
WeVoting: Blockchain-based Weighted E-Voting
with Voter Anonymity and Usability

Zikai Wang∗, Xinyi Luo∗, Meiqi Li∗, Wentuo Sun∗, Kaiping Xue∗†
∗School of Cyber Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China

†Corresponding author, kpxue@ustc.edu.cn

Abstract—E-voting plays a vital role in guaranteeing and
promoting social fairness and democracy. However, traditional
e-voting schemes rely on a centralized organization, leading to
a crisis of trust in the vote-counting results. In response to
this problem, researchers have introduced blockchain to realize
decentralized e-voting, but the adoption of blockchain also brings
new issues in terms of flexibility, anonymity, and usability. To this
end, in this paper, we propose WeVoting, which provides weight-
based flexibility with solid anonymity and enhances usability
by designing a voter-independent on-chain counting mechanism.
Specifically, we use distributed ElGamal homomorphic encryp-
tion and zero-knowledge proof to achieve voting anonymity with
weight. Besides, WeVoting develops a counter-based counting
mechanism to enhance usability compared with those self-tallying
schemes. By critically designing an honesty-and-activity-based
incentive algorithm, WeVoting can guarantee a correct counting
result even in the presence of malicious counters. Our security
and performance analyses elaborate that WeVoting achieves high
anonymity in weighed voting under the premise of meeting
the basic security requirements of e-voting. And meanwhile,
its counting mechanism is sufficient for practical demands with
reasonable overheads.

Index Terms—Blockchain, Weighted E-voting, Counting Mec-
ahnism, Smart Contract.

I. INTRODUCTION

As a fundamental way for people to freely express their

will, electronic voting, or e-voting, plays a critical role in pro-

moting fair social life due to its high efficiency and flexibility

[1]. A primary concern of e-voting is its security, including

eliminating illegal voters, protecting ballot confidentiality,

guaranteeing counting correctness, etc. To this end, traditional

e-voting systems typically utilize homomorphic encryption [2]

or mix-net [3] schemes to meet security demands based on a

central architecture. However, such central architecture may

lead to single points of failure and prone to DDoS attacks.

Therefore, the objective of building a decentralized e-voting

system has received extensive attention.

Blockchain technology was first applied to Bitcoin [4] and

is generally regarded as a secure distributed ledger maintained

by multiple nodes. Due to its excellent efficacy in decentral-

ized trust, tamper-resistant storage, and public verification,

many studies, e.g., [5]–[7] have introduced it into e-voting

to address the above security issues. They usually regard

blockchain as a reliable and public storage that can securely

record all the ballots and therefore concentrate on how to

encrypt the ballots more securely or efficiently.

As a consequence, although existing blockchain-based e-

voting schemes provide sufficient security, they do not perform

well in terms of flexibility and usability. Specifically, on

the one hand, weighted e-voting, in which each voter has a

variable voting power (i.e., weight), is significant in many

scenarios but not well-supported in existing schemes. This

brings two challenges, i.e., how to protect the personalized

weight that may reveal the specific voter and how to verify

the weight of each ballot under the condition of anonymity.

Some studies, e.g., [8], [9] propose score or range rules which

provide a certain degree of variable voting power, but they

are not effective enough in the weighted scenarios. On the

other hand, most of those blockchain-based schemes [10], [11]

adopt a self-tallying approach, in which each voter completes

the counting process independently based on the ballots that

are publicly stored on-chain. However, such a self-tallying

mechanism severely limits the system’s usability because the

computing overhead to verify and decrypt the ballots is too

huge for ordinary voters.

Considering the above limitations of existing blockchain-

based e-voting schemes, we propose WeVoting, a blockchain-

based weighted e-voting scheme that supports high-level

anonymity and usability. For anonymity with weight, we use

the ElGamal homomorphic encryption to encrypt a weighed

ballot directly and construct a zero-knowledge proof [12], [13]

to prove the validity of its weight, therefore solving the two

challenges brought by weight mentioned above. To further

enhance security, we distribute the ElGamal homomorphic

encryption and therefore ensure that every single ballot can

never ever be decrypted by anyone in the system. For voter

usability in terms of counting, we design a voter-independent

on-chain counting scheme. Our main idea is to select a group

of counters for counting and resist malicious counters by

an incentive-based counting consensus mechanism. Through

simulation analysis, we prove that our proposed consensus

mechanism can provide strong security even if there are

30% malicious counters in the system, sufficient for prac-

tical demands. In summary, this paper makes the following

contributions:

• We propose WeVoting, a blockchain-based weighted e-

voting scheme with voter anonymity and usability. We

utilize the distributed ElGamal homomorphic encryption

to enable efficient counting with user anonymity. Further-

more, we design a non-interactive zero-knowledge proof978-1-6654-3540-6/22/$31.00 © 2022 IEEE

by the Fiat-Shamir heuristic methods to guarantee the

correctness of weight.

