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Abstract—Truth discovery is an effective tool to infer true
information from multi-source data and has been widely applied
in mobile crowdsensing systems. In some specific scenarios, the
sensory data are collected in a streaming fashion with time-
varying information, and the server should update the truth in
time. Under such circumstances, local differential privacy-based
mechanism can satisfy the requirement of real-time processing
properly while keeping the privacy of sensory data. However, di-
rectly applying local differential privacy to handle streaming data
will disclose the long-term potential privacy and decrease the ac-
curacy. To address these problems, we propose an incentive-based
privacy-preserving truth discovery framework over streaming
data. Firstly, we adopt the sequential composition theorem of
w-event privacy to protect workers’ long-term privacy. Second,
we design an incentive mechanism to improve the submitted
data utility and thus avoid the decrease in accuracy. In this
way, our scheme ensures that workers submit more accurate
data while their global privacy is still guaranteed. Finally, we
prove our scheme satisfies w-event (ε, δ) differential privacy and
theoretically analyze the result utility. Extensive experiments also
demonstrate the effectiveness of our incentive mechanism.

Index Terms—Truth Discovery, Privacy Preservation, Local
Differential Privacy

I. INTRODUCTION

With the popularity of mobile and wearable devices, crowd-

sensing systems are developing rapidly. In a typical crowdsens-

ing application, workers upload the sensory data to the server,

and the server analyzes these data for further use. However,

due to the ambient noise and the different performance of

devices, the quality of sensory data varies from worker to

worker, thus the result of simple aggregation can deviate from

the ground truth. For this reason, truth discovery algorithms

[1] are proposed to infer reliable aggregated information

from multi-source data by assigning different weights to

workers. Although the truth discovery algorithms can provide

true answers for crowdsensing systems, they cause privacy

concerns since the data submitted by workers may contain

some sensitive information. In order to preserve the privacy

of workers, some works [2]–[4] suggest using cryptographic

tools to provide strong protection for individual privacy.

In some truth discovery scenarios, the sensory data are

collected in a streaming fashion with time-varying informa-

tion, such as temperature, humidity and traffic information.

As for the privacy-preserving truth discovery (PPTD) over

streaming data, workers submit data at any time and servers

should update the truth in time, which requires high com-

putational efficiency with privacy-preserving. Unfortunately,

existing cryptographic methods involve time-consuming calcu-

lation or additional communication costs, they are not suitable

for streaming data. In this respect, local differential privacy

(LDP)-based approaches are more suitable compared with the

traditional cryptography-based PPTD schemes. Recently, some

LDP-based PPTD schemes [5]–[9] are proposed to protect

privacy by adding noise to the original data.
In scenarios of truth discovery over streaming data, two

important issues need to be considered in LDP-based schemes.

One issue is long-term potential privacy disclosure. In truth

discovery over streaming data, data collection is often a long-

term procedure compared with one-time truth discovery, so we

need to take the privacy of time dimension into consideration.

Specifically, the noise continuously added to data over time

is considered to be relevant, and disturbed data may also

have potential security problem through statistical analysis. To

preserve the privacy of streaming data in truth discovery, we

use the model of w-event privacy [10], [11], which guarantees

provable privacy for any event sequence occurring at the time

window of size w.
The other issue is the decrease of accuracy, because the

LDP mechanisms introduce additional noise to data. Generally,

workers like to add more noise to their data for stronger

privacy protection. Although the error caused by noise can be

reduced during aggregation of large amounts of data, with the

number of participants increasing, the effect of error reduction

is limited (cf., Section VI). Therefore, we design an incentive

mechanism to improve the accuracy of results by motivating

workers to submit data with high utility. Encouraged by

monetary rewards, workers perturb sensory data with less

noise under the condition of guarantying the global privacy

for consecutive periods.
To handle these issues, this paper makes the following

contributions:

• We propose a privacy-preserving truth discovery scheme

over streaming data for consecutive periods. The model

of w-event differential privacy provides provable privacy

guarantee for any event sequence occurring at the time

window of size w. And workers’ privacy is not disclosed

to any other participants.978-1-6654-3540-6/22/$31.00 © 2022 IEEE



• A lightweight incentive mechanism is designed for large-

scale crowdsensing truth discovery tasks based on se-

quential composition property. Motivated by monetary

rewards, workers submit less but higher-utility data while

their global privacy is still guaranteed.

