outliers and performs truth discovery to get the
inferred truths.

The complete scheme can be divided into five specific
phases: Initialization, Index Negotiation, Data Submission, CS
Aggregation, Outliers Detection and Truth Discovery.

B. Initialization Phase

In this phase, CS generates (G, g, p) via security parameter
λ and KA.param(·), where G is a cyclic group of prime
order p, and g is a generator of G. Then, CS generates a
key pair (SKCP , PKCP ) via KA.gen(·). After that, CS
publishes PKCP and pp = (G, g, p,π,F,AE), where π
is a random permutation function, F is a pseudo-random
function, and AE is a symmetric encryption algorithm. Each
EN and worker generates a key pair via KA.gen(·). ENs



establish shared secrets SEi,Ej
via KA.agree(·), each worker

reports their public key to CS through the ENs and establishes
shared secret SCS,uk

with CS. After this phase, workers can
participate at any time, they only need to choose an EN to be
joined and establish a shared secret with CS.

C. Index Negotiation Phase

In this phase, ENs negotiate the index, which will be used
to anonymize workers’ sensory data.

Step1: Each EN generates a local sequence {1, 2, ...,K} and
shuffles it by π to obtain L. Then, EN encrypts L using the
shared secrets with other ENs to obtain L̃ and sends it to CS.
Take Ei as an example, Ei generates a shuffled local sequence
L, suppose Ej maintains GEj

workers, GEj
= b−a+1, Ej+1

maintains GEj+1
workers, GEj+1

= d − c + 1. Ei encrypts
the elements from a to b of L using the shared secret SEi,Ej ,
encrypts the elements from c to d of L using the shared secret
SEi,Ej+1

, and so on to get the following encryption result L̃.

L̃ = {AE.encrypt(SEi,Ej
,La, ...,Lb)

AE.encrypt(SEi,Ej+1 ,Lc, ...,Ld)

...}.

If i = j, Ei randomly selects a random number for encryption.
Finally, each EN uploads its L̃ to CS.

Step2: CS randomly selects one from all L̃ and broadcasts it
to every EN. After each EN gets L̃, it can decrypt GEi

indexes
using the shared secret established with the EN selected by CS,
and these indexes form a vector l.

Step3: Each EN generates a sequence l′ = {1, 2, ...GEi
},

shuffle it by π, and randomly assigns an index l′uk
from it

for each worker it maintains.

D. Data Submission Phase

In this phase, each worker adds random numbers to their
sensory data and anonymizes them. After that, each worker
reports the results to his/her EN. EN performs a preliminary
aggregation and uploads the aggregated results to CS.

Step1: Each worker uk generates a random number ruk
and

computes w, where

wi =

{
F(ruk

||i||m) i 6= l′uk
,

F(ruk
||i||m) + xmk i = l′uk

.

Then, uk reports w and AE.encrypt(SCS,uk
, ruk

) to EN.
When uk completes the reporting process, uk can go offline.
In this step, even if some workers do not report their data due
to exit from the system, it will not impact the final outlier
detection and truth discovery process.

Step2: EN receives w and AE.encrypt(SCS,uk
, ruk

) re-
ported by all the workers it maintains and performs a column-
by-column summation of all received w to obtain w′, where
each element

w′
i =

∑
uk∈En

F(ruk
||i||m) + xms ,

where xms is the sensory data from one of the workers. After
that, EN forwards all AE.encrypt(SCS,uk

, ruk
) to CS.

Step3: CS decrypts AE.encrypt(SCS,uk
, ruk

) to get ruk

and generates M random vectors r′ and computes b′ for each
Ei based on r′ and ruk

. Finally, CS returns b′ to Ei, where

b′i =
∑

uk∈En

F(ruk
||i||m)− r′i.

Step4: Each EN uses shared secrets SEi,Ej
among them to

generate the following random vectors Z and Z′, where

Zk =
∑
i>j

F(SEi,Ej
||k)−

∑
i<j

F(SEi,Ej
||k),

Z′
k =

∑
i>j

F(SEi,Ej
||k||m)−

∑
i<j

F(SEi,Ej
||k||m).

We can find that the sum of all EN-generated random numbers
is zero, where

∑
Ei
Zk = 0 and

∑
Ei
Z′

k = 0.
Step5: Each EN generates the following random number

index vector I and the following data vector D, where

Ik =

{
Zk
Zk + i

k /∈ {li|i ∈ (0, GEi
)},

k = li,

Dk =

{
Z′

k

Z′
k +w

′
i − b′i

k /∈ {li|i ∈ (0, GEi
)},

k = li.

