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Abstract—In Software-Defined Networking (SDN), the con-
trollers implement flexible and scalability networking policies
by installing different flow rules. Each rule matches a specific
class of flows, instructs the switches to execute actions, and then
expires when they finish their tasks. OpenFlow introduces the
timeout mechanism to manage these flow rules. However, finding
a reasonable timeout value becomes a difficult problem for the
network managers. When a relatively small timeout value is given
to an elephant flow, the rule expires early, introducing extra
cost for the controller and long latency for the matching flow,
respectively. On the contrary, a large timeout value for a mice
flow makes a rule occupy the switch memory too long, wasting the
caching memory and causing the flow table prone to overflow.
Therefore, it is necessary to allocate appropriate timeouts for
different flows dynamically. In this paper, we achieve this goal
with real-time traffic monitoring and heuristic algorithms. By
considering different network loads and designing corresponding
dynamic timeout algorithms for different scenarios, we make full
use of the advantages of SDN to improve the utilization rate of
the switch memory and save the controller resources. Further,
we implement our scheme in a simulation SDN platform and
evaluate the algorithms with the public datasets. Experiments
show that our scheme has low control overhead and is memory
efficient compared with current mechanisms.

Index Terms—Software-Defined Networking (SDN), flow table
management, timeout mechanism, traffic monitoring

I. INTRODUCTION

Software-Defined Networking (SDN) is a new networking
framework that overcomes the defects of traditional networks
by separating the control plane and the data plane. Benefiting
from the programmability of SDN, network operators manage
their network resources flexibly through the southbound inter-
face between the control and the data planes. Among all the
southbound communication protocols, OpenFlow [1] is the de
facto standard in the SDN implementations. OpenFlow allows
controllers to install flow rules on the switches to implement
agile networking functions. Currently, the commercial off-the-
shelf switches store these flow rules in the so-called ternary
content addressable memory (TCAM) to quickly find the
matches for a specific flow from thousands of rules [2]. Storing
flow rules in TCAM makes it costs O(1) time complexity to
look up a specific match in flow tables. However, TCAM
is expensive and power starving and therefore size-limited.
Besides, flows may need to be processed by multiple net-
work functions, e.g., resource allocation, anomaly detection
and traffic engineering, which need lots of flow entries for
implementation. Although the network operators can reduce

the flow entries used by implementing wildcard rules, fine-
grained flow management still needs exact-match rules and
has irreplaceable advantages for some important applications
in the network [3]. Thus, it is significant to use the flow entries
efficiently. However, the dynamic network functions and the
large amount of flows bring critical challenges for efficient
flow table management in SDN networks.

Using a small timeout value for all flow rules might save the
flow entries but brings other drawbacks. For example, some
flows cannot find their matching rules during the processing.
When such a no-match happens, switches encapsulate that flow
with a Packet_in message and send it to the controller,
according to OpenFlow1.5 [4]. However, this introduces high
latency for the flow [5] and also increases the overhead of
the controller [6], which is prone to be the bottleneck in SDN
networks [7].

Therefore, choosing a suitable timeout value for each flow
is a challenging problem. From the discussion above, there is
a trade-off between the controller computation resources and
the switches’ memory. As shown in Fig.1, we use the number
of Packet_in messages to show the controller’s overhead,
while we calculate the occupancy of the switches’ flow table.
With the increase of timeout, the controller’s overhead mono-
tonically decreases while the occupancy increases fast.

So, can we find a method that is both controller resources
efficient and switch memory efficient? In this paper, we
propose a dynamic timeout management mechanism for the
SDN flow tables to achieve the goal mentioned above. Based
on the real-time traffic monitoring, our heuristic algorithm
divides the network state into three different statuses, then
calculates the timeout for each specific flow based on their
statistical data. To summarize, this paper makes the following
contributions:

1) We propose a dynamic flow table timeout management
algorithm. Based on the real-time traffic monitoring, we
calculate the timeout of each flow with their statistical
characteristics and dynamically change them with the
feedback.

2) By dividing the network loads into different scenarios,
we adjust our algorithm with different parameters, which
further improves the efficiency of our algorithm.

3) We design and implement our scheme in a prototype
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SDN system with the Open vSwitch1, and evaluate
the efficiency with the public flow datasets. Extensive
experiments show that our method can efficiently save
the number of Packet_in messages, which shows the
controller resources efficiency of our scheme. Besides,
our approach can effectively reduce the number of
flow rule evictions, which shows the switch resource
efficiency of our strategy.

