
LLDM: Low-Latency DoS Attack Detection and
Mitigation in SDN

Zixu Huang∗, Xuanbo Huang∗, Jian Li∗, Kaiping Xue∗†§, Qibin Sun∗, Jun Lu†
∗ School of Cyber Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China

† Department of EEIS, University of Science and Technology of China, Hefei, Anhui 230027, China
§Corresponding author,lijian9@ustc.edu.cn (J. Li), kpxue@ustc.edu.cn (K. Xue)

Abstract—Software-Defined Networking (SDN) is a new and
highly flexible network architecture, but the bottleneck between
the control plane and the data plane makes it vulnerable to
the control plane saturation DoS attacks. When the attack
happens, traditional schemes in DoS scrubbing agent use a binary
classification and a First In First Out (FIFO) queue to filter
attack flows. However, this scheme is inimical to the end-to-
end latency of benign traffic. To tackle this issue, we propose
LLDM, leveraging a dynamic priority scheme and a priority
queue to detect, mitigate the attacks while ensuring low latency
for benign traffic. After detecting the attack, LLDM leverages
a two-phase scheme for mitigation. First, LLDM marks packets
from the ports under attack as suspicious and migrates them to
the mitigation agent. Then, the dynamic priority manager assigns
each packet a priority corresponding to its legality, which is used
in the priority queue for DoS scrubbing. We evaluate LLDM in
a simulation SDN environment. The experimental results show
that LLDM can reduce 90.4% of the queuing delay compared
with the traditional scheme under a 5000 Packets Per Second
(PPS) attack, and it is also resistant to more sophisticated attacks.
Under the high rate attack of 50000 PPS, LLDM installs a flow
rule for legitimate traffic in 0.2 seconds. Moreover, for benign
HTTP requests, LLDM can keep the request time at 1.39 seconds.

Index Terms—Software-Defined Networking, DoS Attack,
Priority Queue, Low Latency

I. INTRODUCTION

Software-Defined Networking (SDN), a new and highly
innovative network architecture, has been widely used in data
center and cloud computing in recent years. By decoupling the
control plane from the data plane, SDN is more flexible than
traditional networks. A logically centralized controller can
provide a global view of the network, facilitating fine-grained
precise network control. OpenFlow [1] is the most commonly
used protocol for communication between the control and the
data plane. OpenFlow suggests that switches process incoming
packets according to the flow rules. When a packet does not
match any flow rules, the switch sends a PACKET-IN message
to the controller for instructions.

However, Shin et al. [2] showed that this design brings risks
of Denial of Service (DoS) attacks, named the control plane
saturation attacks. The attacker uses massive malicious table-
miss packets to trigger PACKET-IN messages, exploiting the
communication channel, exhausting the controller resources
and making the benign flow request unresponsive.

Previous works migrate the suspicious flows to a DoS
scrubbing agent to protect the control plane from exhaustion

[3]–[6]. The scrubbing agent can either restrict the sending
rate [3] or filter malicious flows based on whitelist [4],
[6] and blacklist. However, these methods based on binary
classification can only filter the attack flows in a first-in-
first-out (FIFO) manner. Figure 1 shows the traditional binary
classification method that scrubs the mixed network flows with
a single queue FIFO module. When the attack flows are in a
large number, the benign traffic has to wait and queue in the
scrubbing agent, making them suffer from long end-to-end
delays. Besides, whitelist based method cannot deal with new
benign flows during the attacks.

Fig. 1. The traditional single queue mitigation agent v.s. The dynamic priority
based priority queue mitigation agent

We design LLDM to solve these problems. After attack
detection, we design a two-phase mitigation scheme to scrub
the attack flows. First, we launch a coarse-grained filtration
scheme, dividing the traffic by the switch interface and
migrating the minimal suspicious traffic to the mitigation
agent. Next, as Figure 1 shows, the dynamic priority manager
gives each flow a priority and updates it continuously and
dynamically, based on the behavior of the flows. Then, the
mitigation agent enqueues each flow to their corresponding
priority queue to quickly deliver the high-priority packets,
reducing their queuing delay. We implement a prototype
LLDM system in an SDN simulation environment with the
help of Mininet and Ryu Controller. The results show that our
method can defend against DoS attacks while maintaining low
latency for benign traffic.