• To reduce the computational overhead of voters and

enhance usability, we propose a voter-independent and

counter-based on-chain counting mechanism to replace

the commonly used self-tallying mechanism. Through a

carefully designed honesty-and-activity-based incentive

algorithm, WeVoting can guarantee counting security and

system liveness even when there are 30% malicious

counters.

• Through security analysis, we prove that WeVoting sup-

ports strong voting security and can resist the malicious

behaviors of various entities in an e-voting system. In

addition, by simulating a long-term operation of the

system, we demonstrate that the proposed incentive

mechanism can identify and eliminate malicious counters

and maintain fairness among honest counters.

The remainder of this paper is organized as follows. Section

II presents the related works. Section III introduces the basic

cryptography technology used in WeVoting. Section IV states

the problem, including the system model, security assump-

tions, and design goals. We introduce the detailed schemes of

WeVoting in Section V, analyze its security and performance

in Section VI and VII, and finally conclude our work in

Section VIII.

II. RELATED WORKS

Cryptography is an indispensable tool for achieving secure

e-voting. Typically, in traditional electronic voting systems,

homomorphic encryption [2] is used to complete counting

without decrypting ballots, ensuring voter privacy. Besides,

Mix-net [3] is implemented to achieve voting anonymity by

disrupting the correspondence between voters and ballots.

However, these traditional e-voting systems are all based on a

centralized counting authority, leading to a single point of fail-

ure and a crisis of trust. Seeing the outstanding performance

of blockchain in various decentralized applications, many

studies, e.g., [5]–[7], discuss the advantages and potentials

of blockchain-based e-voting systems.
Early studies utilize the blockchain to implement a basic

secure e-voting system, neglecting flexibility and performance.

For instance, McCorry et al. [10] proposed a decentralized

voting protocol based on Ethereum that utilizes smart con-

tracts to manage the entire voting, causing high computational

overhead by Ethereum’s consensus. Later, to enhance flexi-

bility, researchers proposed rank-based [9] or score-based [8]

schemes. The former allows every voter to rank the candidates,

and the latter further enables voters to give each candidate a

flexible score. However, they do not support weighted voting

and their adoption of the self-tallying approach also causes

severe usability limitations. To improve performance, Li et al.
[14] proposed a reputation-based and online counter model by

utilizing smart contracts, achieving efficient counting.

III. PRELIMINARY

ElGamal encryption is widely applied for its inherent ad-

ditive homomorphic property, specifically, by given a cyclic

group (G, p, g), of order p with generator g and Z
∗
p =

{1, · · · , p − 1}, user can generate a key pair (x, y = gx).
For two encryptions: E(m1) = (gr1 , gm1 · yr1), E(m2) =
(gr2 , gm1yr2) where r1, r2 ∈ Z

∗
p. And then, E(m1) ·E(m2) =

(gr1+r2 , gm1+m2 · yr1+r2) = E(m1 + m2), the resulted

ciphertext is an encryption of m1 +m2.

To further apply ElGamal homomorphic property in dis-

tributed multiple users scenarios, suppose each user has a

key pair (xi, g
xi) and therefore the system public key can

be constructed as PK =
∏

gxi = g
∑

xi
. Each user’s message

mi is encrypted as E(mi) = (ci1, ci2) = (gri , gmi · PKri),
where ri ∈ Z

∗
p. Then

∏
E(mi) = (C1, C2) = (g

∑
ri , g

∑
mi ·

PK
∑

ri), all participating users calculate and broadcast the

decryption shares C1
xi for obtaining the sum result of mi by:

C2∏
C1

xi
= g

∑
mi ·PK

∑
ri

(
∏

gri)
∑

Xi
= g

∑
mi .

