
Forward Private Multi-Client Searchable Encryption
with Efficient Access Control in Cloud Storage

Jinjiang Yang∗, Feng Liu∗, Xinyi Luo∗, Jianan Hong†, Jian Li∗, Kaiping Xue∗‡
∗School of Cyber Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
†School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China

‡Corresponding author, kpxue@ustc.edu.cn

Abstract—Through Searchable Symmetric Encryption (SSE),
a user can make search over encrypted documents that are
stored on an untrusted cloud server. Multi-client SSE schemes
require that one client can search documents contributed by
other clients and upload documents. Nevertheless, existing multi-
client SSE schemes implement the fine-grained access control
with high complexity. Although fine-grained access control adapts
to complex scenarios, it is not necessary anytime and may cause
heavy costs over computation in SSE schemes. Moreover, it is
crucial to support documents updating and forward privacy.
To combat that, we design a multi-client SSE scheme with
efficient access control over dynamic encrypted documents.
Specifically, we first modify Symmetric Hidden Vector Encryption
(SHVE) and utilize Bloom filter to implement the access control,
which reduces much of computation overhead. We then employ
Oblivious Dynamic Cross-Tag (ODXT) protocol to preserve
the forward privacy of our scheme. Finally, the corresponding
security and experimental evaluation demonstrate both security
and practicality of our scheme, respectively.

Index Terms—Cloud Computing, Searchable Encryption,
Access Control, Multiple Clients, Forward Privacy

I. INTRODUCTION

With the rapid advent of cloud computing [1], individuals
and enterprises are able to outsource storage and computations
to a cloud. Meanwhile, to prevent privacy leakage on
outsourced data, data owners can encrypt data before
uploading it to the cloud. Nevertheless, traditional encryption
will result in extremely low data availability. For instance,
queries on outsourced data will not be possible.

Searchable Symmetric Encryption (SSE) offers a potential
solution to the problem above, so that a client can search
encrypted documents securely. Till now, works on SSE are
mainly focused on two scenarios: one is that a client uploads
documents to the cloud and only herself can search these
encrypted documents, e.g., [2]–[4], and the other is that
one client is supposed to upload documents while other
multiple clients can search them from the cloud, e.g., [5]–
[8]. However, in many realistic scenarios, clients should not
only search documents but also upload their own documents
by themselves. For example, cases like collaborate e-health
or project executions require a crowd of members to upload
relevant data, and meanwhile, according to their roles,
members should search and access documents contributed by
other members. This paper names such scenarios as Multi-
Client scenarios.

Although some researchers gave solutions for such scenarios
such as [9], there are still two pressing issues remaining to
be addressed. Firstly, we need a more lightweight approach
to achieve access control for multiple clients. Current access
control methods in multi-client SSE schemes are fine-grained
and not suitable for all cases due to their complexity
and heavy computational overhead. Secondly, multi-client
scenarios must be dynamic. Therefore, to achieve secure
uploading, forward privacy [10] for the upload process is also
necessary. Nevertheless, to the best of our knowledge, it has
received little discussion in multi-client works.

To address the above two issues, we construct a novel multi-
client SSE scheme with efficient access control and forward
privacy preservation. Notably, our access control is symmetric
and based on privilege levels. Compared with attribute-based
schemes, our proposed scheme aims at a simpler and faster
multi-client SSE scenario based on privilege levels, rather
than those for complex access structure.In particular, the main
contributions of our model can be summarized as follows:

• We propose a multi-client searchable symmetric encryp-
tion scheme with efficient access control by utilizing the
modified Symmetric Hidden Vector Encryption [4] and
Bloom filter [11], both of which use symmetric keys. In
this way, our scheme has much less computation costs.

• By employing Oblivious Dynamic Cross-Tag (ODXT)
protocol [12], our proposed scheme is able to provide
forward privacy for uploading documents. So our multi-
client scheme is forward private in a dynamic setting.