The rest of this paper is organized as follows. Section
II introduces the background and motivation of this paper.
Section III discusses some related work. We describe our
algorithm and the architecture and the implementation of
our scheme in Section IV. And in Section V, we carry
out simulation experiments for different network scenarios to
verify our method. Finally, we draw the conclusion of this
paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we first summarize the current flow table
management in Open vSwitch (OVS), and analyze the advan-
tages and disadvantages of these strategies. Then we introduce
the related work of this paper. And finally, we explain the
problem we are trying to solve and raise the motivation of our
scheme.

A. Flow Table Management in OVS

OpenFlow provides three mechanisms for flow table man-
agement [4], the flow timeout, the proactive flow entry dele-
tion, and the flow entry eviction.

For the timeout mechanism, OVS provides the following
two types of timeouts:

• Idle Timeout: If no packet matches the flow entry during
the idle timeout period, the flow entry will be removed
from the flow table.

• Hard Timeout: Any flow entry whose duration reaches its
hard timeout will be removed.

With these two types of timeouts, the OVS removes the
flow entries that are no longer in use as soon as possible.
However, the flow table may still overflow when there are lots
of new flows. Hence, OVS provides an Eviction Policy for this
situation. The eviction process only considers flows with an
idle timeout or a hard timeout, because OVS does not support
eviction mechanisms such as LRU and FIFO, but can only
be approximated by timeout mechanism. When a flow must
be evicted due to overflow, OVS will choose the flow entry
that expires soonest for eviction. This evict policy still relies
heavily on the timeout allocation.

What’s more, OVS provides a proactive flow entry deletion
initiated by the controller. The controller sends a Flow_mod
message to the switch with the OFPFC_DELETE command.
Once the switch receives this message, it proactively deletes
the flow entry that meets the condition, even if the flow has
not reached the timeout. While doing so does save the flow
table space by deleting infrequently used flow table entries

1https://www.openvswitch.org/, Feb. 2022

in advance, managing flow tables through controller delivery
control messages has high communication overhead and high
latency.

In fact, these three flow table management strategies are
independent of each other. In this paper, the flow table timeout
mechanism is mainly adopted for two reasons: First, the time-
out mechanism does not introduce additional communication
overhead; Second, the timeout mechanism does not require
the replacement of existing switch hardware devices, which
facilitates future deployment.

B. Motivation of Our Scheme

Either idle timeout or hard timeout, the optimization goal
of timeout mechanism is to increase the hit rate of all flows
within limited storage space. However, timeout can greatly
improve flow table utilization, only when it is set properly.
We make statistics and analysis on the number of Packet_in
messages and the average occupancy of the flow table under
different fixed timeouts.

Fig. 1: The trade-off relationship between control overhead
and flow table occupancy.

As shown in the Fig.1, small timeout will cause that
switches to send more superfluous messages to controllers for
new flow rules, increasing the overhead of the control channel.
And large timeout leads to a long rule lifetime, which means
that more expired entries will be stored in the flow table,
resulting in the overflow of the flow table. However, most flow
table management strategies usually use fixed timeout obtained
from experience, which cannot cope with the complex and
changeable network environment well. Fixed timeout results in
inefficient use of switch flow table storage which means that
it may be too long for short-live flows or too short for long-
live flows. Therefore, it is necessary to dynamically assign
different timeouts to different flows.

Based on the analysis above, our scheme is mainly designed
to solve the following two problems: On the one hand, in the
face of the complex and changeable network environment, it
is very difficult and user-unfriendly to set an appropriate fixed
timeout without prior knowledge. On the other hand, setting
the same timeout for streams with different characteristics will
result in low utilization of the flow table.
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Our scheme can not only improve the scalability of SDN,
that is, dynamically adapt to different network environment,
but also effectively improve the utilization efficiency of the
flow table, especially for dealing with the situation where the
flow is particularly heavy and the flow table is insufficient.

