
Received November 29, 2018, accepted December 7, 2018, date of publication January 1, 2019,
date of current version January 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2889339

Tuning the Aggressive Slow-Start Behavior of
MPTCP for Short Flows
PINGPING DONG 1, WENJUN YANG1, KAIPING XUE 2, (Senior Member, IEEE),
WENSHENG TANG1, KAI GAO 3, AND JIAWEI HUANG 4, (Member, IEEE)
1College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
2Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
3College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China
4School of Information Science and Engineering, Central South University, Changsha 410083, China

Corresponding author: Kaiping Xue (kpxue@ustc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602171, in part by the Youth
Innovation Promotion Association CAS under Grant 2016394, and in part by the Scientific Research Fund of the Hunan Provincial
Education Department under Grant 17C0960.

ABSTRACT With the widespread availability of multi-homed devices, enabling multiple paths by utilizing
multipath TCP (MPTCP) in current networks is a common practice to improve the performance and
robustness. Although MPTCP improves both bandwidth efficiency and network reliability, the transmission
performance for short flows can become worse than regular single path TCP when the concurrent subflows
transferred through a shared bottleneck due to MPTCP’s aggressive slow start behavior, which is uncoupled,
and each subflow behaves independently as regular TCP, affecting MPTCP and concurrent traffic at the
bottleneck. In this paper, we first reveal that the MPTCP’s aggressive behavior in slow start causes timeouts
and throughput collapse. We further present the design and implementation of GSAM, which employs
the theoretical analysis to derive the appropriate threshold for smoothing the congestion window growth
in GSAM according to the network conditions in slow start phase and leverages congestion detection and
control at end-host to avoid buffer overflow under concurrent MPTCP connections with multiple subflows
sharing the bottleneck. The experimental results based on the real implementations show that the GSAM
reduces the completion time by up to 80% while retaining high Goodput for large flows as MPTCP.

INDEX TERMS Multipath TCP, completion time, RTO, slow start, short flow.

I. INTRODUCTION
With the increased popularity of hand-held devices
equipped with multiple heterogeneous radio interfaces and
multi-homing capable data-centers connected to the Internet
with several network access links [1], multiple paths exist
between the server machines and end-hosts [2], [3]. This
motivates the research and industry effort in multipath trans-
port protocols [4]–[7].

Multipath TCP (MPTCP) is an ongoing effort by the
Internet Engineering Task Force (IETF), which is a set of
extensions to TCP. By allowing the use of multiple network
paths for a single data stream, MPTCP increases robust-
ness during times of path failure, and potentially achieves
higher end-to-end throughput [8], [9]. As more paths are
utilized compared to regular single path TCP, MPTCP can-
not fairly share the bottleneck with TCP if MPTCP runs
the independent congestion control on each subflow [10].
To build MPTCP protocols compatible with the regular TCP,

the existing MPTCP congestion control protocols couple the
congestion control algorithms running on different subflows
by linking their increase functions, and dynamically controls
the overall aggressiveness of the multipath flow [11], [12].

However, this only works in the congestion avoidance
phase [13], [14]. In slow start phase, each subflow of MPTCP
behaves as regular TCP and the congestion window increases
exponentially every RTT round [15]. That is, all subflows
independently double their congestion windows (cwnd) in
slow-start, resulting in also doubling MPTCP’s compound
cwnd which is calculated as the sum of the cwnd of each
subflow. The compound MPTCP cwnd can briefly increase
by a large number, causing high queue occupancy and even
frequent packet loss events at shared bottlenecks, resulting in
suboptimal MPTCP performance.

Moreover, most of the TCP sessions in the today’s Inter-
net is constituted by short flows (e.g. web requests) and
more than 40% of the web transfers are of size smaller

6010
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-0222-6815
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-4297-2978
https://orcid.org/0000-0002-7578-4490


P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

than 1MB [14]. For these short flows, TCP will likely
never leave the slowstart (SS) phase, therefore SS behavior
becomes of critical importance for the performance. Given
the fact that it is usually consumes a long time for short
flows to recover from the serious packet loss, the congestion
collapse caused by the MPTCP’s competing subflows leads
to longer flow completion time of MPTCP compared to
regular TCP.

To eliminate this behavior, Barik et al. [14] proposed a
linked slow-start algorithm (LISA) where each new subflow
takes a credit from an existing subflow needed for its own
initial congestion window. However, the performance degra-
dation of MPTCP is mainly caused by the aggressive growth
of concurrent subflows’cwnd and LISA cannot solve this
problem fundamentally as shown in Section II. To address this
issue, Wang et al. [16] presented a Coupled Slow-Start (CSS)
Algorithm. CSS couples the Slow-Start Threshold (ssthresh)
of different subflows and links the exponential growth of
subflows’ congestion windows to ensure the fairness and
reduce the packet loss. However, the congestion window in
CSS is also coupled as LISA to make sure its total cwnd is the
same as that of TCP. When the subflows do not share the bot-
tleneck, its performance may also degrade due to the reduced
congestion window size compared to regular MPTCP as well
as TCP as validated in Section V.

In this paper, we argue that the main reason for the perfor-
mance degradation of MPTCP when dealing with the short
flows is the router buffer overflow caused by the aggressive
slow start behavior. Thus, we propose a Gentle Slow stArt
scheme for MPTCP (GSAM), which smoothes the aggres-
sive increasing of congestion window in slow start phase of
MPTCP to avoid the buffer overflow which causes packet
losses and even timeout events. Meanwhile, it maintains
MPTCP’s high performance when the subflows are disjoint.
The main contributions of this paper are as follows:
• Based on the in-depth study of MPTCP’s slow start
mechanism, we propose a Gentle Slow stArt scheme for
MPTCP, namely GSAM for concurrent multipath trans-
fer. To effectively use all available paths with guarantee
to avoid the router buffer overflow which causes packet
losses and even timeout events when transmitting short
flows, GSAMfinds the appropriate thresholds to smooth
the aggressive slow start behavior.

• The main challenges in the proposed GSAM algorithm
are the congestion window growth tuning timing and
the tuning magnitude. To this end, this paper uses the
theoretical analysis to derive the appropriate threshold
for smoothing the congestion window growth in GSAM
according to the network conditions, and leverages con-
gestion detection and control at end-host to avoid buffer
overflow under concurrent MPTCP connections with
multiple subflows sharing the bottleneck.

• We validate the effectiveness of GSAM by implement-
ing GSAM on Linux kernel and setting up a testbed con-
sisting of two subflows. Extensive experiments reveal
that GSAM can decrease the completion time of short

flows by up to 35.73% compared with the MPTCP’s
default scheduler minRTT. While for long flows, up to
21.3% of this revenue benefits from the reduced retrans-
mission and RTOs.