IV. PROBLEM STATEMENT

A. System Model

As shown in Fig. 1, there are three kinds of entities in

WeVoting, i.e., organizers, voters, and counters.

• Organizer: The voting organizer is responsible for ini-

tializing a vote and announcing important parameters,

including voter list. It should also execute the Committee-
Selection algorithm to randomly select a group of coun-

ters to form the counting committee for the current vote.

• Voter: A voter can generate a ballot with yes, no, or

abstention and then encrypt it to conceal his/her own

will and construct a zero-knowledge proof to ensure the

correctness of weight w.

• Counter: Any blockchain user can become a counter to

participate counting phase and earn rewards by Registra-
tion. Counters are constrained by Incentive, where honest

counters are rewarded, and malicious ones are punished.

Voters

Organizer Counter Pool

Blockchain

Voting
w, yes/no/abs
Enc, ZKP

Counter Committee

Committee
Selection

Blockchain
Users

RegistrationIncentive

Counter
Contract

Registration() Exit()

Committee-Selection()

Incentive()
Voting

Contract

Initilization()

Voting()

Counting()
Exit

Fig. 1. System Model of WeVoting

B. Security Assumptions

We discuss security assumptions separately from four as-

pects, i.e., adversaries and system entities consisting of orga-

nizers, voters, and counters.

• Adversaries can be anyone that curious about the ballots

or trying to interfere with the voting process by tampering

with ballots or masquerading as legal voters.

• Organizers are only responsible for publishing vote

parameters and invoking Committee-Selection algorithm

and is therefore honest in the blockchain environment.

• Voters may repeatedly vote, be curious about the middle

result, or maliciously change their voting weights.

• Counters aim to earn rewards through honest counting,

but some malicious ones may try to upload wrong

counting results to interfere with the voting result. We

analyze of the effect caused by the malicious ones in

Section VI.

C. Design Goals

• Anonymity with weight: Anonymity requires that the

correspondence between the voter’s identity and the

ballot would remain confidential. In a weighted vote, it

is also necessary that weights and voters are unlinkable,

and meanwhile, the correctness of weights can be verified

during counting.

• Verifiability and Neutrality: Every voter can verify the

correctness of the final counting result and the legality

of the counting process. In addition, secure e-voting

requires that voters cannot acquire the intermediate result

to prevent their preferences from being influenced.

• Completeness and Correctness: Completeness requires

that all ballots are published and not be tampered with.

In the counting phase, all legal ballots are counted in the

final result, and all illegal ballots are discarded.

• Fairness and Usability: Fairness requires that honest and

active counters are highly likely to be elected into the

counting committee. Usability requires that the counting

mechanism is efficient and does not require the voter to

consume excessive computing power.

V. THE PROPOSED SCHEME

A. Overview

WeVoting is a blockchain-based weighted e-voting scheme

with voter anonymity and usability. It utilizes distributed

ElGamal homomorphic encryption and zero-knowledge proof

to realize flexible weighted voting with anonymity. In addi-

tion, to enhance voter usability, WeVoting provides a voter-

independent and counter-based on-chain counting mecha-

nism. Through the honesty-and-activity-based Incentive and

Committee-Selection algorithms, a group of counters forms

a counting committee to complete the counting. In general,

WeVoting consists of three phases for e-voting. Firstly, at

the initialization phase, the voting organizer (V O) publishes

the voting information on the blockchain through the voting

contract (V C) and invokes Committee-Selection to select the

counting committee. Besides, voters generate their key pairs

and upload the public keys to V C to build the system public

key. Next, during the voting phase, voters use the system

public key to encrypt weighted ballots and generate zero-

knowledge proofs for the ballot and weight. They should also

sign the ballots with their private keys. Finally is the counting

phase, where counters in the counting committee aggregate all

valid ballots by verifying the signatures and zero-knowledge

proofs. Then, each voter generates a decryption share based

on the required decryption information and uploads it to V C.

Counters can then compute the final voting result with the

decryption shares and upload it to V C for consensus.

B. Three Voting Phases of WeVoting

There are three main voting phases in WeVoting, i.e.,

initialization, voting, and counting.

1) Initialization: During the initialization phase, the voting

organizer (V O) initializes the voting and voters (V1, · · · , Vn)
register their public keys where n is the total number of voters

for the current voting. Each voter Vi has two key pairs, i.e.,

(pksi , sk
s
i) and (pkei , sk

e
i), used for signing and encrypting

respectively.