• We theoretically analyse forward privacy and clients
security to prove that our scheme is secure in multi-client
scenarios. Moreover, we conduct extensive experiments
to demonstrate that our design is efficient in terms of
computation and storage overhead.

The rest of our paper is organized as follows. In Section II,
we introduce the related work. And then in Section III, we give
the problem statement. Bloom filter, the modified Symmetric
Hidden Vector Encryption algorithm, and ODXT model are
briefly described in Section IV. Section V illustrates our
proposed scheme in detail. Afterwards, system analysis and
performance evaluation are provided in Section VI. Finally, in
Section VII, we have a summary of this paper.978-1-6654-3540-6/22/$31.00 © 2022 IEEE

II. RELATED WORK

For a long time, multi-client scenarios in SSE schemes have
not been taken seriously. Recently, one study [9] has attempted
to design a multi-client SSE scheme based on ABE and
OXT [3]. In their scheme, clients can use their own attributes
to set access policies for documents and then upload them to
the server. Meanwhile, other clients can locate a document
only if their own attributes satisfy its access policy.

However, there are two limitations in [9]. Firstly, the
utilization of ABE brings in unbearable overhead, while it
is not necessary to deploy such a complex access control
approach for most cases (Privilege level is a more common
method for access control). Secondly, it allows any client
to upload documents anytime, but the corresponding security
issue, i.e., forward privacy, is not considered. Forward privacy
was first claimed by Stefanov et al. [10], which indicates
that in an uploading-supporting SSE scheme, a newly inserted
document should not be matched by previous search tokens.
Once an SSE scheme lacks forward privacy, the file injection
attack [13] would rapidly devastate the encrypted system.

TABLE I
COMPARISON WITH VARIOUS SCHEMES

Schemes
Multiple

Users

Multiple

Clients

Fine-Grained

Access Control

Efficient

Access Control

Forward

Privacy

[5]
√

×
√

× -

[6]
√

× - × -

[7]
√

× - × -

[9]
√ √ √

× ×
Ours

√ √
×

√ √

Overall, we present a comparison between our proposed
scheme and works in multi-user/multi-client scenarios. As
listed in Table I, no previous work supports both multiple
clients and forward privacy. Moreover, only the scheme of
Zhang et al. [9] holds multiple clients. But, as discussed above,
its fine-grained access control is not necessary in our scenarios
and will cause heavy computation burden.

III. PROBLEM STATEMENT

A. System Model

There are three types of entities in our SSE system as shown
in Fig. 1: Manager, Cloud Server and Clients.

• Manager: The manager is a trusted party that maintains
the system. It selects and distributes the access tokens for
every client.

• Clients: A client outsources documents and searches
documents contributed by other clients. Every client
obtains his/her access tokens through assignment of the
manager, and uses them to set access policies when
uploading documents. If a client attempts to conduct a
query, he/she can only obtain those documents whose
access policies are satisfied by his/her access tokens.

• Cloud Server: Cloud Server runs the algorithms and
provides powerful computing and storage capacity.

ManagerClients

Distribute
Access Tokens

Clients/Users

Distribute
Access Tokens

Documents Search TokensSearch Results

Cloud Server

Execute SHVE.Query()

If Satisfied

Fig. 1. System Model

When a client uploads a document to the server, the
server would process outsourced ciphertext with its
corresponding index. Also, it will perform the search
processing and return precise ciphertext results if a client
sends a search token to Cloud Server.

B. Security Assumption

In the proposed scheme, we assume that Cloud Server is
honest-but-curious. In this model, Cloud Server will execute
the protocols and procedures honestly. Meanwhile, it is curious
and tries to collect and analyze uploaded documents from
clients in order to obtain some additional privacy information.

Among all clients, except the manager, there may be
colluded ones in order to search or access the documents
beyond their own permission. Moreover, now that it is clients
who generate Bloom filters used in our scheme, they may
maliciously add values into Bloom filters.