The rest of the paper is organized as follows. The design
motivation of GSAM is presented in Section 2. Section 3 dis-
cusses the related works. Section 4 describes the details
of GSAM. We evaluate GSAM with the Linux testbed in
Section 5. Finally, Section 6 concludes the paper.

II. MOTIVATION
In this section, we conduct empirical studies to analyze the
root reason why current slow start scheme of MPTCP proto-
col fails to provide satisfactory performance and present the
design objectives.

In the current existing MPTCP, the slow start of each
subflow behaves the same as an independent TCP connection.
That’s, the congestion window is increased by one on receiv-
ing a new ACK, doubling the window size each round-trip
time. This aggressiveness behavior can bring the compound
congestion window of theMPTCP flow to a large value, caus-
ing TCP timeouts and throughput collapse when the subflows
competing the same bottleneck.

FIGURE 1. The topology to investigate the impact of the aggressive
slow-start behavior of MPTCP when the subflows share a common
bottleneck. The file size is 55KB, the bottleneck capacity is 5Mbps, and
the router buffer size is 50 packets.

In order to illustrate the issues, we conduct our experiments
with the topology shown in Fig. 1 based onNS3 testbedwhere
two concurrent flows with the size of 55KB run between the
client and server which are connected through N subflows
sharing a common bottleneck with 5Mbps bandwidth and
150ms RTT.

Fig. 2 illustrates the completion time with varying number
of sublfows. As follows from this figure, when the number
of the competing subflows is small, i.e., 2 and 4, MPTCP as
well as other two multipath protocols, namely, GSAM and
LISA outperforms regular TCP benefit from the increased
subflows. Besides, MPTCP also performs better compared to
GSAM and LISA in this situation as it increases the conges-
tion window faster as illustrated in Fig. 3.

Fig. 3 describes the growth of the congestion window of
each algorithm over each subflow varying with time when
there are two subflows. The path manager of MPTCP, whose

VOLUME 7, 2019 6011



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

FIGURE 2. The flow completion time when two concurrent flows with the
size of 55KB transfer across a common bottleneck of 5Mbps with the RTT
of 150ms. The y-axis is log-scaled.

FIGURE 3. The congestion window over each subflow of each algorithm
according to the results shown in Fig. 2. (a) GSAM. (b) LISA. (c) MPTCP.
(d) TCP.

place is shown in Fig. 4, controls the establishment of new
subflows and works as follows [14]. It starts a MPTCP con-
nection by establishing an initial TCP subflow (Subflow0)
with a standard TCP 3-way handshake. This initial subflow
works the same as regular TCP in slow start, doubling its
window on receiving a new ACK. Thus, it has the same
congestion window as TCP. Moreover, in MPTCP, if the peer
host supportsMultipath TCP, it will advertise all additional IP
addresses to the connection initiator during this procedure.
Then, the additional subflows are able to join in the Mul-
tipath TCP connection and can start sending once they are
established [14], making its compound congestion window,
the sum of the congestion window of all the subflows’ is
larger than regular TCP.

FIGURE 4. The architecture of MPTCP.

Take the MPTCP as an example. Its compound congestion
window is about 8 at 0.6098s. However, the congestion win-
dow of regular TCP is only 4 at the same time. In addition,
the congestion window of LISA and GSAM is about 7 at this
time, which is a little slower than MPTCP. The reason lies in
that LISA begins its second subflow by taking credits from
the first subflow while GSAM has a more gentle window
growth mode. As a result, MPTCP performs best in this
situation, followed by LISA and GSAM, and TCP has the
largest flow completion time.

It’s to note that there is a contrast with LISA with 4 sub-
flows, where LISA performs worse than regular TCP. To
provide a more thorough analysis and understanding of this
phenomenon, we draw the graphes that depict the congestion
window of each algorithm varying with time when there are
4 subflows. The results are shown in Fig. 5 and Fig. 6.

FIGURE 5. The congestion window over each subflow of each algorithm
when there are 4 subflows.

According to the window evolution of each algorithm,
the reason why LISA with 4 subflows breaks the trend com-
pared to the other cases in this situation is because CWND
reductions exist with LISA, which indicate packet loss events
occur. We further introduce the workflow of LISA as fol-
lows. LISA first finds that subflow0 has the largest con-
gestion window. Then, data packets are taken from it and
given to subflow1, subflow2 and subflows3 as their current

6012 VOLUME 7, 2019



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

FIGURE 6. The congestion window over subflow0 of LISA when there are
4 subflows.

congestion window. This makes Subflow0 increase CWND
much slower compared to other algorithms at the same time
as shown in Fig. 5 and Fig. 6 (the solid line). On the con-
trary, in MPTCP, the congestion window of Subflow0 grows
fast and attains 31 at 0.97696s. Then, no more packets are
assigned to subflow0. Although the CWND of other three
subflows grows exponentially to about 30 packets at 1.12s,
the total data amount that stays in the network is about
87 packets.

However, in LISA, when packet loss occurs, all the four
subflows are utilized to transmit packets and their CWND are
16, 31, 31 and 30, respectively. The sum of the congestion
window of the four subflows is up to 108 packets. In this
experiment, the buffer size is 50 packets and the BDP is about
52 packets. Thus, the maximum amount of data that allowed
to stay in the network is about 102 packets.

In addition, from the Fig. 2, we can also find that the
completion time of MPTCP and LISA increases sharply and
is significantly higher than that of TCP and GSAM when
further increasing the subflows, i.e., 6 or 8 subflows. This is
due to the frequent RTOs caused by the competing subflow
in the bottleneck as shown in Fig. 7.

Moreover, it is unexpected that LISA suffers and shows
a similar behavior as MPTCP when the subflows is more
than 2, i.e., 6 or 8. To investigate the reasons, we find
that the workflow of LISA is as follows in this shared bot-
tleneck scenario where the RTT of each subflow is same.
The initial subflow (Subflow0) is first established. Then,
the other subflows, namely subflow1, subflow2, subflow3,
subflow4 and subflow5 are established simultaneously after
the 3-way handshake of subflow0 when the number of the
subflow is 6. During analyzing the trace file, we find that the
congestion window of subflow0 is 3 at this time which starts
from 1 in NS3 as shown in Fig. 8. Based on the workflow of
LISA, subflow1 and subflow2 each takes 1 packet from sub-
flow0 as its congestion window and the congestion window
of subflow0 becomes 1. Then, no more packets can be taken
from subflow0 to subflow3, subflow4 and subflow5 and these
subflows behave independently as that in MPTCP, causing
RTOs as described in Fig. 7.

FIGURE 7. The occurrence time of retransmission timeout over each
subflow of LISA and MPTCP in the network scenario shown in Fig. 2.