• Voting initialization: V O publishes (IDi, wi, pk
s
i) and

(G, p, g) to V C. Where the former is Vi’s voting infor-

mation, including ID, weight and signing public key. G

is a cyclic group of order p with generator g used for dis-

tributed ElGamal key generation and Z
∗
p = {1, 2, · · · , p−

1}. V O should also invoke Committee-Selection to select

the counting committee for current voting.

• Voter registration: Vi chooses a random secret key skei =
Xi from Z

∗
p and uploads the public key pkei = gXi to

V C. Therefore, the system public key PK is constructed

as g
∑

Xi
=

∏
gXi .

2) Voting: Voters generate and publish their ballots during

the voting phase.

• Ballot generation: Each Vi computes its raw ballot

bi = miwi, where mi is from {1,−1, 0} represents

voting intentions of yes, no and abstain, and wi is Vi’s

weight. Besides, Vi selects a random integer ri ∈ Z
∗
p and

encrypts bi as (C1i, C2i) = (gri , gbi ·PKri). In addition,

Vi constructs a non-interactive zero-knowledge proof Zi

on (C1i, C2i) to prove that bi ∈ {wi,−wi, 0} as

Zi = ZKP
{
gwi ·PKri ∨ g0·PKri ∨ g−wi ·PKri

}
.

Finally, Vi generates its ballot as

Bi = (IDi, wi, pk
s
i)||(C1i, C2i)||Zi.

• Ballot publication: To guarantee legitimacy and integrity

of the ballot, Vi generates a signature Si = S ig(sksi , Bi)
and uploads Bi||Si to V C.

3) Counting: A counting committee consists of N counters

(CT1, · · · , CTN) is selected during the initialization phase.

After the voting phase, the counters will work together to

verify ballots and count the result.

• Counter: Each counter CTi verifies each ballot Bj by

Sj and Zj and then aggregates all the legal ballots as

Ci
1 =

∏
j C1j , Ci

2 =
∏

j C2j and uploads (Ci
1, C

i
2) to

V C. V C will receive N pairs of (Ci
1, C

i
2). They will

be the same if all counters count correctly; otherwise

there will be differences. V C takes the most result as

the correct one, denote as (C1, C2).

• Decrypt: Each voter Vj gets C1 from V C and calculates

Sj = C
Xj

1 and uploads Sj to V C. CTi can then decrypt

the aggregated result
∑

bi =
∑

wimi by:

g
∑

bi =
C2∏
Si

=
g
∑

bi · PK
∑

ri

(
∏

gri)
∑

Xi
.

Similarly, after receiving N counters results, V C takes

the most result as the correct final result. Referring to [10]

and [8], entities can easily get
∑

bi by brute forcing the

discrete logarithm of the result.

C. Counter Management of WeVoting

To enhance voter usability, WeVoting counts the ballots

with the help of counters rather than self-tallying. Therefore,

how to guarantee high security in the presence of a part of

malicious counters becomes a major challenge. To this end,

our main idea is to design an honest-and-liveness-based incen-

tive mechanism to realize that honest and active counters are

highly likely to be selected for counting to earn rewards, and

malicious ones will be identified and punished. On the basis

of the incentive mechanism, we design a set of management

functions for counters

1) The Stake S(h, a): An effective incentive requires that

counters with the same honesty and activity have basically

equivalent chance of participating in counting and earning

rewards. Thus, we use the stake S = S(h, a) to evaluate

a counter’s reliability from honesty (h) and activity (a).

Specifically, h is related to the time t of correct counting and

number of days d in the counting pool, formulated as

h = h(t, d) = t(1 + λ)d.

where λ is an increasing factor. Thus, this design is friendly

to “old” and honest counters. Besides, a is related to the

frequency of participation in counting. For activity, inspired by

the concept of coin age in proof-of-stake [15] which regards

the holding time of the coin as a factor to measure the coin’s

value to prevent “old” users from accumulating exorbitant

capabilities. On the contrary, we use this time-based idea

to increase the selection probability of active counters and

therefore improve the liveness of the system. Specifically,

a = a(k) =
k∏

i=0

(1 + μi).

where μ is the impact factor, and i represents the past k
counting tasks. To summarize, S can be formulated as

S = S(h, a) = ω/(1 + aθ−h).

where ω is a limit value and θ is an exponential value.

