
ScalaCert: Scalability-Oriented PKI with
Redactable Consortium Blockchain Enabled

“On-Cert” Certificate Revocation

Xinyi Luo∗, Zhuo Xu∗, Kaiping Xue∗§, Qiantong Jiang∗, Ruidong Li†, David Wei‡
∗ School of Cyber Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China

† College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
‡ Department of Computer and Information Science, Fordham University, Bronx, NY 10458, USA

§Corresponding author, kpxue@ustc.edu.cn

Abstract—As the voucher for identity, digital certificates and
the public key infrastructure (PKI) system have always played
a vital role to provide the authentication services. In recent
years, with the increase in attacks on traditional centralized
PKIs and the extensive deployment of blockchains, researchers
have tried to establish blockchain-based secure decentralized
PKIs and have made significant progress. Although blockchain
enhances security, it brings new problems in scalability due
to the inherent limitations of blockchain’s data structure and
consensus mechanism, which become much severe for the massive
access in the era of 5G and B5G. In this paper, we propose
ScalaCert to mitigate the scalability problems of blockchain-
based PKIs by utilizing redactable blockchain for “on-cert”
revocation. Specifically, we utilize the redactable blockchain to
record revocation information directly on the original certificate
(“on-cert”) and remove additional data structures such as CRL,
significantly reducing storage overhead. Moreover, the combina-
tion of redactable and consortium blockchains brings a new kind
of attack called deception of versions (DoV) attack. To defend
against it, we design a random-block-node-check (RBNC) based
freshness check mechanism. Security and performance analyses
show that ScalaCert has sufficient security and effectively solves
the scalability problem of the blockchain-based PKI system.

Index Terms—PKI system, certificate revocation, redactable
blockchain, consortium blockchain, scalability

I. INTRODUCTION

Digital certificates provide an effective mean to voucher

an entity’s identity and thus play a vital role in all kinds of

networks, including the Internet [1], Internet of Things (IoT)

[2], Internet of Vehicles (IoV) [3], [4], and so on. Traditionally,

there is a trusted third party called the certificate authority

(CA) to verify entities’ identities and manage their certificates,

usually including issuance, update, and revocation [5]. CA plus

some other auxiliary entities, such as registration authorities

(RAs), form the entire certificate system, generally called the

public key infrastructure (PKI) system [6]. For a very long

time, the centralized PKI has been widely adopted and has

become the cornerstone of the Internet, especially for the

SSL/TLS protocols [7], [8]. However, with the continuous

development of network technology, the centralized PKI has

encountered two thorny challenges, i.e., security and trust. On

the one hand, researchers have discovered numerous security

vulnerabilities of the centralized PKI, such as single point of

failure of CAs [9]. On the other hand, with the development

of heterogeneous networks, there are usually multiple trust

domains within one network, and how to establish trust rela-

tionships among these different domains is also a formidable

challenge for traditional PKI systems [10].

In response to these challenges difficult for the centralized

PKI to solve, researchers began to seek other more suitable ar-

chitectures for today’s certificate systems. An intuitive thought

is to use multiple CAs to jointly manage certificates and

conduct mutual audits to enhance security, such as ARPKI

[11]. However, although the adoption of the multi-CA structure

has alleviated some security problems caused by single-CA,

there are still serious challenges, e.g., the data security and

the trust gap. On account of this, researchers recently found

that blockchain technology may provide suitable solutions due

to its public and non-tampering storage and decentralized

consensus and consequently proposed the blockchain-based

certificate systems, such as CertChain [12] and CertLedger

[13]. The main idea of these solutions is to use multiple

CAs to construct a consortium blockchain [14] and store the

operations on certificates in the blocks (just like transactions

in cryptocurrencies). The usage of blockchain effectively guar-

antees the data security and establishes the solid mutual trust

among CAs and users, properly satisfying today’s security

requirements on PKI system.

However, the introduction of blockchain brought new prob-

lems in terms of scalability for PKI system due to its inher-

ent data structure and consensus requirements. Moreover, to

guarantee correct certificate verification, the revocation infor-

mation, such as certificate revocation lists (CRLs) [1], should

also be stored on-chain, causing massive waste of the valuable

on-chain space in blockchain. For example, CertChain needs

about one-fifth of the block space to store the bloom-filter-

based CRLs. If we only take the Internet SSL/TLS protocol re-

quirements into consideration, as analyzed in CertLedger [13],

this kind of waste will not cause essential effect. However, the

rapid development of IoT and 5G and future B5G technologies

promotes massive devices to access the network, leading to

a dramatic increase in digital certificates and putting further

pressure on PKIs’ scalability [15]. According to the Ericsson

1236

2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCS54860.2022.00121

20
22

 IE
EE

 4
2n

d 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
is

tri
bu

te
d 

C
om

pu
tin

g 
Sy

st
em

s (
IC

D
C

S)
 | 

97
8-

1-
66

54
-7

17
7-

0/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

D
C

S5
48

60
.2

02
2.

00
12

1

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 15:16:51 UTC from IEEE Xplore.  Restrictions apply. 



mobility report (June 2021) [16], mobile subscriptions are

projected to reach 8.8 billion units by the end of 2026.