FIGURE 8. In NS3, the congestion window is initiated to one segment.

FIGURE 9. The flow completion time of each algorithm when two
concurrent flows with the size of 55KB transfer across a common
bottleneck of 5Mbps with the RTT of 150ms. The number of subflows is 6.
The y-axis is log-scaled.

In addition, we conduct further experiments with varying
values of the initial congestion window. The results are shown
in Fig. 9.

According to these results, the flow completion time of
TCP and GSAM decreases with the increasing IW, which
benefits from the increased network utilization. However,
the increased IW leads to further performance degradation in
MPTCP as well as LISA. The reason lies in that the increased
congestion window exacerbates the problem of the heavy
packet loss caused by the unlimited exponential growth of
concurrent subflows’ cwnd as analyzed above.

Based on the above analysis, we conclude that the aggres-
sive behavior of the MPTCP’s slow start is one of the main

VOLUME 7, 2019 6013



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

factors that restrict the MPTCP performance especially when
multiple subflows compete for the same bottleneck. These
observationmotivates us to design a novel slow start approach
to avoid the RTOs at the bottleneck to improve the perfor-
mance of MPTCP. In the rest of this paper, we present our
GSAM as well as its performance validation with extensive
experiments.

III. RELATED WORK AND EXISTING PROBLEMS
MPTCP can offer high bandwidth and reliability by lever-
aging multiple paths available between end-points. It has
drawn considerable research attention. Path scheduling and
congestion control are two of the focuses.

Packet scheduling policies are designed for distributing
data packets over multiple paths to alleviate the packet
reordering issue, and thus improve the flow completion time
and network throughput. Several packet scheduling schemes
have been proposed to achieve these goals, such as Block-
ing Estimation-based MPTCP Scheduler (BLEST) [17],
Out-of-order transmission for in-order arrival schedul-
ing policy (OTIAS) [18], Delay-Aware Packet Schedul-
ing (DAPS) [19], Forward Prediction Scheduling (FPS) [20],
Fine-grained Forward Prediction based Dynamic Packet
Scheduling (F2P − DPS) [21], Offset Compensation
based Packet Scheduling (OCPS) [22], DMPTCP [23],
Receive Buffer Pre-division based flow control mecha-
nism (RBP) [24], Forward Prediction based Dynamic Packet
Scheduling and Adjusting with Feedback (DPSAF) [25].

The congestion control algorithm of MPTCP aims to
improve throughput, be friendly to traditional TCP and bal-
ance congestion [26]. Balance Congestion means MPTCP
should utilize the least congested path [27]. Several conges-
tion control schemes have been proposed to achieve these
principles. The coupled congestion-control scheme defined
in [27] is an adaptation of the NewReno algorithm for mul-
tipath transfer which increases or decreases the congestion
window by considering the status of all subflows. However,
it is non-pareto optimality. Thus, the MPTCP-OLIA algo-
rithm [28] was proposed to solve the problem by improv-
ing the mechanism of the congestion window increasement.
Meanwhile, BALIA [29] was raised to provide a better bal-
ance between TCP friendliness, responsiveness, and window
oscillation. Furthermore, our proposal, mVeno [30], improves
MPTCP performance in lossy wireless networks. Besides,
the delay-based MPTCP scheme named wVegas [31] is pro-
posed to achieve fine-grained load balancing.

However, these existing congestion control algorithms are
mainly focus on the congestion avoidance phase which can-
not solve the congestion collapse problem in the slow start
phase when the concurrent MPTCP connections are high at
the shared bottlenecks.

Barik et al. [14] propose LISA to solve the problem by
coupling the MPTCP subflows during the slow-start phase.
In LISA, each new subflow takes a credit from an existing
subflow for its own initial congestion window to make sure
that the sum of the congestion window of all subflows is

not larger than that of TCP flow. However, when there are
multiple subflows, LISA may also show poor performance
like regular MPTCP as the subflows can be opened at the
same time, and thus cannot take cwnd from the existing
subflow as its congestion window can be quite small (i.e,≤ 6
as defined in the algorithm). Besides, the window growth of
LISA can be slower than regular MPTCP, causing suboptimal
performance when the subflows are disjoint.

In the study [16], the authors present a Coupled Slow-Start
algorithm named CSS. CSS resets the Slow-Start Threshold
(ssthresh) of different subflows, aiming to only give the
MPTCP connection as much throughtput as that in TCP
when exiting Slow-Start. Besides, to ensure the fairness and
reduce the burstiness of Slow-Start, CSS links the exponential
growth of subflows’ congestion windows by slowing down
the growth of exiting subflows’ cwnd when a new subflow
joins. However, when the subflows do not share the bottle-
neck, its performance may also degrade due to the reduced
congestion window size compared to regular MPTCP as val-
idated in the paper.

In this paper, we argue that the main reason for the con-
gestion collapse is that when multiple subflows share the
same bottleneck, the exponential growth of the congestion
window of each subflow often misleads the MPTCP sender
to send too many packets too quickly, thus causing a severe
router buffer overflow at the bottleneck link. As a result,
retransmission timeout and throughput collapse happen. This
motivated us to investigate a novel approach smoothing the
aggressive increasing of congestion window in slow start
phase of MPTCP. In the rest of this paper, we present our
GSAM and evaluate its performance in various conditions.

IV. GSAM
In this section, we firstly describe the design details of
GSAM. Then, the congestion window tuning mechanism is
present. Finally, based on the theoretical analysis of the slow
start behavior, we give a guideline for determining the thresh-
old that is used for smoothing the exponential expansion of
the congestion window.

A. DESIGN DETAILS
The design goal of GSAM is to tune the aggressive slow start
behavior of MPTCP to avoid the throughput collapse when
all the subflows sharing the same bottleneck. To this end,
however, GSAM faces two key challenges that (i) GSAM
should obtain the accurate congestion level of each subflow in
slow start stage and (ii) GSAMshould smooth the exponential
expansion of the congestion window, while ensuring high
utilization of bottleneck link.

To achieve these goals, GSAM splits the regular slow
start mechanism into two phases based on the RTT threshold
value K . Firstly, GSAM behaves the same as regular MPTCP
over each subflow. When the RTT value rises above the
predefined threshold K , it is convinced that continuing the
exponential growth can result in buffer overflow and packet

6014 VOLUME 7, 2019



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

FIGURE 10. The congestion window transition over each subflow of
GSAM.

losses. Then, GSAM enters the smooth transition stage as
shown in Fig. 10.