After that, each EN sends I and D to CS.

E. CS Aggregation Phase

CS receives the vectors I and D uploaded by each EN,
and aggregates them column-by-column to obtain I′ and D′,
respectively, where

I′k = i, if : k = li,

D′
k = xms + r′I′

k
.

After that, CS eliminates r′I′
k

from D′
k to obtain the

anonymized sensory data {xms |s ∈ (0,K)}.

F. Outlier Detection and Truth Discovery Phase

In this phase, CS detects outliers and performs truth discov-
ery process.

For each task {o1, o2, ...oM}, CS first sorts the workers’
sensory data in ascending order to obtain xm1 , x

m
2 , ...x

m
K ,

quadrates xm1 , x
m
2 , ...x

m
K , and the value of the three split points

are represented as Q1,Q2,Q3. CS removes all sensory data that
are beyond the following detection interval

(Q1 − α(Q3 −Q1), Q3 + α(Q3 −Q1)),

where α indicates the intensity of outlier detection. After de-
tecting outliers and removing all outliers from the anonymized
sensory data, CS performs truth discovery to obtain the in-
ferred truths.

VI. SECURITY ANALYSIS

Theorem 1. Suppose these entities satisfy our threat model,
our scheme will preserve the privacy of workers’ sensory data
and weights, and the privacy of inferred truths.

Proof. We first prove that the privacy of workers and the
inferred truths will not be disclosed to ENs and workers. Then,
we prove that CS cannot violate the privacy of workers.



(1) Since workers are only participate in the initialization
phase and report sensory data to EN, they cannot obtain other
workers’ sensitive information. Since EN cannot obtain r′

from CS, EN cannot obtain xmk through b′ and w′. Even if
all ENs collude, they also cannot get r′ from the respectively
received b′. Meanwhile, if EN wants to obtain xmk by w,
EN needs to get ruk

, which requires EN to break the DDH
assumption [15] or perform COA, so the workers’ sensory
data xmk doesn’t disclose to ENs. We consider the possibility
of EN colluding with several workers, Since each worker
randomly generates his/her ruk

and adds F(ruk
||i||m) to

his/her sensory data, EN cannot access other non-collusion
workers’ sensory data. Since the truth discovery is performed
by CS, the workers’ weights and inferred truths are not leaked
to workers or ENs.

(2) If CS wants to determine each sensory data in D′ from
which worker or each element in I′ from which EN, CS
must obtain Z and Z′ or obtain L. CS can only compute
Z and Z′ by SEi,Ej or obtain L by decrypting L̃, which
requires the ability to break the DDH assumption [15] or
perform COA. Furthermore, We suppose exists a stimulator
A, which randomly selects a random permutation function
π′ and calculates L′ (D and I are the same as L). For
the view of CS, there is computational indistinguishability
V IEWCS(L)

c≡ V IEWCS(L
′). Otherwise, if CS can dis-

tinguish workers’ anonymized data, it is equivalent to random
permutation function π without randomness. It contradicts our
assumption. So the workers’ sensory data and weights are
anonymous (anonymous set size is K.) to CS, which cannot
invade the privacy of workers. Finally, since each worker can
only get his/her index within EN, collusion between CS and
workers does not invade the privacy of other workers.

In summary, the privacy of inferred truths, workers’ sensory
data, and workers’ weights can be preserved.

VII. PERFORMANCE EVALUATION

In this section, we will measure our scheme in terms of ac-
curacy, computation overhead, and communication overhead,
respectively. The configuration is a computer with 2.90Ghz
Intel i5 and 16GB RAM and Windows 10 with Python 3.9.6.
We adopt the python library of random for pseudo-random
function F and random permutation function π, and the library
of cryptography [16] for key agreement protocol.

Since [5] notes that sensory data from various normal
workers are likely to be distributed normally. In our exper-
iments, we generate sensory data of normal workers from
the normal distribution. We represent sensor errors, worker
operation errors or malicious workers by generating sensory
data above the normal distribution. These workers are called
abnormal workers. We set M = 20, the number of ENs is 10,
the size of p is set as 512 bits, and the size of symmetric keys
and plaintexts are set as 256 bits and 64 bits, respectively.