C. Design Goals

Our proposed scheme intends to achieve efficient conjunc-
tive queries in dynamic multi-client scenarios. Therefore, there
are several goals for security and performance in our design.

• Sub-linear conjunctive queries. In our system, a client
can issue sub-linear conjunctive queries over keywords
that have been stored in the encrypted database.

• Multiple clients. All clients can outsource their
documents to Cloud Server and search outsourced
documents contributed by other clients according to the
corresponding access tokens.

• Light computational costs. Our scheme utilizes merely
symmetric encryption to implement access control.
We argue that our proposed scheme will have less
computation costs than the previous schemes.

• Forward privacy preservation. Motivated by ODXT, we
construct a counter to preserve forward privacy, so that
Cloud Server cannot match the connection between newly
uploaded documents and previously sent search tokens.

IV. PRELIMINARIES

A. Bloom Filter

Bloom filter, a probabilistic structure, was first proposed by
Bloom [11] in 1970. Because of its efficiency on retrieving,
Bloom filter has been widely used to determine whether certain

element belongs to a collection. Bloom filter is initialized
as an m-bit bit array with all bits set as 0. Given a set
S = {a1, a2, . . . , an} and l independent hash functions:
H = {hj |hj : S → [1,m] , 1 ≤ j ≤ l}, Bloom filter sets
the hj(ai)-th bit in the array to 1. When testing whether an
element a is in S, we calculate hj(a), 1 ≤ j ≤ l to obtain l
positions. If any of the l positions equals to 0, then a ̸∈ S;
otherwise, it means that a ∈ S or a yields a false positive.

In this paper, we make little modification to Bloom filter as
there will be security issues if we use Bloom filter as always.

B. Modified Symmetric Hidden Vector Encryption

Symmetric Hidden Vetor Encryption (SHVE) scheme was
first proposed by Lai et al. [4] to encrypt vector data. In
our proposed scheme, we slightly modify SHVE protocol to
make it be able to carry a payload message, which is not
implemented in [4]. In our framework, Σ is a finite set of
attributes. Typically, Σ is a finite field Zp.

The modified SHVE utilizes a pseudorandom function
(PRF) F0 : {0, 1}λ × {0, 1}∗ → {0, 1}λ and a symmetric
encryption scheme (Sym.Enc, Sym.Dec). The detail of
construction can be defined as the following four Probabilistic
Polynomial-Time (PPT) algorithms:

• SHVE.Setup(1λ)→ msk: On input a security parameter
λ, the algorithm uniformly samples a master secret key
msk

$← {0, 1}λ and outputs a message space M.
• SHVE.Enc(msk, µ ∈ M, y ∈ Σm) → c: On input a

vector y = (y1, ..., ym) and the msk, let C = {lj ∈
[m]|ylj ̸= 0} be the set of all locations in y that do not
equal to 0, and l1 < l2 < ... < l|C|.

The algorithm samples a key K
$← {0, 1}λ and constructs

ciphertext c as follows:

d0 = ⊕j∈[|C|](F0(msk, ylj ||lj))⊕K,

d1 = Sym.Enc(K,µ).

Then, it outputs the ciphertext c = {d0, d1, C}.
• SHVE.KeyGen(msk, x ∈ Σm) → s: On input a vector

x = (x1, ..., xm) and the master secret key msk, for each
l ∈ [m], the algorithm calculates sl = F0(msk, xl||l).
And then, output the decryption key s = ({sl}l∈[m]).

• SHVE.Query(c, s): On input ciphertext c and a decryp-
tion key s, the algorithm then calculates:

K′ = (⊕j∈|C|sj)⊕ d0,

µ′ = Sym.Dec(K′, d1).

If the values of those locations in C are equal between
vector x and y, then the obtained µ′ is also equal to µ;
otherwise, we will obtain that µ′ /∈M.