B. TUNING CONGESTION WINDOW
GSAMuses RTT to detect the congestion level and tuning the
congestion window accordingly over each subflow. Specifi-
cally, on receiving new ACKs, GSAM measures the current
RTT, and updates three variables by the following operations:
(i) updating min_RTT , which is the link latency without
queuing delay, (ii) determining the RTT threshold K based
on min_RTT , and (iii) calculating smooth_RTT , which is a
smooth value of the current RTT and is calculated according
to Eq. 1. In this equation, α is a smoothing parameter and is
set according to the RFC 6298. These variables are kept by
the TCP connection hosted by the sender.

Smooth_RTT ← (1−α) · Smooth_RTT+α ·Smooth_RTT .

(1)

Once the measured RTT exceeds K , GSAM tuning the
congestion window from the exponential growth to smooth
mode. As the congestion level can be represented as

∂ =
RTT − K
RTT

. (2)

where bigger ∂ depicts more severe congestion, and vice
versa.

Hence, when the sender of each subflow finds its RTT is
larger than a predefined threshold K , its congestion window
is adjusted to

CWNDi+1 = CWNDi + CWND
−∂
i . (3)

According to Eq. 3, when the measured RTT is more
close to the threshold K , it is more likely that the network
congestion state is not severe and the congestion window can
grow exponentially. Conversely, when the measured RTT is
far larger than the threshold value, which implies that network
congestion occurs, the congestion window should increase
linearly to gradually approach the available network resource.
The algorithm is illustrated in Algorithm 1.

Algorithm 1: The Workflow of the Proposed GSAM
Algorithm on Receiving New ACKs

1 Smooth_RTT ← (1−α)·Smooth_RTT+α·Smooth_RTT ;
2 if RTT < min _RTT then
3 min _RTT ← RTT ;
4 Update K according to Eq. 15;

5 if Smooth_RTT ≥ K then
6 ∂=RTT−K

RTT ;
7 CWNDi+1 = CWNDi + CWND

−∂
i ;

C. GUIDELINE FOR CHOOSING K
GSAM uses threshold K to tune the congestion window and
then controls the aggressiveness of the standard slow start
to avoid the buffer overflow and congestion collapse. It is a
challenge to achieve both the high unitization of bottleneck
link and controllable congestion window. In this subsection,
we introduce how to determine the threshold K by analyzing
the slow start behavior of GSAM.

Suppose that there are N concurrent MPTCP connections
and each MPTCP connection consists of M subflows. The
round trip time without queuing delay of a subflow is D, and
K is the RTT threshold for tuning the congestion window
growth mode, thus K − D represents the allowed queuing
latency, then we get the desired router queue length Q by

Q = C(K − D). (4)

where C is the capacity of the bottleneck link.
In the meantime, the number of packets that can be allowed

to stay in the network isCK , and for each subflow the allowed
maximum value of window size is (CK )/(MN ).

Assume that at time t , the bottleneck router queue length
is just equal to Q, and at the same time each subflow is in
the ith round’s transfer, then we get the window size of each
subflow in the ith round by

W =
CK
MN

. (5)

Since the queuing delay reaches K , all subflows start to
slow down the congestion window increase rate in the next
round. To avoid buffer overflow and packet losses, GSAM
should make sure the buffer occupied during the last expo-
nential growth smaller than the buffer size. That is

Q ≤ B. (6)

By substituting Eq. 4 to Eq. 6, we can deduce that

K ≤
B+ CD

C
. (7)

As K denotes the RTT threshold for tuning the congestion
window growth mode, K should be no less than D which
represents the round trip time without queuing. That’s

K ≥ D. (8)

VOLUME 7, 2019 6015



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

Based on Eq. 7 and Eq. 8, we can obtain Eq. 9.

D ≤ K ≤
B+ CD

C
. (9)

Next, we will verify whether the deduced K can guarantee
the 100% utilization of bottleneck link in this condition.
According to the sliding window protocol of TCP, the net-
work utilization can be represented as shown in Eq. 10 which
is the fraction of time that the sender is busy sending

U =
W

/
C

K + L
/
C
·M · N . (10)

where L denotes the size of a packet.
According to Eq. 5 and Eq. 9, we can derive that the

congestion window size after the last exponential growth is:

CD
MN
≤ W ≤

B+ CD
MN

. (11)

By substituting Eq. 9 and Eq. 11 to Eq. 10, we can obtain
that

CD
CD+ L

≤ U ≤
B+ CD

B+ CD+ L
. (12)

As L � CD and L � B+ CD, we can conclude that U ≈ 1.
However, to avoid the RTO caused by the buffer overflow,

GSAM should take an action and enter the smooth transition
phase during the (i−1)th round. In the slow start, the conges-
tion window during the (i−1)th round is half of that in the ith.
That’s,

Wi−1 =
W
2
. (13)

By substituting Eq. 5 to Eq. 11, we can get

CD
2 ·MN

≤ Wi−1 ≤
B+ CD
2 ·MN

. (14)

According to Eq. 5, Eq. 8 and Eq. 14, we can derive that

D ≤ K̂ ≤
B+ CD
2 · C

. (15)

Based on above analysis, we can find that K is decided by
the router buffer size B, the bottleneck bandwidth C and the
minimum RTT D, which are static. The number of nodes and
the subflow (M and N ) that shares the bottleneck do not have
to be obtained in advance.

V. TESTBED EXPERIMENT
In this section, we validate the proposed GSAM algorithm
by conducting experiments on our testbed in both shared
and non-shared bottleneck scenario and comparing its perfor-
mance with LISA [14], the default MPTCP and regular TCP.
We use the publicly available Linux code ofMPTCP, and also
modified the Linux kernel to implement GSAM and LISA.
The source code is freely available from https://github.com/
zhua451/MPTCPcode/tree/master/Linux. The performance
of each algorithm with different flow size, loss rate, router
buffer size, as well as concurrent flows is taken into
consideration.

In addition, multiple active queue management (AQM)
algorithms are introduced recently. AQM differs from the
FIFO when dropping packets, which can have an impact on
the performance of GSAM. Thus, we also investigate how
each algorithm works with the AQM algorithm.

A. TESTBED CONSTRUCTION AND EXPERIMENTAL
METHODOLOGY
The deployed experiment testbed consists of two file servers,
two computers with WANem and two clients, which consti-
tutes the network topology shown in Fig. 11 by means of
routing configurations.

FIGURE 11. TestBed topology. (a) Shared-Bottleneck.
(b) Competing-Bottleneck. (c) Non-Shared-Bottleneck.

As analyzed in section II, MPTCP’s slow start is inefficient
for short flows as the slow start is uncoupled and behaves
the same as regular TCP, affecting MPTCP and concurrent
traffic at the bottleneck. In this subsection, we first examine
whether GSAM can alleviate these performance impairments
of MPTCP in the shared bottleneck scenario with the topol-
ogy shown in Fig. 11a and Fig. 11b. Then, we conduct
experiments in the non-shared bottleneck scenario as depicted
in Fig. 11c in order to see whether the reduced aggression of
GSAM has the negative impact on the performance or not.