2) Management Functions for Counters: As shown in

Fig. 1, WeVoting provides four main functions for counter

management, i.e., registration, exit, incentive, and committee-

selection.

• Registration and Exit: Any blockchain user can become

a counter by funding a predetermined initial fund to

the counters contract. Then, he/she will get an initial

stake and enter the counting pool. Counters can withdraw

counting rewards and further exit counting pool if all the

remain fund is withdrawn.

• Incentive: Based on the stake S(h, a), the Incentive algo-

rithm is shown in Algorithm 1. If counter CTi submits a

correct counting result, he/she first receives the reward.

Further, his/her hi and ai will be adjusted by modifying

t, d and k and subsequently the stake Si will increase.

However, if CTi maliciously submits a wrong counting

result, his/her Si will be reduced sharply by adjusting t.
If t is much lower than the initial value ω/2, CTi will

be recognized as malicious.

Algorithm 1: Incentive

Input: The counting final result result,
Counters CTi∈[1,N] in the current counting committee,

Si = S(hi(t, d), ai(k)) of CTi∈[1,N],

The counting reward reward and penalty factor ρ.

Output: Si of CTi∈[1,N].

1 Nc ← the number of counters that provide correct

result.

2 for each CTi with
〈resulti, balancei, hi(ti, di), ai(ki)〉 do

3 if resulti == result then
4 balancei += reward/Nc;

5 ti+ = 1;

6 ki = 0;

7 else
8 di = 0;

9 if ti > 0 then
10 ti = �ti/ρ�;

11 else
12 ti− = 2;

13 compute Si = S(h(di, ti), a(k));

14 Return Si∈[1,N];

• Committee-Selection: Invoked by the voting organizer to

select a group of counters for the current counting task

according to their stakes S. The detailed algorithm is

shown in Algorithm 2. The main idea is to arrange all

counters on an axis and the length of the axis occupied

by each counter is equal to its stake. Subsequently, we

randomly select a point on this section of axis and select

the corresponding counter into the counting committee.

Therefore, the probability of counter CTi being selected

is Si

total , that is, the probability is proportional to the

stake. In addition, the stake computation mechanism

S(h, a) sets the upper limit of stake to ω. Therefore,

the maximum probability of being selected is restrained,

preventing some counters to become too strong to destroy

the decentralization of counting mechanism. To further

enhance security, we can also set the lower limit of

stake Sl to reject the counters with too small stake

to participate into the selection. Moreover, even if a

malicious counter is selected, it will be recognized and

penalized by Incentive.

Algorithm 2: Committee-Selection

Input: Counters CTi∈[1,Ncp] in counting pool,

stake Si of each counter CTi,

number of counters Ncc in a counting committee.

Output: A counting committee CC.

1 counter set W ← Φ;

2 sum of counters stake total ← 0;

3 for j = 1 to Ncp do
4 W [j] = Sj ;

5 total = total + Sj ;

6 for j = 1 to Ncc do
7 index = Random[0, total];
8 for k = 1 to Ncp do
9 if index in W [k] then

10 CC[j] = CTk;

11 Return CC;

VI. SECURITY ANALYSIS

In this section, we analyze how the proposed WeVoting

resists possible attacks. The details are as follows:

A. Attacks against Anonymity with weight

• Adversaries trying to get correspondences between
voters and ballots: The ballot encryption information

for every voter Vi is (Ci1, Ci2) = (gri , gbi ∗ PKri),
and decrypting a ballot requires the cooperation of all

voters. If Vi doesn’t give his/her secret (gri)
Xi , no one

can get bi. Therefore, a single voter’s option is unable

to be exposed. Besides, Although the weight is publicly

recorded in the ballot Bi, since the ballot is encrypted,

this only reveals whether the voter has voted, but not the

specific choice, achieving anonymity with weight.

B. Attacks against Verifiability and Neutrality

• Voters trying to repeatedly voting: Under the dis-

closure of the correspondence between voter’s iden-

tity and weight, the ballot is constructed as Bi =
(IDi, wi, pk

s
i)||(Ci1, Ci2)||Zi. Thus, repeatedly voting

can be detected by checking Bi’s ID in WeVoting.

