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Abstract— The immutability of blockchains is an important
security feature, but applications and studies have shown that
it poses some problems. For instance, harmful information
and vulnerable programs can be permanently stored on public
blockchains such as Bitcoin and Ethereum, causing continu-
ous damage. Therefore, researchers proposed the redactable
blockchain to delete or modify those harmful data. Existing
schemes usually adopt the Chameleon hash function (CHF) to
keep the block hash unchanged so that other blocks remain
unaffected. However, these schemes suffer from two security
problems: (i) (unknown-version) users cannot determine whether
a received block is the up-to-date version because different
versions have the same hash; and (ii) (lazy-redaction) miners
have no motivations to update historical blocks, causing con-
tinuous spreading of data which should have been discarded.
To solve the problems, we propose SEREDACT, a secure and
efficient redactable blockchain protocol with verifiable modifi-
cation. Specifically, we design a Merkle tree-based verification
mechanism with efficient dynamic updating that supports quick
version checks and forcible modification updates, and further in-
tegrate it with restricted redaction policies to guarantee security.
Our security and performance analyses show that SEREDACT
has adequate security as a redactable blockchain protocol and
retains close efficiency compared with the immutable blockchain.

Index Terms—Blockchain, Redactable Blockchain, Chameleon
hash, Consensus.

I. INTRODUCTION

Blockchain has attracted extensive attention worldwide ever

since it was proposed with Bitcoin [1], spawning numerous

studies of blockchain protocol optimization [2]–[6] and de-

centralized applications, including cryptocurrencies [7]–[10],

supply chains [11], energy [12], healthcare [13], PKI (public

key infrastructure) systems [14], [15], etc. By adopting a

hash chain data structure and decentralized consensus, once

the data is recorded on-chain, all the blockchain nodes will

have the same view of it, and no one could ever modify it.

This immutability is such a fantastic security feature, and the

blockchain is therefore widely used to establish various de-

centralized trusted applications. However, with its applications

and further studies, some problems come up. Note that the

data stored in a block is more than transaction information,

and once some illegal information or buggy contracts are

published on-chain, they will permanently exist and spread in

the entire blockchain system, causing persistent damages [16]–

[18]. A classic case of such damage is the DAO (decentralized

autonomous organization) attack [19]. One hacker spotted a

flaw in the DAO contract code and managed to steal 3.6

million Ether into a personal account. Since there is no

way to modify the published smart contract and completed

transactions, Ethereum finally forked to stop the DAO attack

and retrieve the loss.

But we cannot always solve problems by forking because it

is too expensive, and if a modification demand is discovered

much later, it will be too late to apply a hard fork. Therefore,

researchers have been trying to find methods to modify the

blockchain without considerably breaching its security, and

the concept of redaction blockchain subsequently came up.

Generally speaking, to modify the blockchain, we should

solve two fundamental issues: (i) who can modify which

part of the data by which method; and (ii) how to reach a

consensus on a redaction and how to ensure global version

update after a valid redaction to maintain data consistency.

For clearer descriptions, we separately name the two issues

as the redaction policy issue and the redaction consistency

issue. Currently, the former has been widely studied, and many

secure and flexible redaction policies have been proposed; but

the latter one has not been effectively solved.

In terms of the redaction policy issue, existing schemes

fall into two categories, Chameleon hash function(CHF)-based

schemes and voting-based schemes. The CHF-based scheme

was first proposed by Ateniese et al. in [20] whose main idea

is to utilize the Chameleon hash function (CHF) to modify

a block without changing its hash value. CHF is a kind of

trapdoor function that one can keep the hash unchanged if

and only if he/she owns a trapdoor. With this feature, we can

keep up the security by strictly restricting the permission to

the trapdoor. Therefore, researchers have put a lot of efforts

and proposed various trapdoor permission policies, including

transaction-level modification [21] and k-time modification

[22]. The voting-based protocol is proposed by Deuber et
al. in [23]. In Deuber’s scheme, blockchain users can initiate

a modification proposal as a transaction, and the following

miners then vote for a redaction by including the transaction

in their block. If a transaction is included by enough miners, it

then becomes valid and all other blockchain nodes then modify

their local block data accordingly.

In terms of the redaction consistency issue, however, the

research results are not as good as redaction policy issue.
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We found two security issues with redaction consistency, i.e.,

unknown-version and lazy-redaction, reflecting that most exist-

ing redaction blockchain protocols are vulnerable. Unknown-
version problems refer to when a blockchain user cannot de-

termine whether a received block is the up-to-date version due

to the fact that different versions of one block have the same

hash and are all valid to the blockchain when adopting CHF.

Although Deuber’s scheme publishes the redaction proposal

as a transaction in some blocks, a user has to download

and traverse all the following blocks to find whether there

is a redaction proposal. This traversal should be executed

for each user and each block, causing unacceptable costs.

Lazy-redaction problem refers to some blockchain nodes that

do not modify historical blocks to save cost, but then may

accidentally retain harmful information. Since blockchain is

established on a decentralized peer-to-peer network, these

lazy-redaction behaviors will lead to a continuous spreading

of harmful information in the blockchain network that should

have been deleted or corrected.

In this paper, to tackle the unknown-version and lazy-
redaction problems of redactable blockchain, we design a

verifiable modification mechanism by using the Merkle hash

tree (MHT) to package the up-to-date blockchain view. We

further integrate it with strict redaction policies and propose

the complete SEREDACT which is a secure and efficient

redaction b ckchain peffort. In summary, this paper makes the

following contributions:

• We discover two significant security problems, i.e.,

unknown-version and lazy-redaction, that widely exist in

the current redaction blockchain protocols. Aiming at

solving the problems, we design a modification verifi-

cation mechanism that utilizes the MHT to package the

up-to-date blockchain view into a short byte string called

redactRoot and adds it to the block header. It helps users

with checking block versions and forces miners to process

modifications.