In the topology shown in Fig. 11, both the clients and
the servers are running Linux ubuntu12.10 OS with kernel
version 3.14.33 that has already applied the protocol patches.
The servers are running on the Dell T1500, equipped with
the Intel Xeon E5620 (2.4GHz/12M), 16 GB RAM and a

6016 VOLUME 7, 2019



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

600 GB Hard Disk. The clients are running on the DELL
optiplex 745, equipped with Intel PentiumD 3.4G processor,
512MB RAM and 160 GB hard disk. As shown in Fig. 11,
one of the servers labeled S2 is equipped with two Gigabit
network interface cards to establish two subflows between
the MPTCP client C2. We consider this as the common
scenario (e.g., a client having two access networks like
WiFi/4G) [14], [17]. R1 and R2 serve as two routers which
runWANem to construct a two-way bottleneck link. WANem
is a wide area network emulator that supports various wide
area network features such as bandwidth limitation, latency,
packet loss, network disconnection and so on.

GNUWget is used to generate TCP data traffic by retriev-
ing binary documents through HTTP. Each data point is
obtained by computing the average value of the results from
ten rounds of execution when the packet loss rate is low and
fifty rounds when the packet loss probability is high. All the
experimental data is captured at the clients using tcpdump and
then is analyzed with wireshark.

In our Linux testbed, the bottleneck capacity is set to
5 Mbps, RTT is set to 40 ms as that in [14], which is based
on the Akamai’s Q1 2015 report indicating that the global
average connection speed is 5 Mbps.

In the experiments, we compare the performance of each
algorithm in terms of Goodput as well as the flow completion
time. The retransmissions aswell as the amount of data spread
over each subflow (the contribution of each subflow) is also
taken into consideration for further analysis.

B. EXPERIMENTAL RESULTS
We investigate the performance of each algorithm in three
cases: a) the client’s access link (downlink) is the bottleneck
and it is therefore shared among the two flows (Fig. 11a),
b) the regular TCP traffic competing the same bottleneck
with MPTCP traffic as shown in Fig. 11b, and c) there are
no shared bottlenecks between the MPTCP’s two subflows
(Fig. 11c). In each network scenario, the performance of each
algorithm with varying router buffer size, different flow size
as well as different number of concurrent flows are taken into
consideration.

More specifically, the binary documents range from 50KB
to 1MB. This range has been selected based on the HTTP
transfer size statistics indicating that more than 40% of the
HTTP transfers are of size up to 1000 KByte [14]. The router
buffer size also varies from 5 packets to 100 packets and the
number of concurrent MPTCP flows ranges from 1 to 15.

Note that we expect to see the benefits of GSAM in
case a) and b), whereas GSAM may potentially be harmful
in case c).

1) SHARED-BOTTLENECK
Fig. 12 describes the average flow completion time of each
algorithm with the topology shown in Fig. 11a when the
bottleneck bandwidth is 5Mbps, the RTT is 40ms and the loss
rate is 0.01%.

FIGURE 12. The performance of each algorithm under varying router
buffer size, flow size as well as the number of concurrent flows when the
bottleneck bandwidth is 5Mbps, the RTT is 40ms and the loss rate is
0.01%. The topology utilized is shown in Fig. 11a. The NCF denotes the
number of concurrent flows.

According to Fig. 12, the flow completion time decreases
with the increasing router buffer size where GSAM
performs best, followed by TCP. In addition, LISA outper-
formsMPTCPwhen the router buffer size is small, i.e.,≤ 35.
However, MPTCP performs slightly better than LISA when
the router buffer size is larger than 35 pkt.

FIGURE 13. The number of retransmission of each algorithm with varying
router buffer size under the network scenario shown in Fig. 12.

To reveal the reasons, we conduct further experiments.
The retransmissions of each algorithm is depicted in Fig. 13.
Based on this figure, we can find that the gains of GSAM is
benefit from the reduced retransmission. Specifically, when
the router buffer size is small, which is the constraint on the
performance of each algorithm, MPTCP has the largest num-
ber of retransmission, leading to the highest flow completion
time. With the increasing router buffer size, when the router
buffer size is not the constraint, the number of retransmission
with each algorithm is gradually reduced to 0. To further find
the reason for the poor performance of LISA when the router
buffer size is large, we investigate the cwnd evolution of each
algorithm which is shown in Fig. 14, which reveals that the
reason is due to the slower cwnd increasement compared to
other algorithms.

VOLUME 7, 2019 6017



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

FIGURE 14. The window evaluation of each algorithm with varying router
buffer size under the network scenario shown in Fig. 12.

FIGURE 15. The total number of retransmissions when the flow is the last
time exiting slow-start with varying flow size when the router buffer size
is 20 packet and their are 5 concurrent flows under the network scenario
shown in Fig. 12.

Furthermore, we can also obtain from Fig. 12 that the
flow completion time becomes larger with the increasing
flow size as well as the increasing number of concurrent
flows. Meanwhile, each algorithm in these two conditions
shows a similar behavior in the different router buffer size
scenario. Fig. 15 shows the total number of retransmission
when the flow is the last time exiting slow-start, which again
validate that the performance gain of GSAM is benefit from
the reduced retransmissions.

In addition, we also conducted experiments with different
loss rate in this shared bottleneck scenario. The results are
shown in Fig. 16. According to this figure, the completion
time of each algorithm increases with the increasing loss
rate and GSAMoutperforms existing algorithms, followed by
LISA and MPTCP. These results are as expected. The reason
lies in that the packets are randomly dropped with the packet
loss probability and these random events will influence each
measurement, shifting the results both higher or lower. How-
ever, they can be eliminated through repetition and averag-
ing [1]. In this experiment, each data point was obtained by
computing the average value of the experimental results from
fifty rounds of executions.

FIGURE 16. The flow completion time when 20 concurrent flows with the
size of 300KB transfer across a common bottleneck of 5Mbps with the
RTT of 40ms. The shared router buffer size is 20 packets.

2) COMPETING TRAFFIC
Fig. 17 depicts the performance of each algorithmwhen com-
peting with regular TCP with the topology shown in Fig. 11b.

For the average flow completion time of each algorithm
with varying flow size, GSAM performs best, followed by
LISA when the flow size is smaller than 200KB benefit
from the reduced retransmission as analyzed above. However,
the LISA’s completion time is slightly larger than that of
MPTCP when the flow size is larger than 200KB. To reveal
the reason, the cwnd evolution of each algorithm is con-
ducted. Take the flow size of 800KB as an example, the cwnd
varying with time is shown in Fig. 18. As expected, the cwnd
ofMPTCP increases faster than other two algorithms. GSAM
increases slightly slower than MPTCP. But the sum of the
congestion window of its two subflows is comparable with
that of MPTCP. However, the congestion window of LISA
is much smaller than GSAM as well as MPTCP especially
at the start time. As depicted in Fig. 18b, when the sec-
ond subflow is established at 1.2s, the congestion window
of the first subflow is 4. According the the mechanism of
LISA, the second subflow begins the transmission with the
cwnd of 3 rather than the initial value of 10, causing small
congestion window compared to other algorithms, and thus
increased flow completion time.