The main contributions of our work can be summarized as
follows:

• We propose LLDM, a DoS attack detection and
mitigation framework whose goal is to reduce the end-

2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR)

978-1-6654-0607-9/22/$31.00 ©2022 IEEE 169

20
22

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
ig

h
Pe

rf
or

m
an

ce
 S

w
itc

hi
ng

 a
nd

 R
ou

tin
g

(H
PS

R
) |

 9
78

-1
-6

65
4-

06
07

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
H

PS
R

54
43

9.
20

22
.9

83
13

33

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 27,2022 at 06:49:56 UTC from IEEE Xplore. Restrictions apply.

to-end latency of benign traffic. By introducing the two-
phase mitigation scheme, we reduce the attack influence
on benign traffic and decrease the asymmetry cost on
attackers and defenders.

• We design and implement a dynamic priority manager in
the DoS scrubbing agent for SDN saturation attacks. Our
method leverage dynamic priority to ensure non-whitelist
benign traffic communication and leverage the priority
queues to reduce the end-to-end latency of benign traffic.

• We implement the LLDM prototype system in a
simulation SDN platform and measure the reduction in
the latency of benign packets through experiments. The
experimental results show that LLDM can reduce 90.4%
of the queuing delay compared with the traditional FIFO
scheme, and keep the HTTP response time within 1.39
seconds.

The rest of this paper is structured as follows: We discuss
some related works in section II. Then, Section III introduces
the whole framework and the detailed design of LLDM. Next,
Section IV present the evaluation of experiments. Finally, we
draw our conclusion in Section V.

II. RELATED WORKS

1) Attack Detection: FloodGuard [3], and FloodDefender
[7] leverage the PACKET-IN rate for attack detection, which
is the critical parameter to determine the attacks. DETpro [8]
uses machine learning method to detect attacks. Dong et al.
[9] classified the network state using the sequential probability
ratio test. Li et al. [5] proposed a detection method based
on self-similarity of the OpenFlow traffic. Fouladi et al. [10]
proposed a time-series analysis for SDN to judge attacks. Also,
entropy-based attack detection has been widely used [4], [11].
In this paper, we leverage the attack detection method in [6],
which use the control channel distribution rate and the entropy
to detect the attacks.

2) Attack Mitigation: AVANT-GUARD [12] and Line-
Switch [13] extend the data plane, using a proxy to handle
TCP-based attacks to avoid the control plane overload.
However, as table-miss flows are protocol-independent;
attackers can manipulate non-TCP flows to attack the network.
FADM [4], and FSDM [6] migrate the suspicious flows to a
DoS scrubbing agent and use whitelist to filter attack flows,
but it is difficult to distinguish a benign new packet during
an attack. FloodDefender [7] uses the packet frequency and
the existence of pair-flow to verify the legality of a packet.
However, these works migrate the suspicious flows to a DoS
scrubbing agent and use a binary classification method, which
harms the end-to-end latency of benign traffic. As shown in
Figure 1, traditional binary classification scrubs the mixed
network flows with a single queue module. However, when the
attack flows are in a large number, the benign traffic has to wait
and queue in the scrubbing agent, making them suffer from
a long end-to-end delay. In this paper, we propose a dynamic
priority based scrubbing method to reduce the scrubbing price
of benign traffic.

III. LLDM SYSTEM DESIGN

A. System Overview

In this section, we introduce the architecture of LLDM.
Fig. 2 shows the blueprint of our method.

Our system contains two key modules: the Attack Detector
module and the mitigation agent. The Attack Detector is an
application on the controller. When the network is working,
this module collects traffic statistics on each switch port. Once
an attack is detected, this module locates the ports where
the attack is from and marks the packets from these ports
as suspicious packets. And then, the Attack Detector installs
a flow rule on the victim switch to migrate the suspicious
packets. Upon receiving the packets, the mitigation agent
begins to filter the packet based on a priority queue, and the
mitigation proxy generates PACKET-IN messages for benign
traffic to the controller. The PACKET-IN messages restore the
original information such as port number, so that the mitigation
agent is transparent to the controller and the apps running on
it.

