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AbstrAct
As network data keeps getting bigger, deep 

learning is coming to play a key role in network 
design and management. Meanwhile, accurate 
network traffic prediction is of critical importance 
for network management that is implemented to 
improve the quality of service (QoS) for users. 
However, the performance of existing network 
traffic prediction methods is still poor due to three 
challenges: complicated characteristics of net-
work traffic, dynamics of traffic patterns caused 
by different network applications, and a complex 
set of variations like burstiness. In this article, 
we propose a long short-term memory (LSTM) 
based network traffic prediction (LNTP) model, 
which aims to forecast network traffic timely and 
accurately. The model can be divided into two 
parts, namely, wavelet transform and LSTM. The 
working process of LNTP falls into three stages, 
i.e., data acquisition, model training, and online 
learning and prediction. In addition, to avoid 
the negative incentives to models caused by the 
burstiness and adapt to the changing trend of the 
network traffic, a weight optimization algorithm of 
the neural network named sliding window gradi-
ent descent (SWGD), is also proposed. Extensive 
experiments based on two real-world network 
traffic datasets demonstrate that our model out-
performs the state-of-the-art network traffic predic-
tion models by more than 29 percent.

IntroductIon
With the development of network technology 
and the rise of various kinds of Internet services, 
the demand for network traffic has grown rapid-
ly around the world. According to the technical 
report from Internet live stats [1], the number of 
Internet users worldwide surpassed 4 billion by 
June 1, 2018, and network traffic reaches 67 TB 
in one second at 11:13:37 on December 1, 2018. 
Accurate and timely network traffic prediction is 
important for bandwidth allocation, congestion 
control, admission control [2] and privacy-pre-
serving routing [3]. Some research efforts have 
been made to improve the performance of traffic 
forecasting, and existing prediction models can 
be classified into three categories, namely time 
series based models, machine learning models, and 
fusion models. Shu et al. [4] proposed a prediction 
model based on the seasonal autoregressive inte-
grated moving average (ARIMA) models to fore-
cast the wireless traffic. Generalized autoregressive 
conditional heteroskedasticity (GARCH) [5] was 

proposed which is a non-linear time series model 
and can capture the burstiness of the network traf-
fic. Due to the non-linear characteristics of network 
traffic, linear models cannot fit network traffic well. 
Thus, some non-linear models based on machine 
learning have been proposed and applied to net-
work traffic prediction. A deep traffic predictor 
(DeepTP) based on deep learning was proposed 
in [6]. The model consists of two parts: the fea-
ture extraction model is used to extract the spatial 
dependence and the features contained in some 
external information. The time series model is used 
to fit the distribution characteristics of flow data 
over time. Combining Markov chains with tensors 
to implement predictions, Liu et al. [7] focused on 
proposing a multivariate multi-order Markov tran-
sition to realize multi-modal accurate predictions.

However, the characteristics of network traffic 
are becoming more and more complex, making it 
difficult for a single prediction method to capture 
all kinds of characteristics of the traffic data. There-
fore, scholars have proposed a series of fusion 
models for network traffic prediction. Dai et al. [8] 
proposed empirical mode decomposition (EMD) 
based on multi-model prediction (EMD-MMP) for 
network traffic prediction which first decompos-
es the network traffic series into different modes 
with different frequencies by EMD. Then, differ-
ent components are predicted by auto-regres-
sive and moving average (ARMA) and support 
vector regression (SVR) methods separately. Nie 
et al. [9] proposed a network traffic prediction 
method based on a deep belief network (DBN) 
and a Gaussian model (DBNG). The method first 
adopts a discrete wavelet transform to extract the 
low-pass component of network traffic. Then it 
utilizes DBN and the Gaussian model to model 
the extracted low-pass component and the rest 
high-pass component, respectively. Huang et al. 
[10] proposed a traffic forecasting model based 
on modified ensemble EMD (MEEMD) and quan-
tum neural network (QNN). The MEEMD meth-
od is employed to decompose the traffic data 
sequence into intrinsic mode function (IMF) com-
ponent. The QNN is adopted to forecast the IMF 
components. Chen et al. [11] proposed a new 
hybrid network traffic prediction method (EPSVM) 
primarily based on EMD, particle swarm optimi-
zation (PSO), and SVM. The EPSVM utilizes EMD 
to eliminate the impact of noise signals. SVM 
is applied to model training and fitting, and the 
parameters of SVM are optimized by PSO.

Although existing fusion models are superior 
to the single models, predicting different compo-
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nents with different models may ignore the cor-
relation among the components decomposed by 
the original traffi  c, which will infl uence the accura-
cy of the prediction results. The recurrent neural 
network (RNN) has been widely used in image 
classifi cation, natural language processing, speech 
recognition, audio processing, and machine 
vision. Long short-term memory (LSTM) network, 
which is based on RNN and overcomes the natu-
ral defects of RNN in terms of gradient explosion 
and gradient disappearance, is more and more 
widely used in time series problems. This article 
aims to improve the prediction accuracy of the 
network traffi  c and proposes an LSTM based on 
the network traffi  c prediction model (LNTP). The 
main contributions of the article are as follows.