A. Accuracy

Similar to AnonymTD [12], we use the Root of Mean
Squared Error (RMSE) to evaluate the accuracy of the in-

ferred truths {x∗m}Mm=1. RMSE is defined as RMSE =
(
∑M
m=1 (x

∗
m − x̂m)

2
/M)1/2, where {x̂m}Mm=1 is the real truth

of objects. We set K = 1000 and the no outliers CRH [1] was
taken as a baseline scheme. Our scheme can be easily adapted
to other truth discovery approaches as well.

Outlier Impact. We first measure the impact of outliers
on the accuracy of the inferred truths. The rate of abnormal
workers varies from 0% to 10%, and no worker exits. As
shown in Fig. 2a, we observed that the outliers reported by
abnormal workers can dramatically impact the accuracy of the
inferred truths. After that, We set different α to evaluate our
scheme’s effectiveness in detecting and eliminating the impact
of outliers. In Fig. 2b, we observe that the impact of outliers
can be effectively eliminated by outlier detection. There is a
decrease in accuracy when α is small, which is due to the
overpowering outlier detection causing some normal workers’
sensory data is removed.

(a) Without Outlier Detection (b) With Outlier Detection

Fig. 2. Impact of Outliers

Worker exits Impact. We measure the performance of our
scheme and AnonymTD when some workers exit. We set α =
2.5, and the rate of exited workers varies from 0% to 10%.
Fig. 3a shows that AnonymTD cannot work correctly when
some workers exit. Because in AnonymTD, the server cannot
eliminate the noise added by the exit of workers, the RMSE
increases with the number of exited workers. Fig. 3b shows
that our scheme is almost unimpacted by worker exits. When
worker exits and outliers coexist, our scheme remains effective
in eliminating their impact. These experimental results show
that our scheme has stronger robustness.

(a) Impact on AnonymTD (b) Impact on Our Scheme

Fig. 3. Impact of Worker Exits

B. Efficiency Evaluation

In this part, we measure our scheme in terms of computation
and communication overhead. We set the number of workers



to vary from 0 to 4000.
Computation Overhead. As shown in Fig. 4a, since the

number of pseudo-random numbers to be computed by each
worker in our scheme is much smaller than AnonymTD, the
workers’ computation overhead in our scheme is much less
than AnonymTD. As shown in Fig. 4b, since the preliminary
aggregation of ENs, our scheme is also more efficient on the
server-side. Meanwhile, with the number of workers increas-
ing, our scheme’s workers and server-side overhead increase
much less than AnonymTD.

(a) Running Time on Workers (b) Running Time on server-side

Fig. 4. Computation Overhead

Communication Overhead. We measure the communica-
tion overhead of our scheme and AnonymTD for different
numbers of workers and objects. As shown in Table I. We
can see that our scheme is more efficient than AnonymTD in
terms of both worker and server-side communication overhead.
This is because in our scheme, the length of the data vector
to be transmitted by each worker is much smaller than in
AnonymTD, and the server only needs to receive the results
after the preliminary aggregation of the edge nodes. Although
we adopt ENs, the communication overhead of all ENs and
CS is still much smaller than the server in AnonymTD.

Experimental results show that our scheme is more efficient
regarding computational and communication overheads on
both the workers and server-side.

TABLE I
COMMUNICATION OVERHEAD (KB)

Number of Workers and Objects
Workers EN Cloud Server

Our Scheme AnonymTD Our Scheme AnonymTD Our Scheme AnonymTD

M = 10

K = 100 0.828 7.835 0.02×103 - 0.18×103 0.78×103

K = 500 3.953 39.085 0.28×103 - 0.89×103 1.95×104

K = 2000 15.671 156.273 3.49×103 - 3.59×103 3.12×105

M = 20

K = 100 1.609 15.648 0.05×103 - 0.34×103 1.56×103

K = 500 7.859 78.148 0.56×103 - 1.71×103 3.90×104

K = 2000 31.296 312.523 6.94×103 - 6.87×103 6.25×105

VIII. CONCLUSION

In this paper, we proposed a lightweight and robust privacy-
preserving truth discovery with an outliers detection scheme.
Firstly, we carefully discussed the impact of outliers on the
accuracy of the inferred truths. After that, we proposed a
scheme that can eliminate the impact of outliers and worker
exits by adopting the cloud-edge architecture and anonymous
mechanism. Finally, through the security analysis, we proved

that our solution is secure. Extensive experiments show that
our proposed scheme is lightweight regarding computation
and communication overhead on the workers and server-side.
Meanwhile, our scheme can effectively eliminate the impact of
outliers and worker exits on the accuracy of the inferred truths.
These features make our scheme more feasible in mobile
crowdsensing systems.
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