Fig. 2. System Design and Working Process of LLDM. Suspicious flows are
migrated to mitigation agent and scrubbed, then benign traffic is forwarded
to controller.

B. Attack Detection

We design an attack detection module to detect the
occurrence of attacks, and then it makes a rough classification
of traffic. This module can be divided into two functions,
attack detection and traffic classification.

1) Analyze: Typically, an attacker takes control of a botnet
and sends attack traffic from multiple hosts to the SDN
network. We assume that the attackers tend to launch table-
miss flows, taking the opportunity to generate numerous
PACKET-IN messages. Attackers can reconnaissance some
matching fields of the flow rules to achieve that goal [14]–
[16].

Based on this attack model, we find two distinct
characteristics. First, attack traffic is always in a large number.
The attacker uses malicious requests to exhaust the bandwidth
between the controller and the switch. Once the controller
receives PACKET-IN requests far beyond controller processing
ability, it can be considered an attack. The second is the low
frequency, which is a unique feature of the SDN saturation
attack. Under normal circumstances, users usually access

2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR)

170Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 27,2022 at 06:49:56 UTC from IEEE Xplore. Restrictions apply.

limited addresses in a short period, and we can treat these
packets as identical. Continuously sending the same flow is
not profitable for the attackers. Because only the new flows
can trigger the PACKET-IN messages, the repeated flows can
not exhaust the control plane. Therefore, the attacker will
continually use the new stream, resulting in a rare high entropy.
So, we can then set thresholds on these features to detect an
attack. We deploy the Attack Detector in the controller to get
the global view and save the switch resources.

2) Features Collection: We can set a time window T, and
count the flow within each time window. For the number of
packets, we only need to count the number of PACKET-IN
messages. The PACKET-IN messages contain the dpid and
the port-numbers information, which help us to categorize.
For the entropy feature, we use five-tuple to distinguish the
packets. First, we need to know the number of each packet in
this time window. The packet received by the switch can be
divided into two types, one is the packet not matching flow
table, which triggers the PACKET-IN message, so the number
of such packets can be inferred from the five-tuple information
contained in the PACKET-IN message. The other is the packet
that hits the flow table, which does not cause the PACKET-
IN message. We can use the flow table statistics function,
sending Stat-Request at the beginning and end of each time
slice. According to the flow table counter information, we can
calculate the number of these packets. For example, for a flow
table flowi that starts with a counter value of 50 and ends with
a counter value of 59, the number of packets Si is 9. After
obtaining the number of packets (S1, S2, S3, ..., Si), we can
calculate the probability distribution (P1, P2, P3, ..., Pi) of
the packets, and then calculate the entropy of the packets by
the following formula:

H = −
n∑

i=1

Pi ∗ log(Pi).

3) Threshold Setting: We need two thresholds, St for the
number of packets and Ht for entropy. The first threshold St

means the load capacity of SDN, which is related to many
factors. The bottleneck is most likely to be the processing
ability of the controller and the bandwidth between the
controller and the switch. For the processing ability, we can
obtain it through the pressure test, we denote it as Sctrl.
For the bandwidth between the controller and the switch,
assuming available bandwidth is W, the number of PACKET-
IN messages that this link can tolerate is W

N , where N is the
average size of each PACKET-IN message. But if we have
already detected W

N PACKET-IN messages, the actual attack
might be more serious than that, leading to queuing delay in
the switch. Furthermore, because the link is filled, our Stat-
Request and PACKET-IN messages from other ports will be
blocked. To make room, we need a coefficient λ to report an
attack before the bandwidth is exhausted. λ can be understood
as maximum channel usage and (0 < λ < 1) Finally, St is
given by:

St = min{Sctrl, λ · W
N
}.