A novel end-to-end deep learning-based online 
traffic prediction architecture named LNTP is 
proposed. LNTP can effectively capture the vari-
ous characteristics contained in the network traf-
fic data by utilizing both wavelet transform and 
improved LSTM. The components decomposed 
from the original network traffi  c data obtained by 
wavelet transform are synchronously input into 
LSTM. Through the training by LSTM, the model 
cannot only learn the internal laws of each com-
ponent but also capture the connections between 
the various components, and thus it can learn 
more intrinsic features of network traffi  c data.

To improve the accuracy of the prediction 
model, the proposed LNTP contains not only the 
training stage but also defi nes the calculation pro-
cess during the online learning phase to adapt to 
the real-time dynamics of network traffi  c, and thus 
maintain high prediction accuracy for a long time.

A weight optimization algorithm named SWGD 
(sliding window gradient descent) is proposed. 
As the number of training samples is limited, 

the weight fluctuation caused by network traffic 
burstiness during the online learning process is 
particularly obvious. SWGD can eff ectively avoid 
the negative incentives to the proposed models 
caused by the burstiness of the network traffi  c and 
thus LNTP can adapt to the changing trend of the 
network traffi  c and achieve high accuracy.

The remainder of this article is organized as 
follows. We first introduce the challenges of 
our investigated problem. We then describe the 
details of LNTP, online learning, and SWGD Algo-
rithm. Extensive experiments are then conducted. 
Finally, we conclude the article.

problems And chAllenges
Network traffi  c can be predicted with time series 
based models by capturing the correlation, peri-
odicity, randomness, and other characteristics 
inherent in the traffic data. Real network traffic 
is given in Fig. 1, and it comes from two private 
Internet service providers (ISPs), namely, the Unit-
ed Kingdom academic network backbone and the 
European cities network backbone. However, the 
prediction model must have the ability to adapt to 
new traffi  c patterns which may change frequently 
with varying applications. Also, the model should 
be able to tackle the burstiness of network traffi  c 
which may generate negative incentives during 
the learning process of the model and aff ect the 
prediction accuracy of the model.

complIcAted chArActerIstIcs of netWork trAffIc
The network traffic changing trend of 100 sam-
ples with a sample interval of eight hours and fi ve 
minutes is depicted in Figs. 1a and 1b. The origi-
nal data comes from the European cities’ network 
backbone. It can be seen clearly in Fig. 1a that 
the network traffic data has a cyclical character 

FIGURE 1. Real network traffi  c. The original data comes from two private ISPs, namely, the United Kingdom 
academic network backbone and the European cities network backbone: a) real network traffi  c with 
8 hours as sampling interval; b) real network traffi  c with 5 minutes as the sampling interval; c) real net-
work traffi  c with 12 hours as the sampling interval; d) changes of a certain weight value in LSTM during 
the online learning process with SGD.
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from the macroscopic view, due to people’s living 
habits. Figure 1b shows the characteristics of fre-
quent burstiness of network traffi  c data from the 
micro-level. The primary problem that research-
ers face is how to make the model capture the 
various characteristics contained in the network 
traffic data. Wavelet transform is a multi-resolu-
tion analysis method. The discrete wavelet trans-
form processes discrete-time signals and it can be 
used to represent a signal as the sum of multiple 
wavelet functions that are local in time and space. 
After the network traffi  c is processed by wavelet 
transform, it is decomposed into multiple compo-
nents with diff erent frequencies. The components 
of diff erent frequencies will carry diff erent trends 
of time granularity so that the neural network can 
more accurately learn the changing rules of net-
work traffic. In this article, the proposed LNTP 
model can be divided into two parts, including 
wavelet transform and improved LSTM. The orig-
inal network traffic data is first decomposed by 
wavelet transform, and then the components 
obtained by wavelet transform decomposition are 
synchronously input into LSTM. Finally, through 
the training by LSTM, the model cannot only learn 
the internal laws of each component but also cap-
ture the connections between the various compo-
nents, and thus it can learn more intrinsic features 
of network traffi  c data.