• Voters trying to get the middle voting result before
submitting ballots: To get the middle voting result, Vi

needs to compute:

g
∑

bi =
g
∑

bi ∗ PK
∑

ri

(
∏

gri)
∑

Xi
.

But it takes the cooperation of all voters to get the result.

• Voters trying to submit wrong weight in a ballot: By

(IDi, wi, pk
s
i), counters can check whether IDi and wi

are matched, and by Zi, counters can check whether the

raw ballot bi is one of (wi,−wi, 0). Therefore, a voter

cannot use a wrong weight to generate a valid ballot.

C. Attacks against Completeness and Correctness

• Adversaries trying to tamper with ballots: We apply

blockchain technology to WeVoting so that once the

ballot is published to the blockchain, no one can tamper

with it.

• Adversaries masquerading as legal voters: Legal Vi’s

(IDi, wi, pk
s
i) is collected and published by V O in the

initialization phase. Thus, illegal voters can be recognized

in the counting phase by verifying the legitimacy of Vi’s

signature Si = S ig(sksi , Bi).
• Counters maliciously or incorrectly counting: Due to

Algorithm 1 and the review function that once occur a

different counting result, all counters will recheck the

final result for correctness. In WeVoting, the counting

mechanism filters out all malicious counters after several

times of counting.

D. Attacks against Fairness and Usability

• Counters trying to bypass the random selection mech-
anism: The counting mechanism runs on the blockchain

and supports Committee-Selection and Incentive algo-

rithms to achieve secure counting. Thus, every CTi is

selected by the counting mechanism based on the stake.

VII. PERFORMANCE ANALYSIS

A. The performance of computational

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

C
om

pu
ta

tio
n

C
os

t(m
s)

Voter Number

Verify
Compute
Count

Fig. 2. Time Cost of Computational.

To test the computational consumption of our scheme,

we conduct experiments on a computer with 3.90Ghz AMD

Ryzen and 16.0GB RAM. As shown in Fig. 2, WeVoting

completes experiments in computational cost, including verifi-

cation of signature Si, computing Zi and counting Bi. We set

the number of voters to range from 10 to 100, and the cost

of ballot counting and verification increases linearly as the

number of voters increases indicating reasonable overheads.

All of these calculations are done off-chain by the counters,

which significantly reduces the computing burden on voters

compared to self-tallying schemes.

TABLE I
CONSUMPTION OF THREE PHASES

Voting Phase Gas Cost ETH Cost
Initialization 715127 0.0143

Voting 2920661 0.0584

Counting 2440824 0.0488

Besides, the voting process implementation is supported by

the smart contract deployed on the Ethereum test network.

TABLE I shows the gas cost and ETH cost for the three

voting phases of WeVoting, demonstrating the acceptable per-

formance of our scheme. Meanwhile, the lower consumption

required for the counting phase indicates that the proposed

counting mechanism enhances the usability of WeVoting.

0 20 40 60 80 100

0

2

4

6

8

10

Number of Counting

Honest and Active
Honest
Malicious
Malicious andActive

St
ak

e

(a) S of Four Types Counters.

0 20 40 60 80 100

5

6

7

8

9

10

St
ak

e

Number of Counting

Refresh
Non-refresh

(b) Refersh and Non-refresh.

0 25 50 75 100 125 150

0

2

4

6

8

10

St
ak

e

Number of Counting

100% 90% 80% 70% 0%

(c) Counter with Different Accuracy.

0 20 40 60

0

2

4

6

8

10

Accuracy: 100% 90%~100% 80%~100% 0%

St
ak

e

Counters

Honest 70%
Malicious 30%

(d) Stable State of Counting Mecha-
nism.

Fig. 3. The Performance of Counting Mechanism.

B. The performance of counting mechanism
WeVoting completes the usability verification experiment of

the counting mechanism. As shown in Fig. 3a, the trend of

different CTi’s stake Si converges with the increasing number

of counting, and activity (a) affects the number of counting

required to reach the maximum probability of CTi. Thus,

WeVoting encourages honest and active CTi participation in

counting phase. Fig. 3b shows that CTi can increase S for

a higher probability of being selected by using the Refresh
function which costs a fee to improve a. Besides, for a

single counter, we assume that CTi has a different degree

of counting accuracy and analyze the effect of accuracy on

S. Fig. 3c shows that honest CTi must achieve at least 80%

accurate to increase S in WeVoting. After several times of

counting, Fig. 3d shows that WeVoting’s counting mechanism

with 30% malicious counters reaches a stable state, and all ma-

licious counters are recognized and removed from counting.