III. RELATED WORK

There have been some existing solutions to alleviate the
space strain problem of flow table by timeout mechanisms.
Vishnoi et al. [8] proposed an effective switch memory man-
agement method for SDN named SmartTime, which combined
a dynamic timeout heuristic to compute efficient idle timeouts
with proactive eviction of flow entries. Zhang et al. [9] pro-
posed an adaptive hard timeout method (AHTM) to improve
the flow table utilization by modeling the timeout optimization
problem as a queue system and achieving the balance between
blocking probability and extra workload to SDN controller. To
improve the efficiency of AHTM, Zhang et al. [10] proposed
TimeoutX, which combined traffic characteristics, flow types
and flow table utilization in flow table management. TimeoutX
[10] and AFTM [11] do not use the monitor, but only collect
information through the messages when the flow entry is
installed or removed, which results in the controller not being
aware of the occupancy of the flow table in time.

In other work, [12], [13] and [14] use the proactive flow
entry deletion in the flow table management policy. Although
this scheme is effective, it requires the controller to continu-
ously send deletion requests to the flow table, and the deletion
instructions will have a very bad impact on the real-time
performance of the switch. In [15], a management mechanism
named intelligent timeout master was proposed, which for the
first time introduced a feedback mechanism in SDN to adjust
the maximum timeout value accordingly through flow table
load. However, this feedback mechanism is too simple, and
the feedback to the maximum timeout value does not perform
well.

IV. DESIGN AND IMPLEMENTATION

In this section we will introduce the framework and im-
plementation of our algorithm in detail. The algorithm is
mainly divided into four parts: A. Flow monitoring module;
B. Timeout calculating module; C. Flow table management
module; D. Flow statistic database. The architecture of these
three modules is shown in Fig.2, which fully works on the
control plane.

The monitoring module wakes up periodically and queries
the current load and traffic statistics of the switch. The
database stores the traffic statistics from the monitoring mod-
ule or Packet_removed messages. When a flow arrives at
the switch and sends Packet_in message to the controller,
the controller invokes the corresponding timeout calculating
algorithm according to the current load, and then delivers the
flow entry through the flow table management module.

Fig. 2: Architecture of our scheme.

A. Flow Monitoring Module

The flow table monitoring module is designed to collect the
statistic of flows and flow tables periodically. The monitor
sends status requests to the switch at regular intervals (1
second in this work). This period can be adjusted according to
the network environment. The 1 second set in this paper works
for most common cases. Through this module, we mainly
collect the following two pieces of information about flows
and flow tables, which can help the computing module capture
the characteristics of different flows:

1) λ: Packet arrival rate of flow in the previous period.
2) µ: Current occupancy of the flow table.
The parameter λ reflects the traffic of different flows, so

that we can assign a larger timeout to a flow with large traffic
and a smaller timeout to a flow with small traffic. While the
parameter µ reflects the current flow table usage, so that we
can timely control the flow table when the flow table is about
to overflow. When the monitor collects the statistics above, the
data in the flow statistic database will be updated.

B. Flow Statistic Database

The flow statistic database collects data from two places:
the monitor and the switch. Whenever a flow table is removed
due to timeout, the switch proactively sends statistics about
the flow table to the controller. The controller will update the
database with this information. Each flow through the switch
is stored as an entry as follows in the flow statistic database.

Hash Repeat Count lastRemoved lastTimeout λ

Fig. 3: The Entry in Flow Statistic Database.

Here, we use the hash value of the triplet (srt, dst, in port)
to represent the different streams. This can greatly reduce the
storage of the database and also reduce the time it takes to
find the database. Repeat Count is used to count the number
of stream repeats, incremented by 1 for each repeat. The field
of lastRemoved stores the last time the flow entry was deleted,
while the lastTimeout stores the timeout value that allocated
last time. Finally, the parameter λ represents the packet arrival
rate of the flow during the previous period of the flow table,
which is collected by the flow monitoring module.

C. Flow Table Management Module

This module is mainly responsible for the delivery of flow
entries. Each time a new flow arrives on the switch, the
switch generates a Packet_in message and sends it to the
controller. Then flow table management module needs to call
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the timeout calculating module and get the appropriate timeout
value for the new flow. And finally, it will install the dynamic
flow entry on the switch.

D. Timeout Calculating Module
The main function of this module is to calculate the appro-

priate timeout of different flows through the data provided in
the database. There are two main phases: the slow start and
the overflow avoidance as mentioned above. To achieve the
above scheme, a dynamic timeout based on flow statistics and
flow table utilization is summarized as Alg.1.