Therefore, to make the blockchain-based PKI more practical

for heterogeneous networks with massive devices, it is urgent

to address the scalability problem.
In this paper, to enhance the scalability of the blockchain-

based PKI, we propose an “on-cert” certificate revocation

mechanism using redactable blockchain [17]. With the pro-

posed mechanism, certificates can be revoked without addi-

tional data structures, and thus the problem on huge amount of

storage waste caused by CRLs can be well addressed. Different

from the general non-tampering blockchains, the redactable

blockchain adopted in the “on-cert” revocation mechanism

enables conditional rewriting by adopting the Chameleon

hash [18]. In brief, a blockchain node with the Chameleon

private key can modify the data of an existing block without

affecting other blocks. Capitalizing on that, when a certificate

is revoked, we can record the revocation operation directly on

the original certificate stored in the block by modifying it using

the Chameleon hash in the “on-cert” revocation mechanism.

In such a situation, there are three significant challenges to

be solved, i.e., permission to Chameleon hash, consensus on

block modification, and version freshness check. First, which

data can be modified by which nodes should be reasonably re-

stricted. Then, how do the blockchain nodes reach a consensus

on whether to accept the new block when a block is modified.

And the last is caused by the combination of redactable and

consortium blockchains. In consortium blockchain (which is

adopted by blockchain-based PKIs), only consortium members

are full nodes and participate in the consensus process. Other

users, due to lack of computing power or access permission,

need to access the blockchain by requesting blocks from

the consortium members. It doesn’t matter for the general

blockchains, as users can determine whether a received block

is valid by checking the block’s hash value. However, in

redactable blockchains, different versions of one block hold

the same hash value. Therefore, users cannot independently

determine whether a received block is the latest version.
To further solve the problems, we propose an “on-cert”

certificate revocation mechanism and further ScalaCert using

the redactable blockchain, where revocation information is

recorded directly on the original certificate. In summary, this

paper makes the following contributions:

1) We propose “on-cert” certificate revocation mechanism

with redactable blockchains. Based on such mechanism,

we further propose ScalaCert, which enables to record

revocation operations without any additional data struc-

ture such as (compressed) CRL, thereby significantly

reducing the storage overhead of blockchain-based PKIs.

Furthermore, to solve the security vulnerabilities caused

by the redaction on blockchain data, we set strict

permission restrictions to Chameleon hash, and design

a redaction consensus algorithm for the consensus on

redactions and prove its safety in theory.

2) We analyze how the combination of redactable and con-

sortium blockchains can affect the security and discover

a new attack called deception of version (DoV) attack.

To defend against it, we design a random-block-node-
check (RBNC) based freshness check mechanism, and

provide security analysis to prove that it can decrease

the probability of successfully conducting DoV attacks

to a statistically negligible level.

3) Since ScalaCert trades communication for storage, to

evaluate how much the communication overhead is

affected, we implement prototypes of both ScalaCert and

CertChain and compare their performance in terms of

storage, communication, computing, et al. Results show

that, compared to CertChain, ScalaCert saves around

one-fifth of the valuable on-chain storage space while

doubling the communication overhead. Especially for

scenarios with massive devices with a strong demand

for scalability like IoT, such an exchange of overhead is

reasonable.

The rest of this paper is organized as follows. Section II

introduces some important backgroup technologies. Section III

describes the system model, security assumption and design

goal, and Section IV expounds the proposed “on-cert” revoca-

tion mechanism and further ScalaCert. Section V and VI give

the security and performance analysis. Section VII presents

the related work. Section VIII concludes the paper.

II. PRELIMINARIES

A. Blockchain and Consortium Blockchain

Blockchain has gained rapid development and wide appli-

cation since Satoshi Nakamoto proposed Bitcoin [19] in 2008.

It is regarded as a special decentralized data storage system

that cannot be tampered with due to the well-designed data

structure and consensus mechanism. On the one hand, in a

blockchain, data is stored in linearly arranged blocks, and the

correction of the arrangement order is guaranteed by recording

the hash value of the previous block in each one. On the other

hand, the consensus mechanism, e.g., proof of work (PoW)

[20] and proof of stake (PoS) [21], ensures that all blockchain

nodes have the same view of the blockchain. It also brings

out a cost to generate blocks so that no blockchain node

can generate an unlimited number of blocks. Except for the

widely used public blockchains, such as Bitcoin or Ethereum

[22], the consortium blockchains are also of great importance,

especially in the scenes of commercial cooperation. In a

consortium blockchain, only members in the consortium can

access the blockchain directly and participate in the consensus

process. Other entities can only access the blockchain by

acquiring blocks from the consortium members.

B. Redactable Blockchain and Chameleon Hash

Most blockchains have the same important characteristic,

i.e., the immutability of data. However, there is a special cate-

gory of blockchain called redactable blockchain that supports

limited change of data. By using the trapdoor hash function

(TDH) [23], one who has the trapdoor can easily keep the hash

value unchanged even when the message changes. With this,

the redactable blockchain allows someone to modify one block
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without affecting other blocks. In the proposed ScalaCert, we

will use the Chameleon hash [18] which is an instantiation of

TDH, and its details are as follows.

• G(1α): Given the security parameter α, generate the

public key, pk, and private key, sk, for Chameleon hash.

• Hash(pk,m, λ): Given the public key, pk, data, m, and

a random number, λ, generate a hash value, hv, and the

random number, ξ.

• V erifyHash(pk,m, (hv, ξ)): Given the public key, pk,

data, m, hash value, hv, and the random number, ξ, check

whether (hv, ξ) is a correct hash. If so, return 1; otherwise

return 0.
• Collision(sk,m′): Given the private key, sk, and the

new data, m′, generate a new random number ξ′, making

V erifyHash(pk,m′, (hv, ξ′)) = 1.