• The infinite growth of blockchain and extremely ex-

pensive node-adding of MHT (reconstructing the entire

MHT for adding one new node) cause severe efficiency

problems. To this end, we design the KRM-restriction
and an efficient dynamic node-adding protocol for MHT

to avoid the frequent reconstruction. Also, we introduce

our work on integrating the proposed verification mech-

anism with the existing permission control redactable

blockchain protocol and further propose SEREDACT as

a secure and efficient redactable blockchain protocol.

• We prove that SEREDACT effectively solves the above

problems of redaction blockchain and satisfies the

basic blockchain properties, including chain growth,

chain quality, and common prefix [4]. We also proto-

type SEREDACT and our experiment results show that

SEREDACT brings only a small overhead compared with

the original immutable blockchain protocol.

The rest of this paper is organized as follows. Section II in-

troduces blockchain basics, Merkle hash tree, and Chameleon

hash functions. Section III explains the unknown-version
and lazy-redaction problems and uses a strawman solution

to illustrate our main idea for solving them. Section IV

introduces the full-version of SEREDACT protocol. Section V

and VI provide security and performance analysis. Section VII

presents the related work and Section VIII concludes the paper.

II. PRELIMINARIES

A. Blockchain Basics

We refer to the notation in [4] to describe the blockchain

and make some minor modifications to better suit our scheme.

A block B consists of a block header B.h and a body B.b.
B.b is a list of transactions. B.h is a triple of the form

B.h := 〈s, x, ctr〉, where s is the hash of the previous block,

and ctr is the nonce of the proof of work (PoW) consensus.

(Different consensus algorithms have different verification

fields, and we take PoW as an example to introduce our

scheme more clearly.) A block header also includes other

important information, such as version, height, timestamp, the

Merkle root of transactions in B.b, etc. Since these specific

contents are not affected in our scheme, we generally use x
to denote all of them. Based on these notations, a block B is

valid if its contents are valid (ValidateContent(B)) and ctr is

a correct solution for PoW consensus (ValidatePoW(B, C)).

Further, a blockchain, denoted by C, is simply a chain of

blocks, i.e., C := B1‖B2‖...‖Bn. To verify whether a block

B is a valid block of C, one should first verify whether

the block itself is valid and then verify whether it is in

the chain by checking the previous hash (s) block by block

(CheckChain(B, C)), i.e.,

ValidateBlock(B, C) := ValidateContent(B)

∧ ValidatePoW(B, C)

∧ CheckChain(B, C).

For clarity, we use the following notations. The rightmost

block (Bn in the example) is denoted by Head(C) = Bn
since it is usually called the chain head. The length of C is

Len(C) = n. The height of Bj is denoted by Height(Bj) = j.
C�k denotes the chain that removes C[−k:], and analogously
k�C denotes the chain that removes C[:k+1]; note that if k ≥ n
then C�k = ε and k�C = ε (ε denotes empty set). If C is a

prefix of C′, we write C ≺ C′.
B. Merkle Hash Tree

A MHT [24] is a hash-based binary tree used for efficient

data verification and is widely adopted in blockchain systems.

By constructing an MHT of a set of data objects o1, ..., on,

we can quickly detect inconsistencies between different sets

and verify whether an element is in the set without knowing

the entire set. We use the following notations in this paper:

• MHT(〈o1, ..., on〉). Construct a Merkle hash tree and

return the entire tree. Each leaf of the MHT is the hash

of each object, i.e., leafi = H(oi), i ∈ [1, n], and each

branch node is the hash of its two children. For simplicity,

we also use MHT(root) to return the entire Merkle tree

corresponding to the root, i.e., root.
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• Root(MHT ). Return the root of a Merkle hash tree.

• SetLeaf(n, o). Change the n-th leaf to o, and update the

related path; other nodes remain unchanged.

• IsLeaf(H(o)). Given a leaf node and the path from the

leaf up to the root, check whether a given hash H(o) is a

leaf of a Merkle hash tree. This has been used in simple

payment verification (SPV) in Bitcoin [1].

C. Chameleon Hash Functions

The concept of Chameleon hash was proposed by Krawczyk

and Rabin [25]. A Chameleon hash function is a trapdoor hash

function [26] that allows one to keep the hash value unchanged

even when the message changes. Without the trapdoor, it is

hard to find collisions. Its details are as follows.

• Gen(1α): Given the security parameter α, the key gen-

eration algorithm outputs the public key, pk, and secret

key, sk, for the Chameleon hash.

• CHash(pk,m, λ): Given the public key, pk, data, m, and

a random number, λ, hash algorithm outputs a hash value,

hv, and the random number, ξ.
• VerifyHash(pk,m, (hv, ξ)): Given the public key, pk,

data, m, hash value, hv, and the random number, ξ,
verification algorithm checks whether (hv, ξ) is a correct

hash. If so, returns 1; otherwise, returns 0.

• Collision(sk,m′): Given the private key, sk, and the

new data, m′, collision algorithm outputs a new random

number ξ′, making VerifyHash(pk,m′, (hv, ξ′)) = 1.

III. PROBLEMS, STRAWMAN SOLUTION, AND ITS

LIMITATIONS

In this section, we first explain the unknown-version and

lazy-redaction problems of the redactable blockchain. Then,

we present a strawman solution to give an overview of our

main idea to solve the two problems. We mainly introduce

the block structure and basic protocols and then analyze its

limitations. Aiming at releasing these limitations, we will

propose our complete scheme in Section IV.

A. Unknown-version and Lazy-Redaction Problems

Given that a user, Alice, modifies a block Bj when min-

ers are mining block Bn. After successfully generating Bn,

another user, Bob, requests Bj . Fig.1(a) illustrates how the

two problems, i.e., the unknown-version and lazy-redaction,

happen.

• Unknown-version. For the Chameleon hash-based pro-

tocols, the adoption of the Chameleon hash makes the

block hash unchanged, and different versions of a block

have the same hash. Therefore, a user cannot determine

whether a block is an up-to-date version unless he/she

received a newer version.