• We theoretically analyze the data utility and prove our

scheme satisfies w-event (ε, δ)-LDP. Moreover, through

extensive experiments, we demonstrate that our incentive

mechanism can improve the accuracy of truth discovery

results.

The remainder of the paper is organized as follows. Section

II introduces the related work, including existing works of

PPTD and incentive mechanisms of it. Then, the problem

statement is given in Section III. In Section IV, we describe

the truth discovery algorithm and local differential privacy

definition. We present details of incentive-based differential

PPTD over streaming data in Section V. After that, experi-

mental results and theoretical analysis are provided in Section

VI. Finally, Section VII concludes this paper.

II. RELATED WORK

We classify PPTD schemes into three kinds according to

privacy-preserving methods: cryptography-based PPTD [2]–

[4], data masking-based PPTD [12] and LDP-based PPTD

[5]–[9]. Compared with the other two kinds, LDP approaches

have the advantages of low computational cost and low

communication consumption in truth discovery. In these LDP-

based PPTD schemes, servers compute the truth over perturbed

data. Although satisfying differential privacy, these studies

provide provable privacy protection, they are designed for one-

time truth discovery [5]–[8] or do not support protection for

workers’ privacy during consecutive periods [9].

Motivated by the problem of long-term privacy protection,

some works [10], [11] are proposed to protect any event se-

quence occurring in successive time instants. They provide the

model of w-event differential privacy for data publishing. And

inspired by these works, [13] considers the correlations among

truths over time and the characteristic of workers’ reliabilities,

it achieves high accuracy of truth discovery over streaming

data. However, controlling privacy budget of workers, edge

servers assumed to be semi-honest can get more privacy than

the cloud server, which is not measured for privacy disclosure.

In order to reduce lazy workers or improve the accuracy

of results, some reserchers designed incentive mechanisms

for PPTD [5], [6], [14]. Specifically, [14] rewards workers

according to the cumulative weight to reduce lazy workers

in the system. By designing a set of contracts with workers,

[5], [6] optimize the truth discovery accuracy under the

given budget respectively over binary discrete and continuous

data. Nevertheless, to the best of our knowledge, none of

these works are suitable for scenarios of truth discovery over

streaming data.

III. PROBLEM STATEMENT

A. System Model

As shown in Fig. 1, our framework contains two different

types of parties: one cloud server and many workers of crowd-

sensing tasks. Among them, the cloud server is responsible

for collecting workers’ data and calculating the estimated

truth. And workers use devices to sense data from tasks

required objects, then they upload perturbed data to the server

immediately out of the timeliness. For notational convenience,

in the t-th time period, the sensory data of the i-th worker

from objects is denoted as xt
i which is perturbed as x̂t

i, and

the server totally receives Nt workers’ data. Assume that there

are M objects to be sensed, and the number of workers is not

fixed, since new workers may join the task at any time, and

participants may exit when their privacy budgets are consumed

up.
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Fig. 1. System Model

B. Security Assumption

We assume the server is honest-but-curious, in other words,

it honestly executes the protocol, but also tries to infer private

information from other participants. We also consider workers

to be lazy and malicious, which means they may submit fake

data rather than costly sensory data and try to lie to the server

about their privacy budget in order to get more rewards.

C. Design Goals

The main goal of our proposed scheme is to design a PPTD

scheme over streaming data. Specifically, our design goals are

three aspects:

1) Privacy Preservation: Every worker’s original sensory

data are protected by the Gaussian mechanism and pri-

vacy should not be disclosed in the long-term collection

process. And the proposed scheme should satisfy w-

event (ε, δ)-differential privacy.

2) Accuracy: In the proposed scheme, the estimated truth

should converge to the ground truth. The expectation of

error of estimated truth at a single perturbed point can

be measured with differential privacy parameters.