The second threshold for Ht can be set empirically. By
statistical observation of the normal case of the entropy of
packets, we set a threshold Ht far outweigh that.

4) Classify: Next is the first phase of the two-phase
filter. The attack detection mechanism returns a set of port
numbers {Port1, Port2, Port3, ..., Porti}. We send Flow-
Mod messages to these switches, with the lowest priority flow
tables that forward all traffic from these ports to the mitigation
agent. The lowest priority is set to prevent packets that already
have other flow table matches from being incorrectly matched
to this mitigation flow table. All the attack traffic is forwarded
to the mitigation agent without any impact on the other port
users.

C. Mitigation Agent

Mitigation agent is the second phase of the two-phase
filter. After the first phase of filtration, all suspicious traffic
will be migrated to this module. We can not simply discard
these traffic because some benign traffic also mix in them.
Our second phase filter distinguish these traffic, and generate
the PACKET-IN messages. The framework of this module is
shown in Fig. 3

Fig. 3. Design of the mitigation agent and the working process of the dynamic
priority manager. Benign packets are more likely to obtain higher priority

The detailed process is shown as follows:
• When an attack occurs, the mitigation agent receives all

packets on the link.
• These packets are given the appropriate priority and

enter the priority queue. The priority queue keeps a
transmission rate that the switch can tolerate.

• The mitigation proxy module generates PACKET-IN
message for each packet leave from the priority queue,
and sends it to the controller with an information of the
original switch and switch port.

• At the same time as the step 3, whitelist record the
packets and expect pair-flow, adding the packets with
pair-flow to the whitelist.

Next, we take a closer look at the implementation of each
component.

1) Priority Queue: We mark packets with a five-tuple, and
packets that have the same five-tuple are treated as the same
packet. We need to give a priority to the packet before it enters

2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR)

171Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 27,2022 at 06:49:56 UTC from IEEE Xplore. Restrictions apply.

the priority queue. We design a dynamic priority manager
module to give its priority, benign packets are easier to get
high priority. High priority means that packets can preempt the
limited link resources and controller resources without waiting
for other packets, which makes the packet delay very low.

2) Dynamic Priority Manager: Packet priority is not fixed,
we adjust the packet priority according to the characteristics of
the packet and network behavior. We devised two strategies,
a post-generate whitelist and a packet counter. The whitelist
priority is higher than the packet counter. For a packet, we
first check if it is in the whitelist, if so, we give it a maximum
priority. Conversely, if it is not in the white list, the packet
counter determines its priority. The packet counter counts
times the packets occur, which is a condition for determining
priority. For a new packet, we give it priority 1, a low priority.
For a packet that has already appeared, its priority is the
number of times it has appeared. For example, if mitigation
agent receives five consecutive packets from a same TCP
connection; dynamic priority manager gives the first packet
priority 1, the second packet priority 2, and so on. When the
same packet repeats, its priority becomes higher and higher,
and it is easier to pass through the priority queue. This
strategy makes sense because the frequency of benign packets
is usually much higher than that of illegal packets.

The whitelist collects after the attack, therefore, we call it a
post-generate whitelist. For each packet that leaves the priority
queue, the whitelist records its five-tuple. If its pair-flow is
discovered after a period of time, the packet is added to the
whitelist with its pair-flow. But not all pair-flow comes to the
mitigation agent, because a stream and its pair do not come
from the same switch port. If the port that pair-flow comes is
not under attack then the traffic from it will not be migrated
to the mitigation agent. To solve this problem, the whitelist
then “actively queries” a packet before long, requesting the
switch for flow table information. We assume that the switch
is reliable, and a corresponding flow table on the switch means
the flow is benign. This is another case where we add it to
the whitelist. On the contrary, if no pair-flow is observed, the
packet priority is reduced.

The whitelist doesn’t work for an entire new flow, but it
can work for its pair-flow. Or, when the packet re-enters the
mitigation agent after the flow table has expired, the white
name will also come into play, which will help us deal with
some of the more sophisticated attacks. The whitelist does
not block packets and therefore does not introduce additional
latency.