• Lazy-redaction. For redactable blockchain protocols, min-

ers may not locally redact blocks on their own if redac-

tions in the blockchain do not affect mining. Finally,

nodes in the network cannot reach a consensus on the

state of the redactable blockchain, causing the old version

of the block to propagate in the network.

We analyze how the two problems affect the existing

redactable blockchain protocols. We find that most of them

cannot resist the problems and face security vulnerabilities, as

TABLE I shows. To ensure coherence, we only provide our

conclusion here, and a more detailed explanation can be found

in section VII.

TABLE I
RESISTANT ABILITY AGAINST THE TWO PROBLEMS EXISTING IN

REDACTABLE BLOCKCHAIN PROTOCOLS

Protocols Basic Method1 Unknown-Version Lazy-Redaction

AMVA17 [20] CHF �2 �

DSSS19 [21] CHF � �

DMT19 [23] Voting � �

XNMHD21 [22] CHF � �

MXNHD22 [27] CHF � �

TLLSZ20 [28] CHF � �

1 Basic method refers to the underlying technology that the protocol
uses to realize redaction. As we explain in section I, there are currently
two types of redactable blockchain, i.e., Chameleon hash function
(CHF)-based protocols and voting-based protocols.

2 � means the protocol cannot resist the related security problem,

� means the protocol can resist the related security problem,

� means the protocol may address the problem in a horribly
inefficient way.

B. Strawman Solution

Our main idea is to record the latest version of all of

the blocks (the state of the redactable blockchain) in the

latest block. Then, users can verify a single block by it.

Meanwhile, miners are forced to redact blocks locally to

maintain the redaction information on the chain. Fig. 1 shows

the block structure of the proposed redactable blockchain.

Compared with a classical block B := 〈s, x, ctr〉, there are

three new domains, i.e., the chameleonRandom (ξ) and redac-
tRoot (vr) in the block header, and the redaction transactions

(rtx1, ..., rtxm).

• chameleonRandom (ξ) is used for computing the collision

of Chameleon hash. As shown in Fig. 1, when Alice

tries to modify the content x of block Bj to x∗, she

could compute a new chameleonRandom ξ∗ through

Collision(sk, (s, x∗)) (see Section II).

• redactRoot (vr) is a Merkle hash tree root of the up

to date chameleonRandom of all the historical blocks,

e.g., vr ← Root(MHT(B1.ξ, ..., Bn.ξ)) if the current

block is with height n. Since there is a one-to-one

correspondence between ξ and the block content x, vr
thereupon records the latest version of all the blocks.

And as shown in Fig. 1, Bob can verify whether block

Bj is the up-to-date version by checking whether Bj .ξ
is a leaf of Bn.vr. Besides, a lazy miner cannot generate

a valid block because he/she must update all the valid

modifications to correctly compute vr. Therefore, vr
solves the unknown-version and lazy-redaction problems

caused by Chameleon hash.
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Modify 

Step 1: Modification
Alice modifies block :

Step 3: VerifyBlock
Bob requests and verifies block :

Step 2: Mining
Miner generates 

Both and are valid blocks 

because they have the same hash

collect transactions and generate 

update modified blocks

a miner doesn’t update 

the modified blocks

a user gets an unknown 

version of the block

problem: lazy-redaction

problem: unknown-version

(a) unknown-version and lazy-redaction problems of redactable blockchain.

redactRoot( )chameleonRandom( )

prevHash( ) blockInfo( )nonce( )

Block Header

common transactions:

redaction transactions:

... ...

Modify 

Step 1: Modification
Alice modifies block :

Step 3: VerifyBlockWithVR
Bob requests and verifies block :

is valid if : 

hashcheck() correct AND

is a leaf of  

Step 2: MiningWithVR
Miner of records modifications in :

a miner cannot generate 
new blocks without 
updating modifications

a user can find a block 
is an old version if it’s 

is not included in 
the latest 

with

(b) high-level overview of the proposed scheme to solve the problems.

Fig. 1. The two problems of redactable blockchain and a strawman solution that illustrates our main idea to solve the problems.

• Redaction transactions (rtx1, ..., rtxm) are the transac-

tions used to redact a block. It should have at least

two items: the height of the target block and the new

chameleonRandom ξ after changing the block data. Be-

sides, a redaction transaction might include other infor-

mation according to the adopted redaction policy, such

as information about the modifier. We omit it since this

does not affect our scheme.

Now, given that Alice modifies block Bj and Bob requests

it, let’s take a look at the workflow when adopting the

redactRoot for redaction verification. As Fig. 1(b) shows, there

are three protocols executed by three entities. The modifier

(Alice) runs the ModifyBlock protocol to modify block Bj .
Then the blockchain miners run the MiningWithVR protocol to

generate a new block Bn. And the verifier (Bob) has a demand

to verify whether a block Bj is the up-to-date version by the

VerifyBlockWithVR protocol.
Protocol: ModifyBlock. Alice modifies some contents of

block Bj := 〈s, x, ξ, ctr, vr〉‖〈ctx〉‖〈rtx〉 and computes the

new chameleonRandom to get a modified block B′
j :=

〈s, x′, ξ′, ctr, vr〉‖〈ctx′〉‖〈rtx′〉.
1) Setup. Alice acquires the Chameleon hash private key sk

of Bj . The concrete process depends on the redaction

policy adopted by the blockchain system, and we will

discuss it later in Section IV-D.

2) Modify. In general, modifying a block refers to modi-

fying one or several transactions in the block, and the

corresponding fields in the block header should also be

modified. We denote the modified block data as x′.
3) Update Random. Compute a new chameleonRandom

through Collision(sk, (s, x′)) to keep the block valid.

Protocol: MiningWithVR. Miners collect all the transactions

〈ctx〉, 〈rtx〉 and verify each rtx with its related candidate

block.