In addition, each algorithm when competing with regular
TCP traffic under varying router buffer size shows a similar
behavior as that in the scenario shown in Fig. 12. Specially,
when router buffer size is small (≤ 20) and the buffer
is the constraint, GSAM performs best, followed by LISA
benefit from the reduced retransmission as shown in Fig. 19,
where there are 4 times cwnd reduction with MPTCP and the
number is 2 with LISA as well as GSAM. However, with the
increasing router buffer size, LISA performs slightly worse
than MPTCP due to the slow increase of cwnd as analyzed
above.

Further, for the completion time of each algorithm
increases with increasing concurrent flows, both GSAM
and LISA outperforms MPTCP because of the slower

6018 VOLUME 7, 2019



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

FIGURE 17. The performance of each algorithm under varying router
buffer size, flow size as well as the number of concurrent flows when
multipath TCP competing with regular TCP. The bottleneck bandwidth is
5Mbps, the RTT is 40ms and the loss rate is 0.01%. The topology utilized
is shown in Fig. 11a. (a) File size. (b) Router buffer size. (c) Number of
concurrent flows.

window increasement and reduced retransmission compared
to MPTCP as shown in Fig. 20.

Finally, we investigate the impact of each algorithm on
the competing regular TCP traffic. The average TCP flow
completion time when competing with each algorithm is
shown in Fig. 21. As depicted in this figure, TCP obtains
smaller flow completion time when competing with GSAM

FIGURE 18. The cwnd evolution of each algorithm when competing with
regular TCP traffic under the network scenario shown in Fig. 17 when the
flow size is 800KB, the router buffer size is 20 and the number of
concurrent flows is 5. (a) MPTCP. (b) LISA. (c) GSAM.

and LISA as they slow down the window increasement, and
thus alleviate the congestion collapse. This figure validate
that the performance enhancement of GSAM is not at the cost
of regular TCP traffic. On the contrary, the smooth transition
of GSAM alleviates wasting of the network resource caused
by retransmission and gives TCP a better network condition.

In this subsection, we do further experiments to investigate
the performance of each algorithm when competing with

VOLUME 7, 2019 6019



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

FIGURE 19. The cwnd evolution of each algorithm when competing with
regular TCP traffic under the network scenario shown in Fig. 17 when the
flow size is 80KB, the router buffer size is 10 and the number of
concurrent flows is 5.

FIGURE 20. The retransmission of each algorithm when competing with
regular TCP traffic with varying number of concurrent flows under the
network scenario shown in Fig. 17 when the flow size is 80KB and the
router buffer size is 20.

FIGURE 21. The performance of TCP when competing with each multipath
algorithm under varying router buffer size with the network scenario
shown in Fig. 17 when the flow size is 80KB and the number of
concurrent flows is 5.

UDP flows with the network scenario shown in Fig. 11b.
The experiments are done with varying shared router buffer
size when there are 5 MPTCP flows competing with

5 UDP flows. The UDP traffic is generated with Iperf as
shown in Fig. 24.

The results are depicted in Fig. 25. According to this figure,
the flow completion time decreases with the increasing buffer
size. When buffer size is small (≤ 35) and the buffer is the
constraint, GSAM performs best, followed by LISA benefit
from slower window increasement, and thus reduced number
of retransmissions. With the increasing buffer size, the differ-
ence between the flow completion time of each algorithm is
getting smaller. LISA performs slightly worse than MPTCP
due to the slow increase of cwnd as analyzed above.

3) NONE-SHARED BOTTLENECK
These experiments are conducted to validate whether GSAM
has negative effect when there are no shared bottlenecks. The
router buffer size is varying from 25 packets to 800 pack-
ets in the following experiments as the network bandwidth
delay product is about 360 packets where the bandwidth is
100Mbps and the RTT of each path is 40ms. The results are
shown in Fig. 22.

According to Fig. 22, the flow completion time of each
algorithm decreases with the increasing router buffer size
and increases with the flow size as well as the number of
concurrent flows. TCP performs worst as it only utilizes one
path while the other three algorithms spread packets over
the two subflows simultaneously. MPTCP outperforms other
algorithms as it behaves the same as regular TCP over each
path in this environment. LISA performs worse compared
to GSAM because of the slower window increasement as
analyzed above. Similarly, GSAM shows a little performance
degradation compared toMPTCP. As shown in Fig. 23, which
depicts the window evolution of GSAM and MPTCP when
the router buffer size is 200 packets and there are 30 con-
current flows with size of 100KB, the congestion window
of MPTCP grows from 10 to 11 within 0.08s while GSAM
utilizes about 0.16s.

4) IMPACT OF AQM QUEUE
The above experiments are done with the default FIFO

queue mechanism. In this subsection, we do further
experiments to reveal how the algorithms work with Codel,
a popular AQM queue management algorithm [32]. The
experiments are done with the share-bottleneck scenario as
shown in Fig. 11a where MPTCP flows competing for the
same bottleneck and showing performance degradation.

In Codel, there are three important parameters, namely,
limit , target and interval. Limit is the hard limit on the
real queue size. When this limit is reached, incoming pack-
ets are dropped. Target is the acceptable minimum stand-
ing/persistent queue delay. Default and recommended value
is 5ms. Interval is used to ensure that the measured minimum
delay does not become too stale. Default value is 100ms.

The proposed GSAM aims to eliminate the performance
degradation of MPTCP caused by the router buffer over-
flow due to the unlimited exponential growth of concurrent
subflows’ cwnd. Thus, we first set limit to 20 packets to

6020 VOLUME 7, 2019



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

FIGURE 22. The performance of each algorithm under varying router
buffer size, flow size as well as the number of concurrent flows when
there are non-shared bottlenecks. The bandwidth is 100Mbps, the RTT is
40ms and the loss rate is 0.01%. The topology utilized is shown
in Fig. 11c. (a) Router buffer size. (b) File size. (c) Concurrent flows.

investigate whether the proposed GSAM can achieve its goal
under this buffer-restricted condition with Codel.

The results are shown in Fig. 27. According to this figure,
the flow completion time decreases with the increasing
Interval where GSAM performs best, followed by LISA.