3) Forwarding: Finally, the mitigation proxy generates the
PACKET-IN message instead of the switch, which identifies
the switch dpid from which the packet originated and the port-
number. The mitigation agent is transparent to the APP, so the
flow table issued by the controller is installed directly on the
original switch.

IV. EVALUATION

A. Experiment Description

We carry out extensive experiments in a simulation testbed
to evaluate LLDM functionality for answering the following
questions:

• Can LLDM effectively reduce the benign traffic queuing
delay compared with traditional method FIFO and how
much it can reduce?

• In what scenarios will our post-generated whitelist work?
What is the effect of it compared with a scheme without
post-generated whitelist?

• How does LLDM perform under high attack rate? Can
LLDM keep HTTP response time within a reasonable
range?

B. Build Simulated Environment

We built a simulated environment on a computer with
Ryzen5 3600 @3.925Ghz CPU and 8 GB memory to evaluate
our solution, and the network topology is shown in Fig. 4.
We used Mininet [17] to create the SDN environment, which
consists of eight virtual hosts and three OpenVswitches. One
host works as a web server; one deploys mitigation agent; two
works as test hosts; and the other four behave as normal users.
The bandwidth of each link is set to 1 Gbps, which is sufficient
for our experiment. The SDN Controller uses the Ryu [18], and
runs two main APPs. The first is Flow-Manager, which is used
to implement the basic functions of the network, sending flow
tables, controlling forwarding, etc. To simplify the experiment,
we use five-tuple as the matching field of the flow table. The
actions of the flow table are forward and drop only. Pressure
tests have shown controller can handle up to 1,000 PACKET-
IN messages per second. The second is our Attack Detector,
which continuously collects packet information for judging
attacks and classification.

Fig. 4. Experimental Network Topology with LLDM Deployed

The controller connects with switch and mitigation agent
through TCP connection, and the connected components are
distinguished by unique dpid. But mitigation agent does not
have dpid, theoretically, the controller can not distinguish the
flow from it. Mitigation agent strictly controls the transmission
rate to the controller, sending no more than 1,000 packets with

2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR)

172Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 27,2022 at 06:49:56 UTC from IEEE Xplore. Restrictions apply.

same dpid per second. Each host has its own IP address and
MAC address. In order to simulate the real situation, we deploy
scripts on the hosts for simulating user. The scripts control
these hosts to communicate with each other at random, or
send HTTP request to the web server.

An attacker can attack SDN from any port of any switch
and uses Trafgen to construct the packet, which uses forged
IP address and MAC address, and uses different protocols.
Attack rate according to different requirements, is set to 1000
to 50000 PPS, far beyond the controller processing capacity.

C. Experiment

1) Compare with FIFO: Firstly, we research the queuing
delay, which is one of the main sources of packet delay. We
implement a simple baseline scenario with a FIFO queue
implemented mitigation agent. New mitigation agent still
filters packets by packet frequency, but without dynamic
priority manager, it can only filter packets once per second.
Usually, the storage is not infinite, and we assume that
mitigation agent can hold up to 2,500 packets at a time. This
means that only 2,500 packets per second will be checked
under the scheme, and the extra packets will be blocked.
Our attack rate is between 1000 and 5000 PPS, up to twice
the system processing ability, in which case the packets will
suffer a huge queuing delay. We calculate the queuing delay
by recording the packet time stamp from entering the queue to
leaving the queue. We compared our method using the priority
queue with baseline, and the result is shown in Fig. 5.

Using the traditional FIFO, when the attack rate is below
2500 PPS, the packets can be processed in time and the
queuing delay is even lower than our priority queue. However,
when the attack rate is more than 2500 PPS, the queuing
delay has a sudden change from 28.4ms to 379.8ms. Then,
the queuing delay increase with the increase of attack rate, and
reach 564.2ms in the worst case of 5000 PPS. When using the
priority queue, the packets do not need to wait for the attack
packet which arrives earlier than them, so the queuing delay
is hardly affected by the attack rate. Even if the attack rate is
5000 PPS, the queuing delay is still only 54.3ms, 90.4% less
than FIFO.