1) Mining. To generate a valid block, miners collect transac-

tions and package them into one block as the block body.

Then they generate the common block header including

s, x, and a randomly generated ξ.
2) ComputeVR. For all of the candidate blocks which con-

form to the predetermined policy, miners should re-

construct redactMHT . As Fig.1 shows, given a chain

C := (B1, B2, ..., Bn) and candidate blocks conform to

the predetermined policy (B′
i, ..., B

′
j), miners compute

redactMHT = MHT(B1.ξ, ..., B
′
i.ξ, ..., B

′
j .ξ, ..., Bn.ξ)

and set vr = Root(redactMHT ). Then they create a

new block B := 〈s, x, ξ′, vr, ctr〉 ‖〈ctx〉‖〈rtx〉 such that

s = H(Bn.ctr,CHash(pk,Bn.x, Bn.ξ)).

Protocol: VerifyBlockWithVR. Bob needs data in block Bj
and should check whether the received Bj is the up-to-date

valid version.

1) ValidateBlock. Bob first checks whether Bj is valid by

ValidateBlock(B, C).

2) CheckVR. Suppose the current Head(C) is Bn. Then, Bob

checks whether H(Bj .ξ) is a leaf of MHT(Bn.vr) by

IsLeaf(H(Bj .ξ),MHT(Bn.vr)).

C. Strawman Limitations

We can easily find that the strawman solution already solves

the unknown-version and lazy-redaction problems through

VerifyBlockWithVR and MiningWithVR protocols, respectively.

However, it has poor utility due to the infinite growth and

frequent reconstruction problems, and is also insecure due to

the lack of redaction policy, as follows.

• Infinite Growth. In the strawman solution, the redactRoot
is the Merkle hash root of all the previous blocks’

chameleonRandom. This means that the Merkle hash tree

will infinitely grow with the growth of blockchain, lead-

ing to an increased computational and storage overhead.

• Frequent Reconstruction. To compute a Merkle hash root,

one should compute the hash of each pair of tree nodes

from the bottom layer to the top. Therefore, in the

strawman solution, each newly generated block will add

a new leaf to the Merkle hash tree of chameleonRandom,

and the miner should reconstruct the entire tree every

time when a new block is generated, leading to extremely

expensive computational overhead.

• Lack of Policy. Enabling redaction in blockchain reduces

the security of blockchain to some extent. Therefore, to

guarantee security while enabling redaction, a redactable

blockchain protocol should provide a strict redaction

policy to specify who can modify which part of a block

and how to realize it. The strawman solution omits the
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policy for simplicity, and we will complement it with

existing work in Section IV.

The above problems make the strawman solution gradually

become unacceptable and eventually crash. Besides, it is also

not secure due to the lack of a redaction policy. To this end, we

further design the SEREDACT protocol that solves the above

limitations of the strawman solution, providing a secure and

efficient redactable blockchain protocol.

IV. SEREDACT PROTOCOL

A. Overview

SEREDACT aims at solving the unknown-version and lazy-
redaction problems that widely exist in current redactable

blockchain protocols. In the previous section (Section III),

we provide a strawman solution to illustrate our main idea

for solving the problems, and also show the limitations of

the strawman solution. Therefore, in this section, we pro-

pose SEREDACT that overcomes the limitations from three

primary aspects: (i) restrict only the rightmost k blocks to

be modifiable (named KRM-restriction) to limit the size of

redactMHT, and add a solidView field to the block header for

verifying the unmodifiable blocks (Section IV-B); (ii) design

a dynamic update protocol for the redactMHT based on the

KRM-restriction to decrease the overhead of generating vr
from reconstructing the entire redactMHT for updating a few

paths (Section IV-C); and (iii) integrate the proposed scheme

with the existing secure redaction policy (Section IV-D) to

construct a secure and efficient redactable blockchain protocol

(Section IV-E). Besides, TABLE II lists the main notations and

functions used in SEREDACT.

TABLE II
IMPORTANT NOTATIONS AND FUNCTIONS

Notation or
Function

Meaning

k only the k-rightmost blocks are modifiable
Bn Block at height n
ξ chameleon hash random number
vr verification Merkle hash tree’s root
sv solidView in the block
ctx common transactions
rtx redaction transactions
Height(B) get the height of the block B
SetLeaf(leaf, index) set the leaf of the Merkle tree
IsLeaf(leaf, tree) verify if the leaf belong to Merkle tree
GenRedactInfo() generate the vr and sv in the new block
CheckVersion(B, C) check if the block B is the up to date version

B. KRM-Restriction and solidView

To solve the infinite growth problem of the redactMHT,

we restrict only the k-rightmost blocks are modifiable (named

KRM-restriction). As a result, the redactMHT only needs to

contain the previous k blocks rather than the entire blockchain.

However, this makes it unable to verify the more previous

blocks because the corresponding verification information (i.e.,

the hash of ξ as a leaf) will be deleted from the redactMHT

and thereupon deleted from the entire blockchain system.

Therefore, we add a solidView field in the block header, which

is the hash of the previous k+ 1 block’s ξ. The details of the

design are as follows.
1) KRM-restriction: KRM-restriction means that modifiers

can only modify the k-rightmost blocks. Intuitively, it reduces

the availability of a redactable blockchain. However, in prac-

tice, the modification demands are always generated within a

limited period after the data is recorded on-chain. For example,

the DAO’s code was found to have vulnerabilities within 40

days after it was created, and therefore setting k = 217 is

enough for handling DAO attacks. Moreover, illegal contents

in Bitcoin can also be detected over a while [17]. Besides,

most redactable blockchain-based applications such as [29]–

[31] also have a limited time to modify data. In addition, we

can set different k according to actual demands for different

blockchain systems. In consequence, it is reasonable to restrict

only the k-rightmost blocks to be modifiable, and it will, in

fact, not reduce availability.
2) solidView: With KRM-Restriction, the redactMHT only