C. Oblivious Dynamic Cross-Tag

Oblivious Dynamic Cross-Tag (ODXT) [12] is a conjunctive
SSE scheme, which preserves forward privacy while uploading
documents. An ODXT scheme formally consists of the
following three algorithms:

• ODXT.Setup(1λ): Taking a security parameter λ as
input, this algorithm outputs a set of keys sk, an initialized

counter st that records the counter number of updating
for each keyword, and an empty database EDB.

• ODXT.Update(sk, st, op,(id, w);EDB): On input the se-
cret keys sk, the counter st, an operation op ∈ {add, del},
the updating information (id, w), and encrypted database
EDB, the algorithm will update the corresponding section
in EDB according to the information it obtains.

• ODXT.Search(sk, st,q = (w1, w2, ..., wn);EDB): With
the secret keys sk and counter st, this algorithm finds
those documents that satisfy the set of keywords q in
EDB. Finally, it returns these documents to the client.

V. THE PROPOSED SCHEME

A. Overview

As we mentioned before, our multi-client SSE scheme is
designed for dynamic scenarios where fine-grained access
control is not essential because of its heavy computation costs.
Therefore, in this paper, we design an efficient authorization
method to implement access control. Our method is conducted
by Bloom filter and modified SHVE, which leads to a much
less computation cost than fine-grained methods.

In our paper, the system is composed of a manager, Cloud
Server and clients. The manager determines all privilege levels
in the group and which level a client belongs to. Then, the
manager generates access tokens according to the privilege
levels, and distributes corresponding access tokens to clients. If
a client desires to upload documents, he/she first selects access
tokens to be inserted into a Bloom filter BF1. Subsequently,
the client uses SHVE.Enc(·) to encrypt BF1, leading to an
encrypted result c. Afterwards, the encrypted document is
uploaded to Cloud Server with corresponding c.

While a client attempts to search documents on the server,
he/she also chooses access tokens to obtain a Bloom filter
BF2. Through SHVE.KeyGen(·), the client gains a decryption
key s and sends it to the server with a keywords set. Cloud
Server finds those documents and exploits SHVE.Query(·) to
test whether the decryption key s can decrypt corresponding
c. If so, the server returns that document to the client.

The complete procedure of our scheme can be divided into
4 steps: Setup, Upload, TokenGen, Search.

B. Setup Step

In this step, the manager divides the whole group’s
privileges into ℓ levels: level1, level2, . . . , levelℓ. According
to the privilege levels, the manager generates ℓ encrypted
access tokens: token1, token2, . . . , tokenℓ. Later, he/she
determines which level each client belongs to and distributes
corresponding access tokens to every client. For instance, a
client at level3 will be distributed token1, token2 and token3.

Meanwhile, the manager invokes ODXT.Setup(1λ) and
SHVE.Setup(1λ) to generate secret keys sk, an initialized
counter st, a master secret key msk, a message space M,
and an empty database EDB. Afterwards, (sk,msk) is sent to
clients with corresponding access tokens, and EDB is uploaded
to the server. As for st, all clients share and maintain it.

Algorithm 1: Upload
Input: Client’s access tokens token1, . . . , tokenn1 ;

Encrypted database EDB = (TSet,XSet);
Client’s keys sk = (KT ,KX ,KY ,KZ);
Keyword set w = (w1, w2, . . . , wn);
The master secret key msk;
Document identifier id;
Counter st = UpdCnt.

Client:
1 Initialize BF1 ← 0m.
2 for i← 1 to n1 do
3 for j ← 1 to k do
4 Set BF1[hj(tokeni)] = hj(tokeni).
5 end
6 end
7 for i← 1 to n do
8 if UpdCnt[wi] is NULL then
9 UpdCnt[wi] = 0.