III. SYSTEM MODEL, SECURITY ASSUMPTION AND DESIGN

GOAL

A. System Model

There are three kinds of entities in the proposed system,

i.e., CAs, blockchain nodes, and users, as shown in Fig. 1.

• CA. Similar to traditional PKI systems, CA is the server

responsible for issuing, updating, and revoking certifi-

cates for users. However, there is an important difference

between traditional CAs and blockchain CAs: credibility.

The traditional CAs act as trusted authorities, but the

blockchain CAs are not. In our proposed system, multiple

CAs form a CA alliance (CAA) to achieve credibility

through consensus and mutual audits among them. Here

we use CAA = {CA1, CA2, ..., CAn} to denote the

CAA and its CAs.

• Blockchain Node. Each CA in CAA is a blockchain

node of the consortium blockchain, and other nodes do

not have permission to join the consortium blockchain,

so they cannot directly access the blockchain but can

request blocks from the blockchain nodes. We use BN =
{BN1, BN2, ..., BNn} to denote the blockchain nodes.

• User. A user has two main demands for the PKI sys-

tem, i.e., maintaining his/her own certificates and ver-

ifying others’ certificates. As lightweight clients, users

do not have sufficient capabilities to maintain the entire

blockchain and are supposed to request blocks from

BNs when needed and can verify the blocks’ correctness

according to the consensus proofs in the blocks.

B. Security Assumptions

We consider the underlying network communications reli-

able. That is, once a BN or user sends a message to another

one, the receiver will definitely receive the correct message

within the limited time. Moreover, according to the main

consensus mechanisms of the consortium blockchain, such

as practical Byzantine fault tolerance (PBFT) [24], [25] or

delegated proof of stake (DPoS) [26], it is reasonably assumed

that more than 2
3 CAs in CAA are honest (implying that more

than 2
3 BNs are honest), and others may conduct malicious or
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Fig. 1. System model of consortium-blockchain-based PKI.

negative operations, such as Sybil attacks or DoV attacks (see

Section IV-E).

C. Design Goal

1) Scalability: We transform this goal into no extra data

structure for revocation because the existing blockchain-based

PKI systems need a lot of storage for revocation and thus suffer

from the scalability problem. To the best of our knowledge,

we are the first to pursue this goal. To this end, we aim to

remove all the extra data structures, such as the CRL or its

digest, and only include the certificates in the blockchain.

2) Safety: All the valid certificates and the revocation

operations should be appropriately recorded on the blockchain.

The users who are not full nodes of the blockchain should be

able to acquire correct data from blockchain nodes.

3) Liveness and Fairness: There may be some honest but

negative BNs who do not actively participate in system

maintenance to save his/her expenses or something else. Thus,

liveness requires that there are always sufficient active BNs to

participate in system maintenance. Besides, fairness requires

that honest and active BNs are rewarded, and negative or

malicious ones are punished. Both the two requirements can

be guaranteed by adopting audit and incentive mechanisms in

a blockchain system.

IV. PROPOSED SCALACERT

A. Overview

In this paper, to enhance the scalability of blockchain-based

PKI systems, we propose an “on-cert” certificate revocation

mechanism using the redactable blockchain with Chameleon

hash. By such a mechanism, the revocation information is

directly recorded on the original certificate, and therefore no

extra data structure such as CRL is required. Our main idea

is that multiple CAs together form the CA alliance (CAA)

and maintain a consortium blockchain. All the certificates

responsible by these CAs are recorded on the blockchain by

consensus, and we set a special field (revocation field) in the

certificate to denote whether it is a revoked one. When a

certificate is required to be revoked, at first, CAA records
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the revocation operation on the blockchain. Then the CA

who issued this certificate updates the revocation field to

denote its revocation. Finally, CAA conducts another specially

designed consensus, called redaction consensus, to reach a

consensus on the block’s update. Besides, to avoid occupying

too much space to describe the construction of blockchain-

based certificate systems, which is not the main content of

this work, we instantiate our proposed scheme based on an

excellent job, the CertChain [12]. On the other hand, for a

user who needs to verify a certificate’s validity, he/she requests

the block where the certificate is located to check whether it

is valid or revoked according to the revocation field. During

the verification process, a serious problem is that users cannot

distinguish between different versions of the block because

different versions have the same hash value. Thus, blockchain

nodes can conduct the deception of version (DoV) attack
to conceal the revocation records of certificates from users.

To further solve this problem, we design a freshness check
mechanism by acquiring random block sets from random

node sets, thereby reducing the probability of successfully

conducting DoV attacks to a statistically negligible level.

Besides, TABLE I lists the main notations and functions used

in ScalaCert.

TABLE I
IMPORTANT NOTATIONS AND FUNCTIONS

Notation or
Function

Meaning

t Time slot
h Block height
ht Height of the block generated at slot t
H Height of the latest block
B[h] Block at height h
BN Blockchain node
n Total number of CAs/BNs
CertOper Certificate operations
loh Last operation height
local In contrast to a received modified block or CertOper
UDP[t] Set of blocks modified at slot t
ERR[t] Set of blocks fail to be modified at slot t
RN Randomly selected BNs for Freshcheck()
RH Randomly selected block heights for Freshcheck()
RB[i] Received result from BNi during Freshcheck()
Revoke() Require to revoke a certificate
V erify() Verify the validity of a certificate
Extend() Common consensus for adding new blocks
Redact() Redaction consensus for modified blocks
Freshcheck() Check whether a block is the latest version
Audit() Mutual audit among CAs
Traceback() Trace back to the issuance CertOper
Collision() Recompute Chameleon hash after changing loh