Algorithm 1: Dynamic timeout Calculating Algorithm
in Different Modes

Input: tinit, tmax, H = hash(src, dst, in port);
Output: Timeout;

1 Require: TB MODE, InfH = φ(H), Tpktin;
2 timeout Calculation:
3 if InfH == NULL then
4 Log the new flow into database;
5 T = tinit;
6 else
7 Tinterval = Tpktin − InfH .lastRemoved;
8 if TB MODE == OAM then
9 if InfH .λ < λTH and

Tinterval > INR Threshold then
10 Skip the process of the flow entry install;
11 else
12 T = ceil(InfH .lastT imeout/2);
13 end
14 else if TB MODE == HLM then
15 T = InfH .lasttimeout + 1;
16 else
17 T = InfH .lasttimeout ∗ 2;
18 end
19 T = min{T, Tinit};
20 T = max{T, Tmax};
21 Update the flow information in the database;
22 end

It then determines the current load mode in real time
based on the information gathered above. We define three
different load modes for various scenarios and design dynamic
algorithms for each mode.

a) Low Load Mode (LLM): When the monitor detects
that µ ≤ 50%, the flow table is currently under low load.
In this case, it increases the timeout of the flow table expo-
nentially from a small timeout, as shown in line 21 of the
code. The small initial timeout is set because of the high
percentage of short traffic on the Internet, and it needs to
take some time for the controller to collect statistics of new
flows. If the occupancy of the flow table remains low, then the
timeout grows up to a preset upper limit tmax, which is set to
prevent high overflow rates due to excessively long timeout.
This allows long flows to be assigned a long timeout and short
flows to be assigned a short timeout.

b) High Load Mode (HLM): When 50% < µ ≤ 90%,
the load of the flow table is already high, and the timeout with
exponential growth may cause the overflow of the flow table,
so we use additive growth to adjust the timeout. Whenever the
flow repeatedly sends Packet_in messages to the controller,
we increase its timeout by one second each time which can
appropriately reduce the survival time of entries in the flow
table.

c) Overflow Avoidance Mode (OAM): In many existing
schemes, timeout only increases but not decreases, which may
reduce the utilization of the flow table. Once the monitor
detects flow table occupancy µ > 90%, the algorithm first
calculates the expiration interval of the flow table through
the following formula. For packets with large packet arrival
rates and small arrival intervals. We refer to the idea of
multiplication reduction in AIMD to avoid flow table overflow
as much as possible by halving the timeout and rounding up.

According to the analysis of data flow [16], many short
flows have only 1-2 packets, or the interval between packets
is very large. In our experiments, we find that many flow
entries are not even called once from installation to deletion.
For this type of stream that is not commonly used, either the
timeout mechanism or the early deletion mechanism still has
some overhead. We set an upper limit on the packet arrival
rate and a lower limit on the arrival interval, and the flow
exceeding the limits is judged to be an infrequently used
flow(line9∼10). For this type of flow, we skip the process of
installing the flow table on the switch and forward it directly.
Compared with timeout mechanism and proactive flow entry
deletion mechanism, direct forwarding of short-flow packets
under high load can omit unnecessary flow entry installation
and deletion process, which can not only reduce the control
overhead between controller and switch, but also effectively
improve the utilization of flow table to avoid overflow.

V. EVALUATION

To prove the feasibility of our scheme, we test the perfor-
mance of our scheme on the overhead between controller and
switch and the utilization of flow table, compared with the
fixed timeout scheme under different flow table sizes. In this
section, we will first introduce the simulation environment and
experimental parameters, including the simulation platform,
datasets, simulation parameters and evaluation metrics. Later,
we will present the experimental results and analysis in detail.

A. Simulation Environment

We take Ryu2 as the controller of SDN and use Mininet3 to
simulate the network topology. Our solution is implemented as
an application that can be deployed on the controller without
requiring changes to existing OVS hardware devices, which
means it has better portability. As for the experimental data,
we used two different datasets to reflect the performance of our
solution in different network scenarios. Datasets UNIV1 and
UNIV2 proposed in [17] have been widely used in previous

2https://osrg.github.io/ryu/, Feb. 2022
3http://mininet.org/, Feb. 2022
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work about flow table management [8] and [14]. The first
data set represents a trace in which most of the traffic is
TCP flow. And most of the traffic in the second dataset is
UDP flow, representing another data center traffic that contains
more burst flows. We respectively extract the first 100,000 data
packets and 500,000 data packets from the two datasets for
our experiment. The specific characteristics are shown in the
following table.

TABLE I: The Characteristics of Datasets.