10 end
11 Set UpdCnt[wi] = UpdCnt[wi] + 1;
12 Set addr = F (KT , wi||UpdCnt[wi]||0);
13 Set e = id⊕ F (KT , wi||UpdCnt[wi]||1);
14 Compute z = FP (KZ , wi||UpdCnt[wi]);
15 Set α = FP (KY , id) · z−1;
16 Set µ = (e, α);
17 Compute c = SHVE.Enc(msk, µ,BF1);
18 Compute xtag = gFP (KX ,wi)·FP (KY ,id);
19 Send (addr, c, xtag) to server.
20 end
21 end

Server:
22 Set TSet[addr] = c and XSet[xtag] = 1.
23 end

C. Upload Step

The algorithm is shown in Algorithm 1, where F and Fp

are PRFs. In this step, a client first chooses access tokens
token1, . . . , tokenn1

and maps them into a bloom filter BF1.
Later, the client generates encrypted index values of document
identifier id and keywords set w = (w1, w2, . . . , wn) with
algorithm SHVE.Enc(·). The details of encryption are shown
in line 7-18. Afterwards, the server executes the addition
operation in EDB according to what the client has sent.

D. TokenGen Step

In this step, a client is supposed to generate a search
token and send it to Cloud Server. Firstly, with access tokens
token1, . . . , tokenn2

, the client calculates a decryption key s
by employing SHVE.KeyGen(·). To perform a search query
Q = (w1, w2, . . . , wq), the client gets UpdCnt[w1] from st.
Then he/she generates stokenList and xtokenLists, and sends
them along with the decryption key s as search token to
Cloud Server. The details are as shown in Algorithm 2.

E. Search Step

As shown in Algorithm 3, while receiving search token
from a client, Cloud Server first locates where those documents
are in EDB according to stokenList. From these locations, the
server obtains corresponding encrypted index values. Let c be

Algorithm 2: TokenGen
Input: Client’s access tokens token1, . . . , tokenn2 ;

Client’s keys sk = (KT ,KX ,KY ,KZ);
Keyword set w = (w1, w2, . . . , wq);
The master secret key msk;
Counter st = UpdCnt.

Client:
1 Initialize BF2 ← 0m.
2 for i← 1 to n2 do
3 for j ← 1 to k do
4 Set BF2[hj(tokeni)] = hj(tokeni).
5 end
6 end
7 Compute s = SHVE.KeyGen(msk,BF2).
8 From UpdCnt identify the keyword with least updates

(assume it to be w1).
9 Initialize stokenList, xtokenList1, ..., xtokenListUpdCnt[w1]

to empty lists.
10 for j ← 1 to UpdCnt[w1] do
11 Set search addrj = F (KT , w1||j||0);
12 Set stokenList[j] = search addrj ;
13 for i← 2 to q do
14 Set xtokenj,i = gFP (KX ,wi)·FP (KZ ,w1||j);
15 Set xtokenListj [i] = xtokenj,i.
16 end
17 end
18 Return Search token =

(s, stokenList,xtokenList1,. . . , xtokenListUpdCnt[w1]).
19 end

Algorithm 3: Search
Input: Encrypted database EDB = (TSet,XSet);

Client’s search token.
Server:

1 Initialize returnList to an empty list.
2 for j ← 1 to |stokenList| do
3 Set counterj = 1;
4 Set cj = TSet[stokenList[j]];
5 Compute µ = SHVE.Query(cj , s);
6 if µ ∈M then
7 Set (ej , αj) = µ;
8 for i← 2 to q do
9 Set xtokenj,i = xtokenListj [i];

10 Compute xtagj,i = xtoken
αj

j,i ;
11 if XSet[xtagj,i] = 1 then
12 counterj = counterj + 1.
13 end
14 end
15 if counterj = q then
16 returnList = returnList ∪ {(j, ej)}.
17 end
18 end
19 end
20 Return returnList.
21 end

Client:
22 for i← 1 to |returnList| do
23 Set (j, ej) = returnList[i].
24 Compute id = ej ⊕ F (KT , wi||j||1).
25 Output document identifier id.
26 end
27 end

one of them. Later, the server runs SHVE.Query(c, s) and gets
the result µ to check whether µ ∈ M. If so, it implies that
the authorization of the client is enough for accessing this
document. We set an example of the access control process in
Fig. 2. Then the server checks whether that document involves
all keywords the client wants to search, with corresponding
xtokenList. Only if both conditions are satisfied, an encrypted
value involving id can be returned to the client. Finally, the
client can decrypt that value and gain the document identifier.