dYnAmIcs of trAffIc pAtterns cAused bY 
dIfferent netWork ApplIcAtIons

The changing pattern of network traffi  c varies with 
diff erent kinds of Internet applications which devel-
op rapidly. Figure 1c shows the trend of network 
traffi  c with a total of 100 samples whose sampling 
interval is 12 hours. The original data comes from 
the United Kingdom’s academic network back-

bone. From Fig. 1c, notable changes in the traffi  c 
pattern have taken place from the 70th sample. 
Thus, if the model does not keep learning, the 
accuracy of the prediction model which is trained 
based on the historic records may decrease. In this 
article, LNTP is logically divided into three stages, 
namely, data acquisition, initialization training, and 
online learning and prediction. The LNTP defi nes 
the calculation process during the online learning 
phase. This enables the model to adapt to new 
network traffi  c changes in real-time, and maintains 
high accuracy in long-term prediction.

burstIness of netWork trAffIc
Online learning is defi ned as an algorithm for gen-
erating a series of models on a given training data 
stream [12]. The model for the next moment only 
depends on the model at the current time and lim-
ited data streams. As the number of training sam-
ples is limited, the weight fluctuation caused by 
network traffi  c burstiness during the online learn-
ing process will be particularly obvious. Figure 1d 
shows the change of one weight of a certain neu-
ron in LSTM with the stochastic gradient descent 
(SGD) optimization algorithm during online learn-
ing. The weight oscillation issue is quite serious, 
which will inevitably lead to the inaccuracy of the 
prediction model. We also test the performance 
of two other adaptive weight optimization algo-
rithms, namely, Momentum [13] and Adam [14] 
during online learning. By analyzing the results, we 
find that the weight is more stable with Momen-
tum and Adam. However, the prediction error 
is larger as the enhancement of the optimiza-
tion algorithms compared to the SGD lies in the 
improvement of the convergence speed and the 
ability to escape from the saddle point.

How to solve the weight fl uctuation caused by 
traffi  c burstiness in the online learning process has 
become a new challenge. In this article, we pro-
pose a novel neural network weight optimization 
algorithm named SWGD. The idea of the SWGD 
algorithm is to establish a sliding window in the 
backpropagation process for each weight. We 
record the error partial derivative of each back-
propagation in the window and the window will 
move to the latest partial derivative. We recalcu-
late the update step only when the partial deriva-
tive value in the window is in the same direction. 
This method can effectively solve the problem 
of the weight oscillation caused by the network 
traffic burstiness, and improve the accuracy of 
the model during the online learning/prediction 
process.

model And solutIon
The proposed LNTP model is depicted in Fig. 2. 
Figure 2a shows the spatial structure of the model, 
which is an end-to-end frame structure and main-
ly contains two parts, namely wavelet transform 
and improved LSTM. Figure 2b shows the logical 
division of the model in temporal. We divide the 
model into three phases, that is, data acquisition, 
initial training, and online learning and prediction.

the lntp model
The randomness and burstiness of network traf-
fi c usually generate a lot of noise. The noise will 
mislead the training of the model, which might 
cause a certain degree of interference to the fi nal 

FIGURE 2. The LNTP model: a) the spatial structure of the LNTP model; b) the 
logic division of the LNTP model.
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prediction result. To address this problem, we 
first analyze the characteristics of network traffic 
data and then adopt the Symlets wavelet func-
tion to decompose the original traffic data and 
get a group of approximate data and multiple 
sets of detailed data, which are collectively called 
Component in this article. As Fig. 2a shows, the 
components at time t are the input of LSTM. After 
multiple iterations of training, LSTM derives the 
intrinsic relationship between the components. 
The output of LSTM is the prediction value ŷt+1 of 
next time t + 1. When the traffic statistics under 
the real data yt+1 arrive, we will use them as the 
labeled data of this training to calculate the error, 
and propagate it back. Therefore, the model is 
updated through the online learning of new data. 
Then, yt+1 is set as an input xt+1 to calculate the 
prediction value ŷt+2 of the next moment.

The neural network model used in the LNTP 
model consists of three layers: the input layer, 
hidden layer, and output layer. In [15], exten-
sive experiments are given to compare the per-
formance of the neural network models with 
different numbers of hidden layers under different 
RNN structures when solving the network traffic 
prediction problem. Since the input of the neural 
network is four sets of components obtained by 
wavelet transform decomposing the original net-
work traffic data and the output is the network 
traffic prediction value of the next moment, so the 
neural network adopts a four-dimensional input 
node and a one-dimensional output node. The 
hidden layer adopts LSTM neurons as network 
nodes. The four input layer nodes respectively 
receive a set of approximate data and three sets 
of detailed data, and the output values of the out-
put layer nodes represent the traffic prediction 
values at the next moment. Based on the method, 
we construct labeled training data as X = {At–1, 
D1t–1, D2t–1, D3t–1}, and Label = {Rt}. The loss 
function during LSTM training uses the mean 
square error (MSE) to describe.