Therefore, even with 30% malicious counters in the system,

WeVoting can maintain the ballot counting correct and secure.

VIII. CONCLUSION

In this paper, we proposed WeVoting, a blockchain-based

weighted e-voting scheme that supports high-level anonymity

and usability. To address the issue of weighted voting security

under anonymity, we utilized distributed ElGamal homo-

morphic encryption and zero-knowledge proof to preserve

privacy for the ballot with weight. For usability in terms of

ballot counting, we proposed a voter-independent and counter-

based on-chain counting mechanism supported by designing

an honesty-and-activity-based incentive algorithm. Finally, we

proved that WeVoting meets the voting security requirements

through our security analysis. In terms of performance ex-

periments analysis, we verified through simulations that the

counting mechanism could effectively resist 30% malicious

counters, supports strong security with reasonable overheads

and significantly satisfies practical demands.

ACKNOWLEDGMENT

The work is supported in part by the National Natural Sci-

ence Foundation of China (NSFC) under Grant No. 61972371,

and Youth Innovation Promotion Association of the Chinese

Academy of Sciences (CAS) under Grant No. Y202093.

REFERENCES

[1] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward a secure
voting system,” in Proceedings of the 2008 IEEE Symposium on Security
and Privacy (S&P). IEEE, 2008, pp. 354–368.

[2] M. Hirt and K. Sako, “Efficient receipt-free voting based on homomor-
phic encryption,” in Proceedings of the 2000 International Conference
on the Theory and Applications of Cryptographic Techniques (Advances
in Cryptology-EUROCRYPT). Springer, 2000, pp. 539–556.

[3] M. Jakobsson, A. Juels, and R. L. Rivest, “Making mix nets robust for
electronic voting by randomized partial checking,” in Proceedings of
the 11th USENIX Security Symposium (USENIX Security). USENIX,
2002, pp. 339—-353.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
https://bitcoin.org/bitcoin.pdf, 2008, accessed: May., 2022.

[5] J. Huang, D. He, M. S. Obaidat, P. Vijayakumar, M. Luo, and K.-K. R.
Choo, “The application of the blockchain technology in voting systems:
A review,” ACM Computing Surveys (CSUR), vol. 54, no. 3, pp. 1–28,
2021.

[6] N. Kshetri and J. Voas, “Blockchain-enabled e-voting,” IEEE Software,
vol. 35, no. 4, pp. 95–99, 2018.

[7] R. Hanifatunnisa and B. Rahardjo, “Blockchain based e-voting recording
system design,” in Proceedings of the 11th International Conference on
Telecommunication Systems Services and Applications (TSSA). IEEE,
2017, pp. 1–6.

[8] Y. Yang, Z. Guan, Z. Wan, J. Weng, H. H. Pang, and R. H. Deng,
“Priscore: blockchain-based self-tallying election system supporting
score voting,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 4705–4720, 2021.

[9] X. Yang, X. Yi, S. Nepal, A. Kelarev, and F. Han, “Blockchain
voting: Publicly verifiable online voting protocol without trusted tallying
authorities,” Future Generation Computer Systems, vol. 112, pp. 859–
874, 2020.

[10] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for
boardroom voting with maximum voter privacy,” in Proceedings of the
2017 International Conference on Financial Cryptography and Data
Security (FC). Springer, 2017, pp. 357–375.

[11] A. Kiayias and M. Yung, “Self-tallying elections and perfect ballot
secrecy,” in Proceedings of the 2002 International Workshop on Public
Key Cryptography (PKC). Springer, 2002, pp. 141–158.

[12] C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal
of Cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[13] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Proceedings of the 1986 Con-
ference on the Theory and Applications of Cryptographic Techniques
(Advances in Cryptology-CRYPTO). Springer, 1986, pp. 186–194.

[14] M. Li, X. Luo, W. Sun, J. Li, and K. Xue, “AvecVoting: Anonymous
and verifiable E-voting with untrustworthy counters on blockchain,” in
Proceedings of the 2022 IEEE International Conference on Communi-
cations (ICC). IEEE, 2022, pp. 4751–4756.

[15] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” Self-Published Paper, August, vol. 19, no. 1, 2012.