includes the verification information (i.e., ξ) of the previous k
blocks. For instance, suppose currently Head(C) = Bn, and

we have Bn.vr := Root(MHT (Bn−k+1.ξ, ..., Bn.ξ)). Then,

how can we verify whether a received Bn−k is the up-to-

date version? Although Bn−k.ξ is included when computing

Bn−1.vr, the user cannot verify Bn−k depending on Bn−1.vr,
because miners only store MHT(Bn.vr) locally. To solve

the issue, we add a new field, called solidView (sv), to the

block header where Bn.sv := H(Bn−k.ξ). As a result, for

Bn−k+1, ..., Bn, which are within the KRM-restriction, one

can verify them through Bn.vr; and for other blocks such

as Bn−k−m(m ≥ 0), one can verify it by checking whether

H(Bn−k−m.ξ) equals Bn−m.sv. Since Bn−k−m becomes

unmodifiable when successfully generating Bn−m, Bn−m.vr
represents the finally solidified version of Bn−k−m.

replace

KRM-restriction modified block 

. . .

replace

. . . . . .

leaf node

branch node

MHT root

other nodes 
remain 

unchanged

has been 
replaced when 

generating 

is the current 
generating block

delete from 
MHT

header of 

Fig. 2. Dynamic update protocol for the redactMHT.

C. Dynamic Update Protocol for the redactMHT

Based on KRM-restriction, we could adopt a dynamic

update protocol for the redactMHT that decreases overhead

of computing vr from reconstructing the entire redactMHT to
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Algorithms:

RedactSetup()• returns Chameleon private key if the modification obeys redaction policy.

• computes a new Chameleon random that keeps the hash unchanged.sk xCollision( , )

Algorithms executed by the modifier: 01:

02:

03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

CollectTx()• collects and verifies transactions and package the valid ones into a block body.

• generates a partial header for a block, where is pervious hash; is 
basic block header; is a random number used for Chameleon random.

Algorithms executed by the miner:

GenHeader()

GenRedactInfo()• computes and returns solidView ( ) and redactRoot ( ).

h dPoW( , )• solves the PoW problems, i.e., finding a nonce that makes the starting bits of 
are all zero, where is the block header except for the field, is the current 

difficulty of the blockchain system.

jBValidateBlock( , )• returns if is a valid block of blockchain     without considering 

redaction, and returns if not.

• returns if is the up to date version and if not.jBCheckVersion( , )

Algorithms executed by the verifier:

       each block  in :
            

i

i

VerifyChain
B

VerifyBlock B

Protocol
for

)

( )

( ,

)
n 

)
:

)

20:

21:

22:

modifier: one who wants to modify some part of a block

verifier: one who wants to verify whether a block is valid

algorithms in blue are additional 

compared to immutable blockchains

Fig. 3. Overview of algorithms (left) and protocols (right) of SEREDACT. In the protocols, those marked in blue are additional steps in SEREDACT compared
to immutable blockchains such as Bitcoin.

updating a few paths. Take Fig. 2 as an example. Suppose

Algorithm 1: GenRedactInfo()

Input: A partial block B := 〈s, x, ξ〉‖〈ctx〉‖〈rtx〉.
Output: {sv, vr}

1 if Height(B) = 1 then
2 sv ← φ, vr ← MHT(H(ξ), φ, ..., φ)
3 end
4 else if 2 <= Height(B) <= k then
5 sv ← φ, vr ← SetLeaf(n,H(ξ))
6 end
7 else
8 n← Height(B)
9 if there is a rtx ∈ 〈rtx〉 that modifies Bn−k then
10 sv ← H(rtx.ξ)
11 end
12 else
13 sv ← H(Bn−k.ξ)
14 end
15 vr ← SetLeaf(n mod (k),H(B.ξ))
16 for each rtx ∈ 〈rtx〉 do
17 vr ← SetLeaf(rtx.height mod (k), rtx.ξ)
18 end
19 end
20 return sv, vr

that miners are generating Bk+2 and should compute solid-
View sv and redactRoot vr. According to KRM-restriction,

B2 will become unmodifiable after Bk+2 is added to the

blockchain, and we therefore record H(B2.ξ) into Bk+2 by

setting Bk+2.sv = H(B2.ξ). Note that during generating

Bk+2, B2 is still modifiable; and if a modifier modifies B2 to

B′
2 and the corresponding redaction transaction is included in

Bk+2, the miner will set Bk+2.sv = H(B′
2.ξ

′). For updating

the redactMHT, we can easily find that H(B2.ξ) should

be removed and H(H(Bk+2).ξ) should be added as a new

leaf. Therefore, intuitively, we can just replace H(B2.ξ) with

H(H(Bk+2).ξ). As a result, for each newly generated block,

the overhead of computing vr is decreased from reconstructing

the entire redactMHT to update just one path, as shown

in the blue part of Fig. 2. In addition, the leaves of those

newly modified blocks should also be replaced by the new

version, and the corresponding paths need to be updated, as

shown in the yellow part of Fig. 2. We propose Algorithm

GenRedactInfo(), as shown in Algorithm 1, for computing

sv and vr.
With sv and vr, a user can verify whether a received

block Bj is the up-to-date version of blockchain C through

CheckVersion(Bj , C) algorithm, as shown in Algorithm 2.

Note that the user is supposed to verify whether Bj is

valid without considering redaction by validateBlock(B, C)
as explained in Section II-A; and if not valid, it makes no

sense to verify the version. In other words, it takes two steps

to verify a block in SEREDACT: (i) validateBlock(B, C) and

(ii) CheckVersion(Bj , C).