3) Effectiveness of Incentive Mechanism: According to the

proposed incentive mechanism, on the one hand, for

workers, the higher utility the data they can provide,

the higher rewards they can get. On the other hand, for

server, the more rewards server can provide, the more

accurate result of truth discovery can be delivered.

IV. PRELIMINARIES

A. Truth Discovery over Streaming Data

The truth discovery algorithm iCRH (incremental CRH)

[1] is designed for data streams. Because data streams come

quickly, server doesn’t calculate iteratively as CRH [1] re-

quired, but measures workers’ reliability in the long-term by

their weight.

According to iCRH procotol, in the t-th time period, the

server totally receives Nt workers’ data and do the following

three steps in order: truth update, distance update and weight

update.

1) Truth update: Given the i-th worker’s weight wt
i−1

of last submission and his/her data xt
i, the truth is

computed as

x∗
t =

∑Nt

i=1 w
t−1
i xt

i∑Nt

i=1 w
t−1
i

. (1)

2) Distance update: Given the estimated truth x∗
t , worker’s

data and his/her last updated distance dt−1
i , the distance

is computed as

dti = α ∗ dt−1
i + (1− α) ∗ d(x∗

t ,x
t
i), (2)

where α is the decay rate used to determine the impact of

the historical data on current source weights estimation.

And the distance function d(·) indicates the deviation

of two records. For the continuous data, the distance is

the squared loss: d(x,y) =
∑M

m=1(xm − ym)2. And

for discrete data, the distance function is the Hamming

distance: d(x,y) =
∑M

m=1 1(xm, ym), where 1(x, y) =
1 if x �= y and 0 otherwise.

3) Weight update: Given each worker’s distance, the weight

is updated as

wt
i = log(

∑Nt

i′=1 d
t
i′

dti
). (3)

B. Local Differential Privacy (LDP)

Local differential privacy (LDP) provides strong privacy

guarantees for each user while collecting and analyzing data

with distributed architecture.

Definition 1 ((ε, δ)-Local Differential Privacy). A random-
ized mechanism M satisfies (ε, δ)-LDP if and only if for any
pairs of input values v and v′ in the domain of M, and for
any possible output y ∈ Y , it holds

P[M(v) = y] ≤ eε · P[M(v′) = y] + δ,

where P[·] denotes probability and ε is the privacy budget. A
smaller ε means stronger privacy protection, and vice versa.

(ε, δ)-LDP means that a mechanism M achieves ε-LDP with
probability at least 1− δ, where δ is typically small.

To achieve (ε, δ)-LDP, one can use Gaussian noise.

Definition 2 (Gaussian Mechanism). Given a function f →
R over a data set D, if σ = Δ2f

√
2 ln 2/δ/ε and N (0, σ2)

are i.i.d. Gaussian random variable, mechanism M provides
the (ε, δ)-LDP when it follows

M(D) = f(D) +N (0, σ2),

where Δ2f = max
D,D′

‖f(D) − f(D′)‖2 is the �2-sensitivity of

f .
w-event differential privacy model [10], [11] provides prov-

able privacy guarantee for any event sequence occurring at any

window of w time stamps. Similar to (ε, δ)-LDP, we have:

Definition 3 (w-Event Privacy). A mechanism M satisfies
w-event (ε, δ)-LDP, if for all sets S ⊆ Range(M) and all
w-neighboring stream prefixes St, S

′
t and all t, it holds that

P[M(St) ∈ S] ≤ eε · P[M(S′
t) ∈ S] + δ,

where w-neighboring of two stream prefixes St, S
′
t means

for each St[i], S
′
t[i] such that i ∈ [t] and St[i] �= S′

t[i],
it holds that St[i], S

′
t[i] are neighboring, and for each

St[i1], St[i2], S
′
t[i1], S

′
t[i2] with i1 ≤ i2, and St[i1] �= S′

t[i1]
and St[i2] �= S′

t[i2], it holds that i2 − i1 ≤ w.
In addition, according to the privacy composition theorems

widely used in the design of mechanisms based on LDP, the

w-event privacy has the following property:

Theorem 1 (Sequential Composition Theorem). Let the
mechanism M takes stream prefix St as input, and it can be
decomposed into t mechanisms M1,M2, ...,Mt, each Mk

provides (εk, δk)-LDP. Then M satisfies w-event (ε, δ)-LDP
if

∀i ∈ [t],

i∑

k=i−w+1

εk = ε,

i∑

k=i−w+1

δk = δ. (4)

This theorem enables a w-event private scheme to view ε, δ
as the total available privacy budget in any sliding window

of size w, and appropriately allocate portions of it across the

time stamps.

V. PROPOSED SCHEME

A. Overview

As is mentioned above, our PPTD mechanism is designed

for the streaming data, which is continuously generated and

changing with time. Therefore, workers sensing data from

environment can submit their data at any time without restric-

tion, and server updates the truth at regular intervals for the

data submitted during this period with the iCRH framework.

Additionally, in order to preserve privacy, each worker perturbs

the data with Gaussian noise corresponding to the chosen

privacy budget divided from the global privacy budget. And

workers’ rewards are also related to the chosen privacy budget,

since the incentive mechanism involves the average distance

of truth discovery worker participated.



To measure the long-term privacy leakage, we make use of

the definition of w-event privacy and sequential composition

theorem of it, and worker’s global privacy budget is used

evenly in any sliding window of size w. Besides, the sum of

privacy budget used each submission of the worker shall not

exceed the global privacy budget before his/her exit, otherwise

the worker’s privacy cannot be guaranteed.
When the worker wants to exit, the server settles his/her re-

wards according to the average distance of truth discovery that

the worker has participated. Although the server only knows

distances between estimated truths and worker’s disturbed

data, making use of Gaussian mechanism, the aggregation of

historical distances can reflect the noise level and the reliability

of original sensory data.
In next two subsections, we present details of our proposed

PPTD scheme and the incentive mechanism.

B. PPTD over Streaming Data
When entering the system, each worker selects the cor-

responding group according to the protection level of each

submission he/she wants. By sensing data from environment,

the members of each group submit data with the same partial

privacy budget εti, i.e., the same Gaussian noise level. While

workers can submit their data at any time without restriction,

the server updates the estimated truth at the same time interval.
For every worker, the global privacy budget ε is used evenly

in a time window of size w, which is a specific number

of submissions rather than objective time for individuals. If

the worker has consumed up all the global privacy budget,

he/she should exit the system. Otherwise, the worker should

bear the risk of privacy disclosure, and the server may obtain

sensitive information by statistical analysis of historical data.

The detailed procedure of our scheme is shown in Algorithm
1.

C. the Incentive Mechanism
At the end of the worker i’s participation, the server settles

his/her reward Ri according to the following equation:

Ri = f(
k

∑k
t=1 d̂

t 2
i

), (5)

where f(·) is a linear monotone increasing function, and the

server can design it on demand, while k is the number of

historical submissions.
As is mentioned above, for every worker, the sliding window

size w is a specific number of submissions rather than objec-

tive time. Since our proposed framework is not a synchronous

system, the number of submissions varies from worker to

worker in the same time interval. Therefore, Eq. 5 also means

Ri = f(k/
∑

t∈w d̂t 2
i ).

Although it seems that in our incentive mechanism the

server just calculates on the historical perturbed distances,

the reward also involves other factors actually. The sum also

depends on partial privacy budget εti, the sliding window size

w and the utility of original sensory data, which can measure

the contribution of workers comprehensively. And then we

explain and proof it in the Section VI.

Algorithm 1: Differential Privacy-Preserving Truth

Discovery over Streaming Data

Input : Sensory data streams {xt
i}Nt

i=1, the global

privacy parameters (ε, δ), the sliding window

size w and the decay rate α.

Output: The estimated truth set x∗
t .