Duration(s) Packet count Flow count
UNIV1 37 100000 390
UNIV2 55 500000 425

In the algorithm proposed in SectionIV, some parameters,
such as the upper limit of flow interval and the limit of
large and small flows, can be adjusted dynamically. In our
implementation, we give a set of most general parameters,
Tinit = 1s,Tmax = 10s.

We mainly chose two metrics to evaluate the improvement
of system performance by our algorithm:

• Packet_in number: It refers to the number of
Packet_in messages between the switch and the con-
troller. When a flow arrives at the switch, the switch
first matches the flow entries that have been installed.
If no suitable flow entry is found in the flow table, the
switch will send a Packet_in message to the controller.
Therefore, it reflects the cost of control channel, and also
the utilization of the flow table by counting the number
of table misses.

• Eviction number: This metric counts the number of flow
table eviction. We use the default eviction policy that
provided by OVS, which chooses the flow entry that
expires soonest for eviction. It is used to reflect the
number of flow table overflow.

Fig. 4: Eviction Number for UNIV1.

We simulate different network load conditions by set-
ting different flow table sizes. In this simulation, when
table size = 100, the flow table is seriously insufficient and
will overflow frequently. When table size = 150, the flow
table occupies a high rate and is in high load mode. While
table size > 150, the flow is in low load mode.

Fig. 5: Eviction Number for UNIV2.

B. Results and Discussion

The results of our experiment are shown from Fig.4 to Fig.7.
The first two graphs correspond to the dataset UNIV1, while
the last two graphs correspond to the dataset UNIV2.

a) Dynamic Adjustment of Flow Timeout: Firstly, we will
analyze the necessity of dynamic adjustment of flow timeout.
It can be seen that when the fixed timeout is 1s, the times
of table eviction is all at a very low level, but the number of
Packet_in messages is relatively high. In contract, when
timeout is set to 10s, there are higher eviction times and lower
Packet_in messages. That is, the flow table occupancy and
the control overhead between switches and controllers are
two tradeoff factors, which is consistent with our analysis in
SectionII. Therefore, choosing an appropriate fixed timeout
in a complex and changeable network is difficult and user-
unfriendly. Compared with the high control overhead of 1s
fixed timeout and the high overflow times of 10s, our scheme
dynamically selects the appropriate timeout for each flow,
which makes a good balance between these two factors.

Fig. 6: Packet-In Number for UNIV1.

b) Improvement of Flow Table Utilization: Then, we
will analyze the improvement of flow table utilization by our
algorithm. It is obvious that if a timeout is simply chosen
between 1s and 10s, then both the number of Packet_in
messages and the times of flow table overflow should be
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somewhere in between. However, our dynamic algorithm
works better at control overhead, especially in the case of high
load. Taking table size = 100 as an example, the number of
control messages in our scheme is reduced by 50% ∼ 67% as
shown in Fig.6, while it is reduced by 10% ∼ 68% as shown
in Fig.7. It is because that we use additional growth under
high load conditions and effectively filter some special flows
when overflow occurs, which greatly improves the utilization
efficiency of the flow table.

Fig. 7: Packet-In Number for UNIV2.

Compared with the fixed timeout of 10s, our scheme may
not improve the number of Packet_in messages signifi-
cantly, especially under low load conditions. This is because
in our scheme, it needs to take some time to get the statistics
for the flows, and the timeouts will increase from a small
timeout to a large timeout. We have used exponential growth
in our algorithm to speed up convergence time as much as
possible.

c) Additional Overhead: The monitor we introduced in
this work will carry some additional control overhead, that is,
the controller needs to send packets to the switch every cycle
to request information about the status of the flows and flow
table. However, a small amount of overhead doesn’t have a bad
effect on the system. For example, the monitoring period is
1s in our algorithm. In the case of tight storage space, one
query per second is negligible compared to the thousands
of Packet_in messages reduced by our algorithm. And
if storage space is sufficient, the bandwidth of the control
channel is also sufficient for the additional overhead.

VI. CONCLUSION

In this paper, we proposed a real-time monitoring based flow
table management strategy. The network monitor observes
network load in real-time and collects statistics for each
network traffic. Then we proposed a heuristic algorithm to
calculate the timeout for each flow, considering the network
load, flow repetition interval, and the packet arrival rate.
Experiments show that our strategy can efficiently save the
controller resources and the switch resources.
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