D. Strict Redaction Policy

Chameleon hash uses a secret trapdoor (sk) to control

modification permissions, i.e., only the one with sk can suc-

cessfully compute the new ξ through Collision(). Therefore, a

redactable blockchain should provide a secure redaction policy

that specifies who can modify which part of a block by what

method, and we denote it as Policy(ID, Content, Verify()). ID
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Algorithm 2: CheckVersion(B, C)

Input: A block B := 〈s, x, ξ, sv, vr, ctr〉‖〈ctx〉‖〈rtx〉.
Output: {true or false}

1 j, n← Height(B),Len(C)
2 if j <= n− k then
3 if H(B.ξ) = Bj+k.sv then
4 return true
5 end
6 end
7 else
8 if IsLeaf(B.ξ,MHT(Bn.vr)) then
9 return true
10 end
11 end
12 return false

specifies the modifier. Content contains the redaction and the

extra information for validation. Verify(ID, Content) provides

a method to verify whether the entity corresponding to the ID

can modify the Content. In Fig. 3, if the modification obeys

the redaction policy, i.e.,

RedactSetup(ID,Content) := Verify(ID,Content).

the modifier can get Chameleon secret key sk. Then, we only

need to transform the existing policy into such a triplet Pol-
icy(ID, Content, Verify()). There are some excellent schemes

that propose different policies for redactable blockchain. The

policy proposed in [22] is that the trapdoor of the Chameleon

hash is released, and anyone who wants to modify the chain

needs to make a time-locked deposit and use the token (tk)

issued by the central authority (CA) to generate a signa-

ture (σtk) when rewriting the chain. Thus, the policy can

be expressed as Policy(ID, (Tx, tk, σtk), VerifySign()). By

verifying the signature and token in the Content, miners can

determine whether the related redaction is valid. In [21], by

using Chameleon hashes with ephemeral trapdoors (CHET)

[32] and attribute-based encryption (ABE) [33] , only entities

that possess secret keys corresponding to attributes satisfying

the access policy can find collisions for specific transaction.

Therefore, this policy can be easily expressed as Policy(ID,
(Tx, Collision(rkID, Tx, pkTx)), VerifyHash()), where Ver-
ifyHash() verifies the correctness of the collision computed

by the entity corresponding to the ID. Similar to the above

two examples, we can easily transform policies in the existing

works into such triples to integrate them into our scheme.

Now we have a strict redaction policy in our scheme denoted

as Policy(ID, Content, Verify()).

E. SEREDACT Protocol Outline

Based on the above designs, we propose SEREDACT which

is a secure and efficient redactable blockchain protocol. Our

design can be easily adopted by most of the redactable

blockchain protocols that concentrate on managing redaction

permission or policy. In brief, SEREDACT aims at solving the

unknown-version and lazy-redaction problems which are com-

monly existing in redactable blockchains and have not been

well solved. Fig. 3 outlines SEREDACT. There are three types

of entities in SEREDACT, i.e., modifier, miner, and verifier.

They individually execute the three protocols, Redact, Mining,

and VerifyBlock, respectively. Compared with the immutable

blockchain such as Bitcoin, Redact is a brand-new protocol,

while Mining and VerifyBlock are basically consistent with an

immutable blockchain, except for two steps: GenRedactInfo
for Mining and CheckVersion for VerifyBlock. Therefore,

SEREDACT can also be regarded as an extension of immutable

blockchain, and it can be easily integrated into various existing

blockchain protocols. In another word, SEREDACT is quite

versatile.

V. SECURITY ANALYSIS

In this section, we show how SEREDACT protocol solves the

unknown-version and lazy-redaction problems of a redactable

blockchain. Further, we verify that SEREDACT satisfies basic

security properties defined in [4] as a blockchain protocol.

A. Consistency Issue of Redactable Blockchain

As explained in Section III-A, the existing blockchain

protocols suffer from the unknown-version and lazy-redaction
problems, and SEREDACT aims at solving them. The following

analyses show why our design works.

Theorem 1. (Defending against Unknown-Version) Each
blockchain user can determine whether a received block
is the up-to-date version by VerifyBlock protocol. Besides,
new miners can bootstrap the correct version of the entire
blockchain by VerifyChain protocol.

Proof. As shown in Algorithm 2, one can determine whether a

received block Bj is the up-to-date version by checking sv of

block Bj+k or vr of block Bn, according to the size relation-

ship between j and n−k. The CheckVersion(B, C) would fail

only when an adversary tamper with sv or vr. However, this

will never happen because sv and vr are not hashed by the

Chameleon hash, meaning they are unmodifiable. Similarly,

by executing the VerifyChain protocol when bootstrapping, a

new miner can ensure that he/she has acquired the up-to-date

version of the entire blockchain.

Theorem 2. (Defending against Lazy-Redaction) A lazy miner
who does not process modifications cannot continuously gener-
ate new blocks, and a malicious miner who deliberately retains
the old versions cannot further spread them in the network.

Proof. To generate a new block Bnew, a miner should first

compute the solidView (sv), the redactMHT and redactRoot
(vr) through the GenRedactInfo() algorithm (see Algorithm

1). Since the leaf of redactRoot is the hash of the up-to-date

chameleonRandom (ξ) of the k-rightmost blocks, the miner

should collect all the modifications to update the redactMHT.

If the miner misses some modifications, the redactRoot in

Bnew is different from other honest miners, and other nodes

will not accept Bnew. Since blockchain users can determine
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whether a received block is the up-to-date version by Verify-
Block protocol, it is meaningless for a miner to retain the old

versions and spread them in the network.

B. Basic Properties of Blockchain

As defined in [4], a blockchain protocol should satisfy

three basic security: chain growth, chain quality, and common

prefix. However, as proved in [23], a redactable blockchain in-

herently does not satisfy the common prefix property; instead,

a redactable blockchain is secure as long as it satisfies the

editable common prefix property, and our design inherits this

definition. In this section, we prove the security of SEREDACT

from these aspects.

Theorem 3. (Chain Growth [4]) SEREDACT satisfies the
chain growth property, that is, for any honest party P that
has the chains C1, C2 at the onset of the two slots sl1, sl2, if it
has sl2 − sl1 ≥ τ · s, then we have len (C2) − len (C1) ≥ τ · s,
for s ∈ N and 0 < τ ≤ 1, where τ is the speed coefficient.