Initialize worker weights w0
i = 1, and the worker’s

accumulated distance d0i = 0.00001;

for each time period t do
for worker i who has sensed data this period do

// σt
i = Δ2f

√
2 ln 2/δti/ε

t
i.

sends x̂t
i = xt

i +N (0, σt 2
i ) to the server;

if
∑

t∈w εti > ε or
∑

t∈w δti > δ then
exits the system.

end
end
server receives Nt workers’ data;

for i ∈ Nt do
updates the estimated truth x̂∗

t according to Eq.

1;

updates the distances d̂ti according to Eq. 2;

updates the weights ŵt
i according to Eq. 3;

end
end

VI. ANALYSES AND EVALUATION

A. Security Analysis

Theorem 2. The proposed differential privacy-preserving
truth discovery over streaming data satisfies w-event (ε, δ)-
LDP.

proof: We first prove that the perturbation mechanism of any

submission t on any worker i satisfies (εti, δ
t
i)-LDP. In [15],

Dwork et al. proved that for c2 > 2 ln(1.25/δ), the Gaussian

Mechanism with parameter σ ≥ cΔf/ε is (ε, δ)-differentially

private. Therefore, worker i perturbs the data with Gaussian

noise N (0, σt 2
i ) before every submission, which satisfies

(εti, δ
t
i)-LDP.

Then, suppose worker i submits data in the sliding window

size w, and the perturbation mechanisms are denoted as

M1,M2, ...,Mt, since any Mt satisfies (εti, δ
t
i)-LDP as is

proved above, according to Eq. 4, the whole procedure of

proposed differential privacy-preserving truth discovery over

streaming data satisfies w-event (ε, δ)-LDP.

B. Utility Analysis

Theorem 3. Suppose that workers submit streaming data
set {{xt

i}Nt
i=1}t∈w, and each data xt

i is M dimensions corre-
sponding to M objects to be sensed. In worker i’s group, the
expectation of the mean absolute error between the ground
truth x∗

t and the estimated truth x̂∗
t by our proposed mecha-

nism satisfies

E[MAE(x∗
t , x̂

∗
t )] ≤ 2E[|xt

i − x∗
t |] +

√
2σt

i√
π

,



where E[|xt
i−x∗

t |] means the expectation of distance between
the ground truth and the original sensory data before pertur-
bation, and σt

i is the standard deviation of Gaussian noise,
which is determined by partial privacy parameter (εti, δ

t
i), i.e.,

σt
i = Δ2f

√
2 ln 2/δti/ε

t
i.

proof:

E[MAE(x∗
t , x̂

∗
t )]

= E[
1

M

M∑

j=1

|xt
·,j − x̂t

·,j |]

= E[
1

M

M∑

j=1

|
∑Nt

i=1 w
t
ix

t
i,j∑Nt

i=1 w
t
i

−
∑Nt

i=1 ŵ
t
i x̂

t
i,j∑Nt

i=1 ŵ
t
i

|]

= E[
1

M

M∑

j=1

|
∑Nt

i′=1

∑Nt

i=1 ŵ
t
i′w

t
i(x

t
i,j − x̂t

i′,j)∑Nt

i′=1

∑Nt

i=1 ŵ
t
i′w

t
i

|]

≤ E[

∑Nt

i′=1

∑Nt

i=1 ŵ
t
i′w

t
i(

1
M

∑M
j=1 |xt

i,j − x̂t
i′,j |)∑Nt

i′=1

∑Nt

i=1 ŵ
t
i′w

t
i

]

≤ E[

∑Nt

i′=1

∑Nt

i=1(
1
M

∑M
j=1 |xt

i − x̂t
i′,j |)

N2
t

]

= E[|xt
i − x̂t

i′ |]
= E[|xt

i + x∗
t − x∗

t − x̂t
i′ |]

≤ 2E[|xt
i − x∗

t |] + E[|N (0, σt 2
i )|]

= 2E[|xt
i − x∗

t |] +
√
2σt

i√
π

.

It is worth noting that E[|xt
i − x∗

t |] only depends on average

performance of workers’ devices and the ambient noise, which

is not influenced by our scheme. Obviously, the expectation of

error at a certain time relates to the partial privacy parameter

(εti, δ
t
i) of worker i’s group.