To reveal the reasons, we conduct further experiments.
The RTT evolution in time of each algorithm is depicted
in Fig. 28. Based on Fig. 28, we can find that the RTT of

FIGURE 23. The window evolution of GSAM and MPTCP when the router
buffer size is 200 packets, the number of concurrent flows is 30 and the
flow size is 100KB with the network scenario shown in Fig. 22.

FIGURE 24. The UDP traffic is generated with Iperf by starting a server
session and then the client session using 5 parallel streams.

FIGURE 25. The flow completion time when the regular UDP traffic
competing the shared bottleneck with MPTCP traffic.

MPTCP increases faster compared to other algorithms due to
its exponentially growth of cwnd. In Codel, a packet should
be dropped or not based on the comparison of RTT and
Interval. Higher RTT means higher packet drop probability.
Thus, MPTCP shows poor performance in this scenario.

Both LISA and GSAM can alleviate this phenomenon
and GSAM performs better. The reason is as follows. LISA
proposes to subtract one existing subflow’ cwnd by the Ini-
tial Window (IW) of the newly added subflow. However,
the packet loss is mainly caused by the unlimited exponential
growth of concurrent subflows’ cwnd and LISA fails to solve
it actually. Meanwhile, GSAM starts to slow down the growth
before packet loss occurs and shows the smallest RTT.

Then, we further conduct experiments by varying the
value of limit when the Interval is 100ms as recommend.
The results are shown in Fig. 29. According to this figure,

VOLUME 7, 2019 6021



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

FIGURE 26. The flow completion time when the regular UDP traffic
competing the shared bottleneck with MPTCP traffic.

FIGURE 27. The flow completion of each algorithm with Codel under
different interval values when the limit is 20, the flow size is 300KB and
the number of concurrent flows is 20.

FIGURE 28. The RTT evolution in time of each algorithm corresponding to
the results shown in Fig. 27 when the value of Interval is 40ms.

the algorithms show similar behavior as they work with
the FIFO queues. Specifically, when the router buffer size
(limit) is small and the buffer is the constraint, GSAM
performs best, followed by LISA benefit from the reduced
RTT and thus reduced retransmissions as analyzed above.

FIGURE 29. The flow completion of each algorithm with Codel under
different limit values when the flow size is 300KB and the number of
concurrent flows is 20.

Moreover, with the increasing buffer size, the difference
between each algorithm becomes smaller and LISA performs
slightly worse thanMPTCP due to the slow increase of cwnd.

Above all, we can see that when the hard router buffer
size (limit) is small, the router buffer overflows and thus
retransmissions caused by the aggressive slow start behavior
still exist with Codel. This is the issue what GSAM aims to
alleviate and the results demonstrate that GSAM can achieve
its goal by slowing down the window growth.

VI. CONCLUSIONS
MPTCP’s slow start scheme over each subflow is uncou-
pled and behaves independently as regular TCP, causing
congestion collapse and throughput reduction when these
subflows share a common bottleneck. In this paper, we con-
duct an in-depth study to find the root reasons and propose
GSAM to alleviate this issue. Based on each path’s status
information, GSAM firstly derives the appropriate threshold
for smoothing the congestion window growth theoretically.
Then, it smoothes the aggressive increasing of congestion
window in slow start phase of MPTCP to avoid the buffer
overflowwhich causes packet losses and even timeout events.
Our Linux testbed results show that GSAM improves the
MPTCP transfer completion time by reducing the number of
retransmission and RTOs.

REFERENCES
[1] J. Zhao, J. Liu, H. Wang, and C. Xu, ‘‘Multipath TCP for datacenters:

From energy efficiency perspective,’’ in Proc. IEEE Conf. Comput. Com-
mun. (INFOCOM), May 2017, pp. 1–9.

[2] P. Houzé, E. Mory, G. Texier, and G. Simon, ‘‘Applicative-layer multipath
for low-latency adaptive live streaming,’’ in Proc. IEEE Int. Conf. Com-
mun. (ICC), May 2016, pp. 1–7.

[3] J. Wu, B. Cheng, M. Wang, and J. Chen, ‘‘Quality-aware energy optimiza-
tion in wireless video communication with multipath TCP,’’ IEEE/ACM
Trans. Netw., vol. 25, no. 5, pp. 2701–2718, Oct. 2017.

[4] Y. Zhang, H. Mekky, Z.-L. Zhang, F. Hao, S. Mukherjee, and
T. V. Lakshman, ‘‘SAMPO: Online subflow association for multipath TCP
with partial flow records,’’ in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun. (INFOCOM), Apr. 2016, pp. 1–9.

6022 VOLUME 7, 2019



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

[5] Q. De Coninck andO. Bonaventure, ‘‘Tuningmultipath TCP for interactive
applications on smartphones,’’ in Proc. IFIP Netw., 2018, pp. 514–522.

[6] S. R. Pokhrel, M. Panda, and H. L. Vu, ‘‘Analytical modeling of multipath
TCP over last-mile wireless,’’ IEEE/ACM Trans. Netw., vol. 25, no. 3,
pp. 1876–1891, Jun. 2017.

[7] J. Hwang, A.Walid, and J. Yoo, ‘‘Fast coupled retransmission for multipath
TCP in data center networks,’’ IEEE Syst. J., vol. 12, no. 1, pp. 1056–1059,
Mar. 2018.

[8] F. Duchene and O. Bonaventure, ‘‘Makingmultipath TCP friendlier to load
balancers and anycast,’’ in Proc. IEEE Int. Conf. Netw. Protocols (ICNP),
Oct. 2017, pp. 1–10.

[9] M. Kheirkhah, I. Wakeman, and G. Parisis, ‘‘MMPTCP: A multipath
transport protocol for data centers,’’ in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[10] S. Ferlin, O. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl, ‘‘Revisiting
congestion control for multipath TCP with shared bottleneck detection,’’
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM),
Apr. 2016, pp. 1–9.

[11] C. Raiciu, M. Handly, and D. Wischik, Coupled Congestion Control for
Multipath Transport Protocols, document RFC 6356, Internet Eng. Task
Force, 2011.

[12] C. Raiciu et al., ‘‘How hard can it be? Designing and implementing a
deployable multipath TCP,’’ in Proc. 9th USENIX Conf. Netw. Syst. Design
Implement. (NSDI), Berkeley, CA, USA: USENIX Association, 2012,
p. 29.

[13] Q. Peng, A. Walid, and S. H. Low, ‘‘Multipath TCP algorithms: Theory
and design,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 41, no. 1,
pp. 305–316, 2013.

[14] R. Barik, M. Welzl, S. Ferlin, and O. Alay, ‘‘LISA: A linked slow-
start algorithm for MPTCP,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
May 2016, pp. 1–7.

[15] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions
for Multipath Operation With Multiple Addresses, document RFC 6824,
Internet Eng. Task Force, 2013.