Fig. 5. Queuing Delay with different queue structures

2) Post-generate Whitelist: The whitelist helps us deal with
smarter attacks. Assuming the attacker knows that we use the
packet frequency feature to identify the attack traffic, attacker
will replay some traffic later to make its traffic more like

benign traffic. We evaluate our system long enough after the
attack, during which time the attacker has replayed most of the
attack traffic, and the earlier benign flow tables have expired,
therefore, traffic needs to migrate to the mitigation agent again.
The total attack rate is fixed at 6000 PPS, and Fig. 6 shows
that without post-generate whitelist, benign requests can only
continue to retransmit packets until the priority is higher than
the attack packet. Since HTTP requests use TCP connections,
the retransmission interval increases exponentially, which is
reflected when the number of replay times does not exceed 3.
When the number of replays is more than three, the effective
attack rate has become very low, the HTTP response time
is only slowly rising, reaching its maximum value 13.78s
when the number of replay times is five. When the replay
time reaches six, the effective attack rate is 1000 PPS, so
low that the controller can handle it alone, and therefore the
HTTP response time drops. Our post-generate whitelist avoids
multiple retransmissions under these circumstances, and keeps
the HTTP response time under 0.6 seconds.

Fig. 6. HTTP Response Time under replay attack

3) High Pressure Scenario: Finally, we evaluated the
performance of our system under high pressure scenario. In
this experiment, mitigation agent sends no more than 25
packets with same dpid and port-number per second. To better
reflect the actual network scenario, we evaluated the worst-
case performance of packet latency distribution. The worst-
case occurs between the time the first benign packet arrives
and the time the flow table is installed. During this time,
packet priority will gradually increase from the lowest, and
the white list can not do anything. We use the of packet
latency distribution in this period as the worst-case latency
distribution. During this time we send continuous ICMP
packets whose RTT value serves as the packet latency. We also
tested the length of this worst-case period, which we call the
flow table installation time. Fig. 7 shows the network packet
latency distribution and TABLE I shows time of worst-case
period under high attack rate.

TABLE I
FLOW RULE INSTALLATION TIME IN THE WORST-CASE

Attack PPS 10000 20000 30000 40000 50000

Time (s) 0.11 0.14 0.18 0.15 0.20

2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR)

173Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 27,2022 at 06:49:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Packet Latency under different attack PPS

With our dynamic priority manager, high attack rate has
little effect on the average delay of continuous packets, with
a maximum of 52.31ms. Most packets can be treated as low
delay packets(6 100ms), which make up no less than 85% of
the packets. At the attack rate of 50000 PPS, the packet loss
rate reached 9%. But that is the worst-case scenario. Once the
flow table is installed, the packets can be forwarded normally,
which means that 9% of the high packet loss rate will only
occur during the worst-case period of 0.2 seconds. All these
results show that our scheme is very effective in reducing the
delay.

HTTP requests are more representative of general network
activity, and we also evaluate the performance of HTTP
requests in high pressure scenario. Each HTTP request is an
entirely new access, and the average HTTP request time is
shown in TABLE II. LLDM can always keep HTTP response
times within acceptable range. At the worst case that attack
rate comes to 50000 PPS, it also not leads to high latency, and
a whole HTTP request can be completed in 1.39 seconds.

TABLE II
HTTP RESPONSE TIME UNDER HIGH ATTACK RATE

Attack PPS 10000 20000 30000 40000 50000

HTTP Response Time (s) 1.08 1.09 1.17 1.21 1.39

V. CONCLUSION

In this paper, we proposed LLDM, a low latency DoS
attack detection and mitigation framework in SDN. Firstly,
we designed an attack detector module that can locate the
attack source, and quickly separate the attack traffic and
benign traffic, migrating suspicious traffic to the mitigation
agent. Next, we designed a novel dynamic priority manager to
update packet priority accurately by packet counter and post-
generate whitelist. Then, we used a dynamic priority method
and a priority queue instead of the traditional FIFO queue
to scrub suspicious flows. The benign traffic that behaves
legitimately will have a high priority and be forwarded quickly.
The experimental results show that LLDM can guarantee the
quality of communication, significantly reducing the negative
impact of the attack.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China under Grant No. 61972371 and
No. U19B2023, and Youth Innovation Promotion Association
of the Chinese Academy of Sciences (CAS) under Grant No.
Y202093.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking. ACM, 2013,
pp. 165–166.