And we use RMSE to represent the error between the

estimated truth and the ground truth. Then Fig. 2 shows the

impact of partial privacy budget εti on the accuracy of results,

which is consistent with this expectation: the error of truth

discovery results reduces with the increase of εti, sharply in

the beginning and slowing down as εti grows.
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C. Effectiveness of Incentive Mechanism

As is mentioned in Section I, due to the limitation of

truth discovery algorithm itself, although with the number

of participants increasing, the accuracy of the results can

be improved (shown in Fig. 2), when this trend reaches a

certain extent, the improvement effect is limited, and we use

simulation experiments to demonstrate this phenomenon. We

set the number of objects to be sensed to 300, the decay rate

α to 0.3 and workers from 100 to 900, and the result is shown

in Fig. 3. According to the result, a way to further improve

accuracy is to reduce the level of noise added to sensory data,

which is also the main purpose of incentive mechanism.

0 200 400 600 800 1000

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
E

o
f

th
e

es
ti

m
at

ed
tr

u
th

Number of workers

No noise

� � �

� � �

� � �

Fig. 3. the Impact of Number of Workers

Theorem 4. According to the proposed incentive mecha-
nism, for worker, the higher utility the data provided by the
worker is, the higher rewards he/she can get, and for server,
the more rewards server can provides, the more accurate result
of truth discovery can be delivered.

proof: In Eq. 5, f(·) is a linear monotone increasing function

chosen on demand, so we only prove the argument of incentive

function relates to partial privacy parameter chosen by worker.

k
∑k

t=1 d̂
t 2
i

=
k

∑k
t=1 (d

t
i +N (0, σt 2

i ))
2

=
k

∑k
t=1 d

t 2
i + kσ2

i

,

(6)

where σi = Δ2f
√

2 ln 2/δti/ε
t
i, and in theory larger privacy

budget means higher utility.
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For server’s side, we prove it by simulation experiment. We

test it on 500 workers with 300 objects to be sensed, and

Fig. 4 looks into the effect of incentive mechanism for both

sides of workers and server. It plots the truth error and average

rewards of workers with partial privacy budget, which verifies

Theorem 4. Additionally, it is worth noting that when partial

privacy budget is greater than 0.6, the accuracy has hardly

improved but server also pays more for it. Therefore, server

should set the groups with partial privacy budget in proper

interval otherwise it’s not economy for server.

D. Discussion about Incentive Mechanism

We can notice the reward is also influenced by number

of submissions k from Eq. 6. According to Eq. 4, on the

premise of the global privacy parameter (ε, δ) fixed, the larger

the sliding window size w means the smaller partial privacy

parameter (εti, δ
t
i) in every submission i.e., the poorer utility.

Therefore, under the condition of the global privacy guaranteed

for consecutive periods, workers should try to improve their

data utility rather than submit more times in order to make

the truth discovery results more accurate.
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Considering the impact of number of submissions k on

accuracy, our incentive mechanism in some ways encourages

workers use larger partial privacy parameter in each submis-

sion though it leads to less submission. Fig. 5 quantifies the

relationship between the number of submissions and worker’s

average rewards each submission. We can see with number

of submissions increasing, average rewards reduce. So it’s not

economy for workers to participate many times. But it is worth

noting that the number of submission k is not the less the

better, since uncertainty of small amount of submissions is

very large, so the worker who spends too large partial privacy

budget and less submit data may get a random reward.

VII. CONCLUSION

In this paper, we proposed an incentive-based differen-

tial privacy-preserving truth discovery scheme over streaming

data. Considering privacy should not be disclosed in the long-

term collection of truth discovery over streaming data, we

introduced w-event privacy to measure the privacy protection

effect. Besides, on the basis of protecting workers’ long-term

privacy, we designed a lightweight incentive mechanism to

improve the accuracy of truth discovery results. In the future,

we will consider how to optimize the use of privacy budget

under the condition of limited resources.
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