0 𝒉𝟐,𝟏 0 𝒉𝟏,𝟏 0 𝒉𝟏,𝟐 0 𝒉𝟐,𝟐 0 0

0 0 0 𝒉𝟏,𝟏 0 𝒉𝟏,𝟐 0 0 0 0

0 𝒉𝟐,𝟏 𝟎 𝒉𝟏,𝟏 0 𝒉𝟏,𝟐 𝒉𝟑,𝟏 𝒉𝟐,𝟐 0 𝒉𝟑,𝟐

Token1

Token1，Token2

Token1，Token2，Token3

* 𝒉𝟐,𝟏 * 𝒉𝟏,𝟏 * 𝒉𝟏,𝟐 * 𝒉𝟐,𝟐 * *

0 0 0 𝒉𝟏,𝟏 0 𝒉𝟏,𝟐 0 0 0 0

0 𝒉𝟐,𝟏 𝟎 𝒉𝟏,𝟏 0 𝒉𝟏,𝟐 𝒉𝟑,𝟏 𝒉𝟐,𝟐 0 𝒉𝟑,𝟐

SHVE.KeyGen()

SHVE.KeyGen()

SHVE.Enc()
Match MatchNon-match Non-match

Match MatchMatchMatch

Level1

Level2

Level3

Fig. 2. An Example of Our Access Control Process

VI. SYSTEM ANALYSIS

A. Correctness

Here, we prove that values the server computes from the
client’s xtokenj,i are equal to those values which have been
stored in XSet. We have

xtoken
αj

j,i

= (gFP (KX ,wi)·FP (KZ ,w1||j))FP (KY ,id)·[FP (KZ ,w1||j)]−1

= gFP (KX ,wi)·FP (KY ,id) = xtag.

The correctness of the equation above implies that a
document whose identifier is id does include the keyword wi.
And that is exactly what we desire to implement. Therefore,
the correctness of our search step holds.

B. Security Analysis

Forward Privacy. We have clearly described the definition
and significance of forward privacy in Section II. Here, we
show how forward privacy is guaranteed in our scheme.
Assuming that at certain moment a client uploads a document
including w1, the uploaded ciphertext involves a counter value
UpdCnt[w1] = UpdCnt[w1] + 1. Nevertheless, counter values
that all previously generated search tokens involve are not
updated, so these values will never match the newly uploaded
document. Thus, our scheme is forward private.

Security Against Clients. As stated in our security model,
some clients might collude with each other and clients may
maliciously add values into Bloom filters.

To address the first issue, we make sure that distributed
access tokens are continuous beginning with token1, e.g.,
token1, token2, token3. In this way, supposing that the token
collections of two clients are respectively A and B, there must
be either A ⊂ B (B ⊂ A) or A = B. Therefore, collusion is
useless for at least one of them.

As for the second issue, when a client is going to map
tokens into a Bloom filter, he/she is supposed to insert the

hash values into corresponding positions, instead of 1. Thus,
even if clients make malicious addition, there is no influence
on calculating at all.

C. Performance Analysis

In the followings, we give a performance evaluation of
our proposed scheme in terms of time and storage costs.
All procedures are conducted in Linux operation system with
an Intel Core i5-10400 CPU of 4.30 GHz and 16GB RAM.
Moreover, we use the elliptic curve “MNT159” to implement
the scheme in [9] (MCSE for short hereafter) for comparison1.
Every experiment is conducted 100 times and we take average
values as the final results.