B. System Initialization

1) CertChain: CertChain is a representative construction of

consortium blockchain-based PKI. It stores the certificates and

the bloom-filter-based CRLs on the blockchain and adopts a

PoS-like consensus called dependability-rank based consensus
protocol. The most critical design of CertChain is CertOper.
It is a data structure defined in CertChain to express certificate

operations, including issuance, update, and revocation, and it

is the content (i.e., transactions) of blocks. A CertOper is

basically the same as an X.509 certificate, except for two

special fields, i.e., the Operation Type and Last Operation
Height (loh). Operation Type indicates which of the three

operations is for this CertOper, and loh is used to link all

operations of a certificate together such that it is easy to trace

back to any previous operations. For clarity, the three kinds

of operations and how to set the loh are as follows.

• CertOperI : The issuance CertOper, generated when a

certificate is firstly issued, and loh is set to 0.
• CertOperU : The update CertOper, generated when a

certificate is updated, and loh is set to the height of

the block which contains the last CertOper of the same

certificate.

• CertOperR: The revocation CertOper is generated when

a certificate is revoked, and the way to set loh is the same

as update CertOper.

When a user requests to issue, update or revoke a certificate,

the related CA then generates a CertOper for the operation.

And at each time slot, a leader who is selected according

to the dependability collects all the generated CertOpers to

form a new block and adds the block to the blockchain by the

consensus algorithm. Moreover, each block contains a bloom-

filter-based CRL to record the revoked certificates. When a

user needs to verify a certificate’s validity, he/she first checks

whether the related CertOper is contained in the blockchain

and then refers to the CRL stored in the latest block to check

whether the certificate is revoked or not.

Data Structure Modification: CertOper with rewritable loh.
To enable “on-cert” revocation, we modify CertOper to enable

the rewriting of loh, and use it as the revocation field. Specif-

ically, when generating hash values, the loh field is hashed

using the Chameleon Hash while others are as before. The

CertOper mentioned below all refers to the CertOper with

rewritable loh.

2) Key Pairs: CAs are responsible for two main steps, i.e.,

signing CertOpers for users and computing Chameleon hash.

Thus, each CA owns a public-private key pair (pkCA, skCA)
for digital signature, and a key pair (pkCH , skCH) for

Chameleon hash. Besides, blockchain nodes are required to

generate and sign blocks. Therefore, each blockchain node

owns a key pair (pkBN , skBN ) for digital signature.

C. “On-Cert” Revocation and Verification

We herein design the “on-cert” revocation mechanism to

realize certificate revocation and verification without any ad-

ditional data structure such as CRL.

1) “On-Cert” Revocation: When a user discovers that

the private key of its certificate is leaked, he/she will send

a revocation request (RReq) with a private-key-signed sig-

nature to any CA in CAA to revoke it. When receiv-

ing a RReq, CA first checks whether it is valid, i.e., is

signed by the certificate’s owner. If valid, CA then gener-

ates the corresponding CertOperR and waits for it to be

included in the blockchain through common consensus (de-

fined in Section IV-D). As Algorithm 1 shows, suppose that
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{CertOperR0 ,CertOperR1 , ...,CertOperRk } are the revocation

operations that are added to blockchain during time slot t .
Then at time slot t+ 1, for each CertOperR, its issuance CA

updates the last operation height (loh) field from 0 to the block

height ht of the corresponding issuance CertOperI , and then

broadcasts the updated CertOperI for the redaction consensus
to synchronize the block’s modification among all the CAs in

CAA (see Section IV-D).

Algorithm 1: Revocation of slot t

1 while slot t do
2 CertOperR ← Revoke(cert);

3 B[ht]← Extend(CertOpers during slot t);

4 end
5 while slot t+ 1 do
6 for each CertOperR in B[ht] do
7 CertOperI ← Traceback (CertOperR);

8 if CertOperI .loh = 0 then
9 CertOperI .loh ← ht;
10 Collision(skCH , loh);

11 Redact(CertOperI);

12 end
13 end
14 end

2) Verification: When a user needs to verify whether a cer-

tificate cert is valid, he/she first generates a validation request

〈cert, h, pkCA〉 and sends it to any blockchain node (denoted

by BN0). Then, as Algorithm 2 shows, BN0 refers to B[h]
to check whether cert is valid. If valid, BN0 then traces back

to cert’s issuance CertOper through the last operation height
field, denoted by CertOperI with block height hI . Then, BN0

sends B[h] together with B[hI ] back to the user. The user first

verifies the blocks’ and CertOpers’ validity by checking the

hashes and signatures, and then checks the value of loh field

in CertOperI . If the value is not 0, it is considered that cert
has been revoked. However, it should be noted that loh = 0
does not mean cert isn’t revoked due to the probability of the

DoV attack. To this end, the user should conduct the freshness

check process when CertOperI .loh = 0 (see Section IV-E).

D. Consensus and Audit

There are two kinds of consensus in the proposed system,

i.e., the common consensus and the redaction consensus. The

common consensus is the common blockchain consensus, with

the purpose of generating new blocks and adding them to the

blockchain. And the redaction consensus aims at reaching a

consensus on the block’s redactions.

1) Common Consensus: Common consensus is the com-

mon blockchain consensus used to add new blocks to the

blockchain. As the proposed revocation mechanism is instan-

tiated on CertChain, we reserve the dependability-rank based
consensus protocol of CertChain and further extend it by

adding the redaction consensus and new audit mechanisms.