Proof. In SEREDACT, the chain growth property is still pre-

served since there is no operation that can alter the length

of a chain. In general, if a redactable blockchain protocol Π
does not have any edit operation that can alter the length of

the chain, protocol Π with our verification mechanism satisfies

the chain growth property.

Theorem 4. (Chain Quality [4]) SEREDACT satisfies the
chain quality property, that is, for any honest party P that has
a chain C, the ratio of honest blocks in a portion of length
	-blocks of C is at least μ, where 0 < μ ≤ 1 is the chain
quality coefficient.

Proof. In SEREDACT, all of the redactions satisfy the strict

policy. Thus, an adversary could not decrease the proportion

of honest blocks, and the chain quality property is thus

preserved in the redactable blockchain protocol. If a redactable

blockchain protocol Π satisfies (μ, 	)-chain quality, then the

extension of Π to SEREDACT protocol still satisfies (μ, 	)-

chain quality. In a redactable blockchain protocol Π, an

adversary could decrease the proportion of honest blocks by

redacting some honest blocks. But the verification mechanism

in SEREDACT does not provide a way to redact a block.

Therefore, SEREDACT would not influence the quality of the

chain.

Theorem 5. (Editable Common Prefix [23]) SEREDACT sat-
isfies the editable common prefix property, that is, for any pair
of honest parties P1,P2 adopting the chains C1, C2 with length
l2, l1 at the onset of the slots sl1 ≤ sl2, we have one of the
following:

1) C�m1 � C2,
2) for each Bj ∈ C�(l2−l1)+m2 such that Bj /∈ C�m1 and
j ≤ (l2 − k), it holds that Bj+k.sv = Bj .ξ,

3) for each Bj ∈ C�(l2−l1)+m2 such that Bj /∈
C�m1 and (l2 − k) ≤ j, it holds that IsLeaf(Bj .ξ,
MHT(Head(C2).vr)) is true.

where m ∈ N denotes the common prefix parameter and
k denotes the system parameter of the SEREDACT protocol
proposed in Section IV.

Proof. For any redaction in SEREDACT, it must be confirmed

by all the nodes in the network through the verification

mechanism. Then for each Bj ∈ C�(l2−l1)+m2 such that

Bj /∈ C�m1 , it could pass the V erifyBlock(Bj , C). In gen-

eral, any redactable blockchain protocol Π with the proposed

verification mechanism of SEREDACT satisfies the editable

common prefix property.

VI. PERFORMANCE ANALYSIS

A. Implementation

To demonstrate the efficiency of SEREDACT protocol, we

prototype it and conduct some experiments on macOS Catalina

(v10.15.7) with Intel Core i5 CPU @2 GHz and 16 GB RAM.

The basic redactable blockchain protocol is based on the

framework proposed by Ateniese et al. [20] and its algorithm

to shrink the chain is removed since it is not compatible

with SEREDACT. We implement this redactable Bitcoin with

SEREDACT protocol on Python 3 using the python-bitcoinlib

(v0.11.0). The cryptographic parts are implemented based on

PyCryptodome (v3.10.1) and gmpy2 (v2.0.8), and parameters

of Chameleon hash are generated by SageMath (v9.2).
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(a) Comparison of the performance of immutable
chain and redactable chain with verification mech-
anism.
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(b) Validation time overhead required to validate a
redactable chain with verification mechanism com-
pared to an immutable chain.

Fig. 4. Time consumption of VerifyChain protocol.

B. Performance of Verification

SEREDACT mainly consists of two verification protocols:

VerifyChain and VerifyBlock. Since the VerifyBlock protocol is
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the unit process of VerifyChain, we mainly use the results

of VerifyChain to show the performance as a whole. We

first evaluate the runtime of VerifyChain protocol and make

a performance comparison with immutable blockchain. We

generate blockchains with total length ranging from 2000 to

20000 when setting k = 210 . Fig. 4(a) and Fig. 4(b) show

that the runtime of both SEREDACT and immutable blockchain

grow linearly and SEREDACT only introduces 1% additional

overhead compared to immutable blockchain. Due to KRM-

restriction, i.e., the size of the Merkle tree is fixed and the

time consumption from computing the redactMHT is fixed,

this overhead keeps a limit value and even decreases when

the chain length increases, as Fig. 4(b) shows.

The process of validating the chain is divided into three

parts: (i) validate transactions; (ii) validate block headers; (iii)

verify the version of the blocks in the chain. Compared to

immutable blockchain, the extra time consumption is from

computing the chameleonRandom (ξ) and the redactMHT, as

shown in TABLE III.

TABLE III
RUNTIME(S) OF VALIDATING THE BLOCKCHAIN OF SEREDACT AND

BITCOIN

Protocols VerifyTx VerifyBlock VerifyVersion Total

SEREDACT 342.56 4.25 0.02 346.83

BITCOIN 342.56 0.54 0 343.10

To evaluate how the parameter (k) of KRM-restriction
affect verification, we generate SEREDACT chain consisting

of 10000 blocks with k ranging from 28 to 212. As shown in

Fig. 5(a), k has little influence on the runtime of VerifyChain
protocol because the verification time of redactMHT is neg-

ligible compared with the transactions verification. Therefore,

selecting a relatively large system parameter k will not cause

a great impact on the VerifyChain protocol.