Setup Computational Costs. Fig. 3 shows time costs in
setup step of MCSE and our proposed scheme related to
the number of access tokens. To be noted, for the sake of
simplicity, we regard attributes in ABE as access tokens in
the experiments, and “#keyword = 10” means that there are
10 keywords in every documents. Now that our scheme does
not involve ABE, time costs hold much less than MCSE.
Although we enlarge our Bloom filters according to access
tokens, our time costs still maintain almost invisible growth
when the number of access tokens increases.

0 20 40 60 80 100
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
C

os
ts

 o
f S

et
up

 (s
)

Number of Access Tokens

 MCSE
 Ours

Fig. 3. Time Cost of Setup When #Keyword = 10

Encryption Efficiency. Here, Fig. 4 shows encryption
efficiency of both schemes. Just like setup computational
costs, more access tokens merely lead to slight influence over
our scheme, but significantly increase the encryption time
of MCSE. Although the number of keywords has obvious
effects on both schemes, encryption of MCSE is clearly more
affected. Ultimately, MCSE conducts several bilinear pairing
operations for encryption. And, meanwhile, both two schemes
need three exponentiation operations to encrypt one keyword.

Client’s Costs over Search Tokens. We take time and
storage costs of generating tokens to measure the overhead
of one client. Here, the number of documents involving the
first keyword w1, i.e., UpdCnt[w1], is fixed to 20. In Fig. 5,
we record time and storage overhead under different keywords
and access tokens. Obviously, both kinds of overhead in
our proposed scheme are less compared to MCSE. When
access tokens increase, overhead in our scheme remains nearly
constant as the length of Bloom filters has little effect on this

1There is no scheme in the exact same scenario as ours, so we have no
choice but compare our scheme with an attribute-based SSE scheme in a
similar multi-client scenario.

10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
T

im
e

C
os

ts
 o

f E
nc

ry
pt

io
n

(s
)

Number of Access Tokens

 MCSE
 Ours

(a) Fixed #Keyword = 20

10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

T
im

e
C

os
ts

 o
f E

nc
ry

pt
io

n
(s

)

Number of Keywords

 MCSE
 Ours

(b) Fixed #Tokens = 20

Fig. 4. Efficiency of Encryption

step. However, in Fig. 5b, we can see that the gap between two
schemes is not as large as before when the number of keywords
increases. It is easy to explain: when generating search tokens,
MCSE needn’t conduct bilinear pairing operations. Moreover,
though its exponentiation operations are more complicated
than those in our scheme, both schemes perform the same
number of operations.

10 20 30 40 50
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
 Time Costs of MCSE
 Time Costs of Ours
 Storage Costs of MCSE
 Storage Costs of Ours

Number of Access Tokens

T
im

e
C

os
ts

 o
f T

ok
en

 G
en

er
at

io
n

(s
)

50

100

150

200

250

300

350

400

450

 S
to

ra
ge

 C
os

ts
 o

f T
ok

en
 G

en
er

at
io

n
(K

B
)

(a) Fixed #Keyword = 5

10 20 30 40 50
0

2

4

6

8

10

12
 Time Costs of MCSE
 Time Costs of Ours
 Storage Costs of MCSE
 Storage Costs of Ours

Number of Keywords

T
im

e
C

os
ts

 o
f T

ok
en

 G
en

er
at

io
n

(s
)

200

400

600

800

1000

1200

 S
to

ra
ge

 C
os

ts
 o

f T
ok

en
 G

en
er

at
io

n
(K

B
)

(b) Fixed #Tokens = 10

Fig. 5. Time and Storage Costs of Token Generation

Search Time. We present our results for search time in
Table II. Our scheme certainly achieves higher time efficiency
and roughly twice savings as MCSE. However, in MCSE,
clients need another round of communication to get decryption
keys for what they have received from the server, which is not
presented in Table II. Therefore, the real processing time to
get decrypted documents in our scheme is much less than that
in MCSE.