[16] Y. Wang, K. Xue, H. Yue, J. Han, Q. Xu, and P. Hong, ‘‘Coupled slow-
start: Improving the efficiency and friendliness of MPTCP’s slow-start,’’
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1–6.

[17] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, ‘‘BLEST: Blocking
estimation-basedMPTCP scheduler for heterogeneous networks,’’ in Proc.
IEEE IFIP Netw., May 2016, pp. 431–439.

[18] F. Yang, Q.Wang, and P. D. Amer, ‘‘Out-of-order transmission for in-order
arrival scheduling for multipath TCP,’’ in Proc. 28th Int. Conf. Adv. Inf.
Netw. Appl. Workshops, May 2014, pp. 749–752.

[19] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
‘‘DAPS: Intelligent delay-aware packet scheduling for multipath trans-
port,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2014, pp. 1222–1227.

[20] F. H. Mirani, N. Boukhatem, and M. A. Tran, ‘‘A data-scheduling mech-
anism for multi-homed mobile terminals with disparate link latencies,’’ in
Proc. IEEE 72nd Veh. Technol. Conf.-Fall, Sep. 2010, pp. 1–5.

[21] D. Ni, K. Xue, P. Hong, and S. Shen, ‘‘Fine-grained forward prediction
based dynamic packet scheduling mechanism for multipath TCP in lossy
networks,’’ in Proc. 23rd Int. Conf. Comput. Commun. Netw. (ICCCN),
Aug. 2014, pp. 1–7.

[22] D. Ni, K. Xue, P. Hong, H. Zhang, and H. Lu, ‘‘OCPS: Offset Compen-
sation based Packet Scheduling mechanism for multipath TCP,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 6187–6192.

[23] P. Dong et al., ‘‘Reducing transport latency for short flows with multipath
TCP,’’ J. Netw. Comput. Appl., vol. 108, pp. 20–36, Apr. 2018.

[24] J. Han, K. Xue, H. Yue, P. Hong, N. Yu, and F. Li, ‘‘Receive buffer pre-
division based flow control for MPTCP,’’ Mobile Ad-Hoc Sensor Netw.,
vol. 747, pp. 19–31, Mar. 2018.

[25] K. Xue et al., ‘‘DPSAF: Forward prediction based dynamic packet schedul-
ing and adjusting with feedback for multipath TCP in lossy heterogeneous
networks,’’ IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1521–1534,
Feb. 2018.

[26] Y. Cao, M. Xu, X. Fu, and E. Dong, ‘‘Explicit multipath congestion control
for data center networks,’’ in Proc. 9th ACM Int. Conf. Emerg. Netw. Exp.
Technol. (CoNEXT), 2013, pp. 73–84.

[27] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, ‘‘Design, imple-
mentation and evaluation of congestion control for multipath TCP,’’ in
Proc. 8th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2011, p. 8.

[28] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, ‘‘MPTCP is not
Pareto-optimal: Performance issues and a possible solution,’’ IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[29] Q. Peng, A. Walid, J. Hwang, and S. H. Low, ‘‘Multipath TCP: Analysis,
design, and implementation,’’ IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 596–609, Feb. 2016.

[30] P. Dong, J. Wang, J. Huang, H. Wang, and G. Min, ‘‘Performance
enhancement of multipath TCP for wireless communications with multiple
radio interfaces,’’ IEEE Trans. Commun., vol. 64, no. 8, pp. 3456–3466,
Aug. 2016.

[31] Y. Cao, M. Xu, and X. Fu, ‘‘Delay-based congestion control for mul-
tipath TCP,’’ in Proc. 20th IEEE Int. Conf. Netw. Protocols (ICNP),
Oct./Nov. 2012, pp. 1–10.

[32] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, Controlled Delay
Active Queue Management, document RFC 8289, 2018.

PINGPING DONG received the B.S., M.S., and
Ph.D. degrees from the School of Information Sci-
ence and Engineering, Central South University,
China. She is currently a Teacher with the College
of Information Science and Engineering, Hunan
Normal University, Changsha, China. Her research
interests include protocol optimization and proto-
col design in wide area networks andwireless local
area networks.

WENJUN YANG is currently pursuing the mas-
ter’s degree with the Department of Computer
Education, Hunan Normal University, Changsha,
China. His current research interests include pro-
tocol optimization for heterogeneous networks.

KAIPING XUE (M’09–SM’15) received the B.S.
degree from the Department of Information Secu-
rity, University of Science and Technology of
China (USTC), in 2003, and the Ph.D. degree from
the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007. From
2012 to 2013, he was a Postdoctoral Researcher
with the Department of Electrical and Computer
Engineering, University of Florida. He is currently
an Associate Professor with the Department of

Information Security and the Department of EEIS, USTC. His research
interests include next-generation Internet, distributed networks, and network
security.

WENSHENG TANG received the B.S. degree
from Hunan Normal University, Changsha, China,
in 1992, and the M.S. and Ph.D. degrees from
the National University of Defense Technology,
Changsha, in 1997 and 2009, respectively. He is
currently a Professor with Hunan Normal Univer-
sity. His research interests include protocol opti-
mization and cloud computing.

VOLUME 7, 2019 6023



P. Dong et al.: Tuning the Aggressive Slow-Start Behavior of MPTCP for Short Flows

KAI GAO received the B.S. and Ph.D. degrees
from Central South University, Changsha, China,
in 2008 and 2014, respectively. He joined the
Changsha University of Science and Technology,
in 2015. His research interests include intelli-
gent transportation systems and the Internet of
Vehicles.

JIAWEI HUANG received the bachelor’s degree
from the School of Computer Science, Hunan
University, in 1999, and the master’s and Ph.D.
degrees from the School of Information Sci-
ence and Engineering, Central South University,
China. He is currently a Professor with the School
of Information Science and Engineering, Central
South University. His research interests include
performance modeling, analysis, and optimization
for wireless networks and data center networks.

6024 VOLUME 7, 2019


	INTRODUCTION
	MOTIVATION
	RELATED WORK AND EXISTING PROBLEMS
	GSAM
	DESIGN DETAILS
	TUNING CONGESTION WINDOW
	GUIDELINE FOR CHOOSING K

	TESTBED EXPERIMENT
	TESTBED CONSTRUCTION AND EXPERIMENTAL METHODOLOGY
	EXPERIMENTAL RESULTS
	SHARED-BOTTLENECK
	COMPETING TRAFFIC
	NONE-SHARED BOTTLENECK
	IMPACT OF AQM QUEUE


	CONCLUSIONS
	REFERENCES
	Biographies
	PINGPING DONG
	WENJUN YANG
	KAIPING XUE
	WENSHENG TANG
	KAI GAO
	JIAWEI HUANG