C. Performance of Mining

We evaluate the Mining process with different system

parameter k ranging from 29 to 218 (enough to fix DAO

attack in Ethereum as introduced in Section I). As Fig. 5(b)

shows, the overhead of Mining process compared to immutable

blockchain is about tens of milliseconds which is accptable in

real systems, since the mining process is mainly consumed

by consensus algorithms. Compared to immutable blockchain,

the extra overhead of Mining comes from Algorithm 1 which

contains dynamic update protocol. As we mentioned in Section

III-C, the strawman solution has poor utility and we design the

dynamic update protocol to reduce the overhead for miners

to maintain the redactMHT. In order to prove that our opti-

mization is effective, we measure the runtime of the dynamic

update protocol with different system parameter k ranging

from 28 to 212. Besides, since the number of redactions ρ in

the k rightmost blocks in a slot directly influences the runtime

of the dynamic update protocol, revocation rate ρ should be

considered in the experiment.
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(a) Runtime of VerifyChain.
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Fig. 5. System performance under different system parameter k

As Fig. 6(a) shows, the runtime of the dynamic update

protocol increases as k and revocation rate ρ increases.

Specifically, in a update process, miners should update the

leaves of redactMHT for KRM-restriction and redactions in

a slot, that is 1 + ρk times update operation for Merkle

tree. Then the algorithm complexity is O(ρklog(k)), if the

redaction transactions reach the max number in a block, then

the complexity is O(log(k)). The results in Fig. 6(a) basically

satisfy the theoretical analysis. Strawman solution in Fig. 6(a)

shows the time consumption of reconstructing the redactMHT
in the slot that the length of chain is 10000 and it is greater

than any case of dynamic update protocol. Fig. 6(b) shows

that the time consumption of reconstructing the redactMHT
in the strawman solution increases as the length of chain

increases and it is greater than the dynamic update protocol

with k ranging from 29 to 213, ρ = 5%. As for Ethereum,

the strawman solution is unacceptable since there are tens of

millions of blocks. In general, the dynamic update protocol

has stable performance as the length of the chain increases and

only depends on the system parameter k and the revocation

rate in a single slot. The complexity of the dynamic update

protocol is acceptable and more practical compared to the

block generation speed, which is 16s per block, of Ethereum.

D. Setting of Parameter k

We also consider how to set the system parameter k.

The setting of parameter k depends on two aspects, i.e.,

the redactable period of the redactable blockchain and the

impact of parameter k on system performance. The redactable
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Fig. 6. Time consumption of updating redactMHT

period of the redactable blockchain means the longest time

between data recording on-chain and data redaction, which

is denoted as tr. Combined with the block generation rate

(gr) of the blockchain, we can get the minimum value of k,

i.e., k = tr
gr

. For simplicity of implementation, we can set

k = 2log2 �
tr
gr

�. TABLE IV shows the redactable period of

different blockchains with different k. The block generation

rates are set as 0.1, 5, and 3 blocks per minute for Bitcoin,

Ethereum, and Cardano respectively. As we mentioned before,

the dynamic update protocol complexity is O(ρklog(k)), if

the redaction transactions reach the max number in a block,

then the complexity is O(log(k)). Therefore, the impact of

parameter k on system performance is actually limited and

we can just set k = 2log2 �
tr
gr

� for the redactable period tr we

need.

TABLE IV
REDACTABLE PERIOD(DAYS) OF DIFFERENT BLOCKCHAINS WITH

DIFFERENT K

k 213 214 215 216 217 218

BITCOIN 56 113 227 455 910 1820

ETHEREUM 1 2 4 9 18 36

CARDANO 1 3 7 15 30 60

VII. RELATED WORK

A. Redactable Blockchain Protocols

Generally speaking, redactable blockchain protocols

fall into two categories, i.e., voting-based protocols and

Chameleon hash function (CHF)-based protocols. Deuber

et al. [23] proposed a solution in permissionless setting

based on voting. Chain participants propose a redacting

proposal, and miners vote for the redaction. If a proposal

collects enough votes, then all miners replace the original

block with the candidate block. [20] proposed the first

redactable blockchain by using CHF. Briefly, they use CHF

to replace the regular hash function when linking the blocks

in the chain. Anyone who has the trapdoor can modify the

block. To make redactions controllable and fine-grained,

Derler et al. [21] proposed a solution by using policy-based

Chameleon hash based on attribute-based encryption(ABE)

which makes redaction more fine-grained and it supported

transaction-level rewriting. To further enhance the security of

redactable blockchains, Xu et al. [22] proposed a solution

with monetary penalty and k-time modification operation

against malicious behaviors of modifiers. Tian et al. [28]

introduced policy-based Chameleon hash with black-box

accountability (PCHBA), which achieved anonymity and

accountability. Since centralized authority is vulnerable to

attack, Ma et al. [27] introduced the notion of decentralized

policy-based Chameleon hash (DPCH) and proposed a

decentralized rewriting mechanism without a need of trusted

central authority.

B. Two Security Problems of Existing Works

As we mentioned in Section III, most existing works cannot

resist the two security problems: unknown-version and lazy-
redaction. For voting-based protocols, by verifying the corre-

spondence between votes and redactions recorded in the chain,

the unknown-version problem can be solved in a horribly

inefficient way. For CHF-based protocols, unknown-version
problem remains due to the use of CHF and the lack of

redaction records in the chain. For the lazy-redaction problem,

there is no mechanism to prevent this from happening because

miners can continue mining without applying reactions in any

of the existing works.

VIII. CONCLUSION

In this paper, we pointed out two security problems,

unknown-version and lazy-redaction, that widely exist in

current redactable blockchain protocols. We then proposed

SEREDACT to tackle both problems. By utilizing the Merkle

hash tree (MHT) to package the up-to-date blockchain view

into the redactMHT and record its root into the latest block,

users can check block versions with the help of redactMHT
and it also forces miners to process all of the modifications,

thereby solving both problems. Further, regarding the perfor-

mance limitations caused by the blockchain’s infinite growth

and MHT’s expensive node-adding overhead, we proposed the

KRM-restriction and thereupon designed the dynamic update

protocol for redactMHT. We finally integrated the proposed
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scheme with existing redaction policies to enhance security

for the proposed SEREDACT protocol. We proved its security,

and our experiments show that the dynamic update protocol

significantly reduces the overhead to maintain redactMHT, and

SEREACT protocol brings just a little overhead compared with

immutable blockchain.
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