TABLE II
SEARCH TIME IN TWO SCHEMES (S)

Number of Keywords
and Access Tokens MCSE Ours

#Keywords=5

#Tokens=10 0.606849700 0.325721067

#Tokens=20 0.607580033 0.328395567

#Tokens=30 0.611077133 0.322247667

#Tokens=10

#Keywords=15 2.113462667 1.118631567

#Keywords=25 3.700582933 1.924311633

#Keywords=35 5.140796400 2.726146800

VII. CONCLUSION

In this paper, we proposed a searchable symmetric
encryption scheme with efficient access control for dynamic
multi-client scenarios. Firstly, we pointed out the overhead

issues for fine-grained access control in symmetric scenarios.
Later, we presented a scheme to achieve higher efficiency
by utilizing Bloom filter and modified Symmetric Hidden
Vector Encryption. Moreover, we claimed the significance of
forward privacy in multi-client scenarios and, through the
analysis of security, our proposed scheme indeed holds the
forward privacy preservation. Finally, extensive experiments
also indicate that the computation, storage and communication
overhead in our scheme are lightweight, which implies our
proposed scheme is practical in realistic multi-client scenarios.

ACKNOWLEDGMENT

The work is supported in part by the National Natural
Science Foundation of China (NSFC) under Grant No.
61972371, and Youth Innovation Promotion Association of
the Chinese Academy of Sciences (CAS) under Grant No.
Y202093.

REFERENCES

[1] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Future Generation Computer Systems,
vol. 79, pp. 849–861, 2018.

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceedings of the 2000 IEEE Symposium on
Security and Privacy (S&P). IEEE, 2000, pp. 44–55.

[3] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in Proceedings of the 33rd Annual Cryptology
Conference (CRYPTO). Springer, 2013, pp. 353–373.

[4] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D. Mukhopadhyay,
R. Steinfeld, S.-F. Sun, D. Liu, and C. Zuo, “Result pattern hiding
searchable encryption for conjunctive queries,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2018, pp. 745–762.

[5] S.-F. Sun, J. K. Liu, A. Sakzad, R. Steinfeld, and T. H. Yuen, “An
efficient non-interactive multi-client searchable encryption with support
for boolean queries,” in Proceedings of the 21st European Symposium
on Research in Computer Security (ESORICS). Springer, 2016, pp.
154–172.

[6] L. Du, K. Li, Q. Liu, Z. Wu, and S. Zhang, “Dynamic multi-client
searchable symmetric encryption with support for boolean queries,”
Information Sciences, vol. 506, pp. 234–257, 2020.

[7] S.-F. Sun, C. Zuo, J. K. Liu, A. Sakzad, R. Steinfeld, T. H. Yuen,
X. Yuan, and D. Gu, “Non-interactive multi-client searchable encryption:
Realization and implementation,” IEEE Transactions on Dependable and
Secure Computing, vol. 19, no. 1, pp. 452–467, 2022.

[8] H. Ling, K. Xue, D. Wei, and R. Li, “An efficient multi-user multi-
keyword fuzzy search scheme over encrypted cloud storage,” Journal
of University of Science and Technology of China, vol. 51, no. 7, pp.
562–576, 2021.

[9] K. Zhang, M. Wen, R. Lu, and K. Chen, “Multi-client sub-linear
boolean keyword searching for encrypted cloud storage with owner-
enforced authorization,” IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 6, pp. 2875–2887, 2020.

[10] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in Proceedings of the 21st Annual
Network and Distributed System Security Symposium (NDSS). ISOC,
2014, pp. 72–75.

[11] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[12] S. Patranabis and D. Mukhopadhyay, “Forward and backward private
conjunctive searchable symmetric encryption,” in Proceedings of the
28th Annual Network and Distributed System Security Symposium
(NDSS). ISOC, 2021.

[13] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,”
in Proceedings of the 25th USENIX Security Symposium (USENIX
Security). USENIX Association, 2016, pp. 707–720.