Algorithm 2: Verify(cert, h, pkCA)

1 BN0 do
2 if B[h] not include CertOper then
3 cert is invalid;

4 end
5 B[hI ]← Traceback(CertOper);

6 BN0 sends (B[h], B[hI ]) to user;

7 The user do
8 if B[hI ].CertOperI .loh �= 0 then
9 cert is revoked;

10 end
11 else
12 Freshcheck(B[hI ]);

13 end

The dependability-rank-based consensus protocol is similar

to the proof-of-stake (PoS) consensus protocol, where each

blockchain node has an attribute called dependability (like

stake in PoS), and the probability of generating blocks is

relative to the value of dependability. At each time slot, a

leader is selected according to the dependability value, and

it then generates a block consisting of CertOpers generated

during this slot.
2) Redaction Consensus: At each time slot t, all the

blockchain nodes run the redaction consensus for the redacted

blocks generated by the certificate revocation mechanism

during the last slot t − 1. When a certificate is revoked, the

corresponding CertOperR is generated and included in the

latest block. Then, in the next time slot, the issuance CA

should update the related CertOperI to record the revocation

operations back to the certificates. As such, the modification

of blocks should be synchronized among all the blockchain

nodes, and we call this process the redaction consensus.

Algorithm 3: Redact(CertOper) at slot t

1 for each BNi ∈ BN do
2 if CertOper.loh �= ht−1 then
3 Terminate;

4 end
5 if B[ht−1] not include CertOperR then
6 Terminate;

7 end
8 if CertOperlocal.loh �= 0 then
9 Terminate;

10 end
11 Update CertOperlocal to CertOper;
12 UPD[t− 1].append(CertOper);
13 end

As Algorithm 3 shows, at time slot t, the CA modifies

CertOperI for the revocation operation CertOperR generated

at time slot t − 1 and broadcasts the modification to other

blockchain nodes. Then each blockchain node should make
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the following judgments to determine whether to accept a

modified block:

• CertOperI .loh =ht−1. To check whether the revocation

operation is generated in the last slot. As required, all

CertOperRs generated at time slot t should be processed

at time slot t+1. Otherwise, the revocation is failed, and

the CA should generate a new CertOperR to request for

revocation again.

• B[ht−1] includes CertOperR. To check whether the last

time slot includes the related revocation operation.

• CertOperRlocal.loh = 0. To check whether the certificate

is revoked for the first time. Since each certificate can

only be revoked once, for security, the blockchain node

only accepts the modified block when loh in the local

block is 0.

3) Audit and Incentive: To prevent some negative BNs

from being reluctant to record revocation information in time

for saving expenses or something else, we design an audit

mechanism to punish the negative BNs. In each time slot,

all the blockchain nodes together conduct an internal audit to

measure the credibility of each node’s behaviors in this slot

and adjust the dependability value accordingly. Specifically,

at the end of each time slot t, each blockchain node checks

whether each revocation operation in block B[ht−1] has been

correctly recorded in the original certificate. If a revocation

operation has not been appropriately recorded, this implies

that the CA who issued the certificate fails to complete the

due obligations in time, and it should therefore be punished

by decreasing its dependability to decrease its probability to

generate blocks.

Algorithm 4: Audit(B[ht−1]) at slot t

1 for each CertOperR ∈ B[ht−1] do
2 if CertOperR /∈ UPD[t− 1] then
3 ERR[t].append(CertOperR);

4 end
5 end
6 for each CertOperR ∈ ERR[t] do
7 Decrease the dependability of the corresponding

CA;

8 end

E. Deception of Version (DoV) Attack and Freshness Check

Definition 1: (Deception of Version (DoV) Attack) A full

node of the blockchain sends an old version of the requested

block to the user, and the user cannot discover this because the

hash values of a block’s different versions are the same. BNs

cannot send a ”new” version of the requested block because

there is no revocation CertOper in the related block.

In redactable consortium blockchains, the full nodes are

certain to keep all the blocks synchronized to the latest state.

However, the lightweight users who have no capability to keep

the entire blockchain have to request blocks from the full

nodes, which leads to a risk that the full nodes may conduct

DoV attacks. In the proposed PKI system, DoV attacks will

interfere with a user’s judgment on whether a certificate has

been revoked because even if the certificate has been revoked

and the revocation operation has been recorded to the issuance

CertOper, the blockchain node can still provide an old version

of the block that has not recorded the revocation. To defend

against DoV attacks, we design a random-block-node-check

(RBNC) mechanism for freshness check and prove that the

probability of successfully conducting DoV attacks can be

reduced to a statistically negligible level by adopting RBNC

even with very few blocks and nodes.

Algorithm 5: Freshcheck(B[h],BN)

1 if | BN |≤ 2
3n then

2 Certificate is revoked; Terminate;

3 end
4 RN← Random(BN, s);
5 RH← Random(〈1, H〉\{h}, k − 1) ∪{h};

6 for each BNi in RN do
7 Request blocks in RB;

8 RB[i]← result from BNi;
9 end
10 if exist RB[i] where CertOper.loh �= 0 then
11 Certificate is revoked; Terminate;

12 end
13 if RB[i](1 ≤ i ≤ s) are identical then
14 Certificate isn’t revoked; Terminate;

15 end
16 for each CertOperI with loh �=0 in all RB[i] do
17 BN.delete(BNi if CertOperI .loh =0 in RB[i]);
18 end
19 Freshcheck(B[h],BN);