[3] H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention
extension in software-defined networks,” in Proceeding of the 2015
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2015, pp. 239–250.

[4] D. Hu, P. Hong, and Y. Chen, “FADM: Ddos flooding attack detection
and mitigation system in software-defined networking,” in Proceedings
of the 2017 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2017, pp. 1–7.

[5] Z. Li, W. Xing, S. Khamaiseh, and D. Xu, “Detecting saturation attacks
based on self-similarity of openflow traffic,” IEEE Transactions on
Network and Service Management, vol. 17, no. 1, pp. 607–621, 2019.

[6] X. Huang, K. Xue, Y. Xing, D. Hu, R. Li, and Q. Sun, “FSDM: Fast
recovery saturation attack detection and mitigation framework in sdn,” in
Proceedings of the 2020 IEEE 17th International Conference on Mobile
Ad Hoc and Sensor Systems (MASS). IEEE, 2020, pp. 329–337.

[7] G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “FloodDefender:
Protecting data and control plane resources under sdn-aimed dos
attacks,” in Proceedings of the 36th IEEE International Conference on
Computer Communications (INFOCOM). IEEE, 2017, pp. 1–9.

[8] Y. Chen, J. Pei, and D. Li, “Detpro: A high-efficiency and low-latency
system against ddos attacks in sdn based on decision tree,” in Proceeding
of the 2019 IEEE International Conference on Communications (ICC).
IEEE, 2019, pp. 1–6.

[9] P. Dong, X. Du, H. Zhang, and T. Xu, “A detection method for
a novel ddos attack against sdn controllers by vast new low-traffic
flows,” in Proceeding of the 2016 IEEE International Conference on
Communications (ICC). IEEE, 2016, pp. 1–6.

[10] R. F. Fouladi, O. Ermiş, and E. Anarim, “A ddos attack detection
and defense scheme using time-series analysis for sdn,” Journal of
Information Security and Applications, vol. 54, p. 102587, 2020.

[11] A. S. da Silva, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho,
“Atlantic: A framework for anomaly traffic detection, classification,
and mitigation in sdn,” in Proceedings of 2016 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2016, pp. 27–35.

[12] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in Proceedings of the 2013 ACM Conference on Computer
and Communications Security (CCS). ACM, 2013, pp. 413–424.

[13] M. Ambrosin, M. Conti, F. De Gaspari, and R. Poovendran,
“Lineswitch: Tackling control plane saturation attacks in software-
defined networking,” IEEE/ACM Transactions on Networking, vol. 25,
no. 2, pp. 1206–1219, 2016.

[14] M. Zhang, G. Li, L. Xu, J. Bai, M. Xu, G. Gu, and J. Wu, “Control
plane reflection attacks and defenses in software-defined networks,”
IEEE/ACM Transactions on Networking, vol. 29, no. 2, pp. 623–636,
2020.

[15] J. Sonchack, A. Dubey, A. J. Aviv, J. M. Smith, and E. Keller, “Timing-
based reconnaissance and defense in software-defined networks,” in
Proceedings of the 32nd ACM Annual Conference on Computer Security
Applications (ACSAC). ACM, 2016, pp. 89–100.

[16] S. Achleitner, T. La Porta, T. Jaeger, and P. McDaniel, “Adversarial
network forensics in software defined networking,” in Proceedings of
the Symposium on SDN Research. ACM, 2017, pp. 8–20.

[17] “Mininet,” [Online], 2021, available: http://mininet.org/.
[18] “Ryu controller,” [Online], 2021, available:https://osrg.github.io/ryu/.

2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR)

174Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 27,2022 at 06:49:56 UTC from IEEE Xplore. Restrictions apply.