Freshcheck(). When a user receives a CertOper with loh =
0, he/she should then conduct the Freshcheck(B[h],BN),
where B[h] is the block that CertOper is located, and BN

is the set of blockchain nodes. As Algorithm 5 illustrates, the

user first randomly selects s blockchain nodes from BN and

k block heights (must include h) from all generated blocks

(i.e., 〈1, H〉), and forms the random-node-set RN and random-

block-set RH, respectively. Then, the user requests all the

blocks in RH from each BN in RN. The result (i.e., the set of

requested blocks) from BNi is denoted as RB[i]. Next, there

are three cases according to RB[i]:

• Exist CertOper.loh �=0: If there exists a RB[i] where the

loh of the target CertOper is not 0, the user then considers

the certificate revoked and terminates the process. It

should be noted that a malicious BN is unable to generate

a valid block that contains CertOper.loh �=0 when the

certificate is not revoked because one BN is unable to

generate a valid consensus proof for the block.

• All CertOper.loh =0 and all RB[i]s are identical: If no

result shows that loh �=0 of the target CertOper and all
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the results are totally identical, then the user considers

the certificate effective (not revoked) and terminates the

process.

• All CertOper.loh =0 and RB[i]s have differences: In

such case, those BNs who provided results that are

different from the majority were conducting DoV attacks.

The user should delete them from BN and perform the

Freshcheck() process again. It should be noted that the

initial BN is the set of all the n BNs, and when the

number of BNs is less than 2
3n, the user then considers

the target certificate revoked.

The security and efficiency of the above process is provided

in Section V-B.

V. SECURITY ANALYSIS

A. Security of the Redaction Consensus

Theorem 1: Safety. All the valid certificates and revocation

operations will be correctly recorded on the blockchain, and

users who are not full-nodes of the blockchain will acquire

correct data from blockchain nodes.

Proof : The safety of valid certificates is guaranteed by the

common consensus which is just the common PoS consensus,

and its safety has been widely proved; we therefore omit

this part here. To revoke a certificate, there are three steps

in ScalaCert: CertOperR generation, CertOperI modification,

and redaction consensus. CertOperR generation is completed

by the blockchain extension process and its safety is also

guaranteed by the common consensus. For CertOperI modifi-

cation, since that one can modify the message while keeping

the Chameleon hash value unchanged only if he/she owns

the private key, only the CA who issued CertOperI can

modify the loh, and this is in line with practical demands.

What’s more, ScalaCert only allows each CertOperI ’s loh to

be modified once, thereby reducing the impact on the system

when a CA is compromised. For redaction consensus, the

reliable underlying network communication ensures that the

block modification information broadcasted by each BN will

definitely be received by all other BNs in the CAA. As

such, all the honest BNs will always have the same view

on the blockchain because they all use the same judgment

rules to decide whether to accept a modified block, i.e.,

Redact(CertOper) shown in Algorithm 3.

B. Security of Certificate Verification

For certificate verification, the most important thing is to

make sure that once a certificate is revoked, any user who

verifies the certificate from the blockchain will acquire its

revocation information. As we prove in the last subsection, any

revocation information will be timely recorded to the issuance

CertOperI . Therefore, the verification is correct as long as the

user acquires the correct CertOperI . However, as introduced in

Section IV-E, the combination of redactable and consortium

blockchains brings the DoV attack, and the following proof

shows that the proposed freshness check mechanism can well

defend against DoV attacks.

Theorem 2: Defense Against DoV Attacks. By freshness

check, the probability of successfully conducting DoV attacks

can be reduced to a statistically negligible level.

Proof : When a certificate is revoked, the loh field of its

issuance operation CertOperI is then modified from 0 to a

positive integer. Thus, if a malicious BN sends the user

an old-version CertOperI with loh =0, the user will then

consider the certificate effective. This is how DoV attacks

work in the proposed scheme. However, it should be noted

that once the user acquires a CertOperI with non-zero loh,

he/she can therefore confirm that the certificate has been

revoked. Hence, to defend against DoV attacks, we design

the RBNC-based freshness check mechanism (Algorithm 5)

where a user requests several blocks from several BNs. In

this way, BNs cannot know which certificate the user needs,

and therefore a malicious BN cannot conduct the DoV attack

against a specific CertOperI , but can only randomly select

one or several CertOperIs from all the revoked certificates

from all the blocks in RB to do the attack. Then, successfully

conducting a DoV attack means that all the BNs in RN are

malicious, and they successfully choose the same CertOperR

to deceive the user.

Since RN and RB are all randomly selected, we can

therefore assume that the malicious BNs can only randomly

choose CertOperIs to conduct DoV attacks, as they have no

relevant information to infer which CertOper the user needs.

Consequently, successfully conducting a DoV attack means

that for Verify() the user chooses a malicious BN , and for

Freshcheck() all the BNs selected by the user are malicious

and the CertOpers they randomly select are just the same and

include the target certificate. Suppose that the revocation rate is

γ, each block contains m CertOpers, and each malicious BN
selects r(r ≥ 1) revoked CertOperI for each block to attack.

Then, the probability of successfully conducting a DoV attack

is

P = 1

3
·
(
s
n/3

)
(
s
n

) ·
[

1(
r
γm

)− (
r−1
γm−1

)
]s−1

·
[
1(
r
γm

)
](s−1)(k−1)

,

where n is the total number of the BNs, 1
3 is the highest

proportion of dishonest BNs, s, k are the size of RN and RB

respectively.

We simulate the probabilities of successfully conducting

a DoV attack under different values of the parameters and

with each block containing 800 CertOpers (m = 800) and
1
3 malicious nodes. Fig. 2(a) and 2(b) show how the sizes of

RB and RN impact the probability of successfully conducting

a DoV attack when the revocation rate is 5% and each BN
selects 5 CertOpers. The results show that with the sizes of

RB and RN increase, the probability decreases drastically.

Even when s, k = 2, the probability is still as low as 10−10.

Fig. 2(c) and 2(d) show the results under the condition of

s, k, r = 5 and m = 800. Fig. 2(c) gives the probability with

different percentages of revoked certificates, i.e., the revocation

rate γ. Fig. 2(d) shows that the probability decreases when

r increases. Thus, attackers may always set r = 1 to make
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(a) Attack probability with k. (b) Attack probability with s.

(c) Attack probability with γ. (d) Attack probability with r.

Fig. 2. Probabilities of successfully conducting a DoV attack under different values of the parameters.

the probability the highest. However, even with r = 1, under

the condition of s, k = 5 and m = 800, the probability of

successfully conducting a DoV still does not exceed 10−10.

C. Liveness and Fairness

If a BN does not update the related CertOperI in time,

when a revocation operation CertOperR is generated and

added to the blockchain, this negative behavior will be detected

by all other BNs during Audit() process shown in Algorithm

4. As such, the BN ’s dependability will decrease, and its

probability of generating blocks and issuing certificates will be

reduced, which finally leads to a reduction in its actual income.

In other words, honest and active BNs will acquire more

dependability and rewards than malicious ones, guaranteeing

system fairness. Driven by this incentive mechanism, BNs

seeking income will keep honest and active and, therefore,

maintain the entire system’s liveness.

VI. PERFORMANCE ANALYSIS

A. Implementation

We evaluate the performance of ScalaCert from three as-

pects, i.e., the storage, the “on-cert” revocation and redaction

consensus, and the verification and freshness check. To this

end, we make a prototypical implementation on ScalaCert and

conduct the experiments on macOS Catalina (v10.15.7) with

Intel Core i5 CPU @2 GHz and 16 GB RAM. Moreover,

since ScalaCert sacrifices communication for storage, we also

prototype CertChain for comparison to evaluate how much

ScalaCert affects the performance in terms of communication.

The blockchain-related parts, including the data structure

and consensus, are implemented based on Ethereum, and

the operations of CAs, BNs, and users are programmed in

Python 3. The cryptographic parts are implemented based

on PyCryptodome (v3.10.1) and gmpy2 (v2.0.8), and the

parameters of the Chameleon hash are generated by SageMath

(v9.2).

B. Storage

Referring to CertChain, the size of a block is limited to

2MB, an empty block is about 2.6KB, a single CertOper is

about 1.8KB, and a DCBF (which is the bloom filter based

CRL used in CertChain) is about 412KB. Since each block is

supposed to contain a DCBF, one block maximally contains

about 900 CertOpers. In ScalaCert, however, with the help of

redactable blockchain, the revocation information is directly

recorded on the original CertOperI . Hence, no additional data

structure like CRL is needed. Thus, the whole block except

for the blockhead can be used for the storage of CertOpers.

Therefore, the number of CertOpers contained in one block

increases to around 1100, consequently saving about one-fifth

of the storage space. With the scale of the system increases,

the scale of certificates that the saved space contains will
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be considerable and be of enormous influence. For example,

as Fig. 3(a) shows, when there are 1500 blocks, ScalaCert

contains 0.3 million more CertOpers than those that CertChain

contains. However, when the number of blocks increases to

4000, the gap then sharply increases to 1 million. On the

other hand, as Fig. 3(b) shows, to support 1 million CertOpers,

CertChain needs only around 200 more blocks than ScalaCert.

And when there are 6million CertOpers, CertChain then needs

around 3000 more blocks than ScalaCert. What’s more, when

the number of certificates increases, the performance of DCBF

used in CertChain will deteriorate due to the contradiction of

the bloom filter between size and correctness. But there is no

such problem in ScalaCert.

(a) Blockchain’s capacity for certificates as blocks
increases.

(b) The demand for blocks as certificates increasing.

Fig. 3. Comparison of storage performance of ScalaCert and CertChain.

C. Runtime of “On-Cert” Revocation

We evaluate the runtime of the three kinds of operations

in ScalaCert, i.e., certificate issuance, update, and revocation,

and the results shown in TABLE II are the average of 1000
tests. TABLE II shows the runtime of generating a CertOper of

different operations. The issuance operations consume about

9 ms and the update and revocation operations consume about

7.5ms. This is because for “on-cert” revocation, the loh field

is hashed by the Chameleon hash for the issuance CertOpers
while is hashed by SHA 256 for the update and revocation

CertOpers. Hence, the difference between the Chameleon hash

and the SHA256 hash, i.e., Chameleon hash takes about 1.5ms

more time than SHA 256 on average, leading to the different

runtimes. Besides, for recording the revocation information,

after generating and adding the revocation CertOperR, the

issuance CA of the certificate should also modify the loh field

in the issuance CertOperI and compute for keeping the hash

value unchanged.

TABLE II
RUNTIME OF GENERATING DIFFERENT KINDS OF CERTIFICATE

OPERATIONS

Operation Runtime of CA (ms)
Issuance 9.07
Update 7.46

Revocation 7.46
Revocation Record 2.14

We also evaluate the time consumption of the redaction
consensus process under different revocation rates and block

sizes (i.e., how many CertOpers included in one block). Fig.

4(a) and Fig. 4(b) show the runtime of redaction consensus

under different revocation rates and block sizes, respectively.

It is clear that the time consumption increases roughly lin-

(a) Runtime of redaction consensus under different
revocation rates.

(b) Runtime of redaction consensus under different
block sizes.

Fig. 4. Time consumption of redaction consensus under different settings

early with the increase of both the revocation rate and the

block size. This is consistent with the theoretical expectation,

because the computing and communication overhead of the

redaction consensus is basically linear with the number of

revoked certificates. Specifically, as Fig. 4(b) shows, when the

revocation rate is 5% and each block contains 1000 CertOpers,

the redaction consensus takes about 25ms. Compared with

the block generation speed, for example, 15s per block in
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Ethereum, the time consumption of the redaction consensus

is definitely within an acceptable level.

D. Certificate Verification and Freshness Check

To evaluate the performance of certificate verification, we

compare ScalaCert and CertChain under the condition of

s, k = 5 for freshness check. Besides, to make the result

closer to the practical situation, we test the response time of

requesting the Ethereum node to simulate the communication

overhead between a user and a BN . Fig. 5 shows that the

time consumption of certificate verification is around 600 ms

in ScalaCert and 300 ms in CertChain. In general, ScalaCert

requires twice the verification time as CertChain. This is

because if CertOperI .loh = 0, the user should conduct the

freshness check process and wait for one more block request

time. It should be noted that although a user needs to request

for more than one block, the multiple requests are conducted at

the same time, and thus only one more request time is needed.

Moreover, when the revocation rate increases, the verification

time in ScalaCert will slowly decrease. This is because the

more certificates are revoked, the lower the probability of

conducting Freshcheck(). Therefore, the average verification

time decreases.

Fig. 5. Time consumption of certificate verification.

In addition to the runtime of the entire verification process,

we also evaluate the separate runtime of users’ local computing

consumption of Freshcheck() with different values of s and k.

The results are shown in Fig. 6. The size of RB (Fig. 6(a)) has

little effect on the runtime, but the size of RN (Fig. 6(b)) has

a more obvious influence. This is because a user is supposed

to initialize the connection with each single BN in RN (and

we simulate this step by web3.eth interface), therefore leading

to an increase in the overall runtime. Thus, users can prefer

to increase the size of RB instead of RN to improve security.

By comprehensively weighing the time cost (Fig. 6) and the

attack probability (Fig. 2), users can decide the most suitable

parameter settings for themselves.

VII. RELATED WORK

In terms of blockchain-based certificate systems, researchers

have proposed many related solutions. According to PGP Web

of Trust [27] and CA-based PKI [1], blockchain-based PKIs

(a) Runtime of Freshcheck() with size of RB (k).

(b) Runtime of Freshcheck() with size of RN (s).

Fig. 6. Users’ local runtime of Freshcheck() with different settings.

are roughly classified into two categories: fully decentralized

PKI based on public blockchains and semi-decentralized PKI

based on consortium blockchains. Earlier solutions are usually

based on Bitcoin, such as NameCoin and CertCoin. NameCoin

[28] is the first fork of Bitcoin and serves as a decentralized do-

main name system (DNS). Inspired by NameCoin, Fromknecht

et al. proposed CertCoin [29] which is a Bitcoin-based fully

decentralized PKI system. There is no trusted third party such

as CA in fully decentralized PKIs in CertCoin, and all the

users are peer entities. However, these fully decentralized PKIs

cannot provide sufficient scalability, and the no-CA structure

cannot meet the needs of lots of practical applications. Thus,

aiming at CA-based PKIs, Chen et al. proposed CertChain

[12] based on X.509 standard in 2018. In CertChain, multiple

CAs establish a consortium; the PKI system is constructed

on the consortium blockchain, and a CRL compressed by

the bloom filter is used for revocation verification. Cheng

et al. [30] proposed a digital certificate management system

based on the smart contracts. In 2019, Kubilay et al. proposed

CertLedger [13] in which they used the Merkel Hash Three for

the storage of revocation information. Additionally, aiming at

privacy preserving, Axon et al. proposed PB-PKI [31] and

adapted CertCoin to be privacy-aware. Jia et al. proposed

PROCESS [32] on the basis of CertChain and designed a data

structure called BORL to further compress the space used for

storing revocation status (reduced about half-space compared

with CertChain). However, it still requires additional space for

revocation verification. What’s more, it causes extra computing
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overhead due to the introduction of the Chameleon hash. In

summary, most existing blockchain-based PKIs use additional

data structures for revocation verification, thereby bringing

severe scalability problems.

VIII. CONCLUSION

In this paper, we proposed ScalaCert, which is a scalability-

oriented and blockchain-based PKI system. By introducing

the redactable blockchain and Chameleon hash technology,

ScalaCert realizes to record the revocation information on

the blockchain without any additional data structure such as

CRL, thus significantly reducing the storage overhead and

enhancing the scalability of blockchain-based PKIs. To solve

the security problems brought by the redaction of data, we

designed a permission restriction on the Chameleon hash and

the redaction consensus for reaching a consensus on block

versions. Furthermore, aiming to defend against the DoV

attack caused by the combination of redactable and consortium

blockchains, ScalaCert provides a freshness check mechanism

to help users determine whether a received block is the

latest version. Through security analysis and the experimental

implementations, we proved that ScalaCert has sufficient se-

curity and enhances the scalability though it brings reasonable

communication overhead.
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