onlIne leArnIng
The learning/prediction process of the LNTP 
model is divided into three phases: data acqui-
sition, initial learning, and online learning and 
prediction. As shown in Fig. 2b, in the data acqui-
sition phase, the necessary initial training data is 
first prepared for the initial learning phase. From 
Fig. 1a, we can find that the network traffic has a 
significant periodicity and the period is one week. 
Thus, data for more than one week is needed 
in the learning phase. Then, the online learning 
phase is entered whose process is described as 
follows. When the real traffic statistics of the next 
moment yt+1 arrives, LNTP sets yt+1 as the train-
ing label of the current time, calculates the error, 
and corrects it inversely. Then, LNTP sets yt+1 as 
xt+1 for the calculation of predicted value ŷt+2 in 
the next time. The online learning of new data 
enables real-time updating of the model, which 
can maintain high prediction accuracy. The most 
important part of the online learning/prediction 
phase is the update of weights. We demonstrate 
the update calculation process of the weight W0 
in the online learning process in the LNTP model 
and the update process of other weights is similar. 
The updated amount of a single weight is the par-
tial derivative of the error of the currently predict-

ed result relative to the current weight multiplied 
by the learning rate m. It is specifically divided into 
two steps: 
• The partial derivative value of the relative 

result error is obtained according to the 
chain-derivation rule.

• The update step size is obtained by the opti-
mization algorithm for the partial derivative 
value. 
In the online learning phase, we only make 

one iteration for each new sample, to avoid the 
model overfitting the new data.

According to the backpropagation rule of 
back propagation through time (BPTT) algorithm 
and the reverse derivation formula of LSTM, we 
can calculate the computational complexity of 
updating the weight of neural network every time 
in the online learning phase of the model: O(Nh

2 
+ Nh(Ni + No)), where Nh, Ni, and No represent 
the node numbers of the hidden layer, the input 
layer, and the output layer, respectively. The com-
putational complexity of a single update model 
in the online learning phase is within the accept-
able range, which can guarantee that the model 
updates online in real-time to adapt to the new 
traffic pattern so that the model always maintains 
high prediction accuracy under long-term oper-
ation.

the sWgd AlgorIthm
To suppress the weight fluctuation of the model 
due to traffic burstiness in the online learning 
phase, we propose a novel weight optimization 
algorithm, called SWGD. The supervised neural 
network training process can be summarized into 
two steps: result forward calculation and error 
backpropagation. Each weight in the neural net-
work corrects itself according to the update step 
calculated by the partial derivative of its relative 
result error to make the output error smaller in 
the next round. The core idea of SWGD is to cre-
ate a sliding window. When the weight gains a 
new partial derivative during backpropagation, 
the window will move one step with time. Only 
when the direction of all partial derivatives in the 
window is the same, the partial derivative is aver-
aged and then multiplied by the learning rate, and 
the obtained result is set as the step size of this 
update. When the partial derivative in the win-
dow is updated, the current window is destroyed 
and no longer moves. Then, a new window will 
be re-established at the next moment to avoid 
the impact of the old partial derivatives on the 
direction of future corrections. There are two 
parameters in the SWGD algorithm which are N 
and m. N indicates the size of the window, that is, 
the number of partial derivatives that are simul-
taneously viewed, and m is the learning rate. Fig-
ure 3a shows a running scenario of SWGD and 
Fig. 3b shows the change of the neural network 
weight mentioned in Fig. 1d when using SWGD 
as the weight optimization algorithm. From Fig. 3, 
it is obvious that the SWGD algorithm can avoid 
weight fluctuation effectively. It is to note that the 
updates of all weights are not synchronous, and 
thus, the overall trend of the weight in Fig. 1c and 
Fig. 3b is inconsistent.

The extra loop is not generated in the SWGD 
algorithm, so the complexity of a single training 
will not increase in magnitude. We can consid-
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er the SWGD algorithm as a filter, which masks 
the updates that may generate negative incen-
tives for weights. When the direction of the par-
tial derivative values in the window is not the 
same, the update of this time will be given up. 
Suppose the number of data nodes is W. If the 
SGD algorithm is used as the weight optimiza-
tion algorithm of the neural network model, all 
weights will be updated once when a new data 
node arrives during the online learning stage. That 
is, the update times of a single weight is W with 
SGD. However, when SWGD is adopted as the 
weight optimization algorithm, the weights will 
be updated only when the partial derivative value 
in the sliding window with the length of N is in 
the same direction. If there is a weight updated, 
the sliding window needs to be recreated. Other-
wise, the sliding window will be moved forward 
by one step. Therefore, for a single weight, the 
upper bound of cumulative times of update will 
be W%N with SWGD.

Above all, the wavelet transform of the pro-
posed LNTP model is a data preprocessing mod-
ule, which decomposes the original network traffi  c 
data into multiple components. Then all the com-
ponents are input into the LSTM neural network 
of the proposed LNTP model to capture the char-
acteristics of each component and relationship 
between the components. The minimal data vol-
ume requirement in the data acquisition phase 
is determined according to the periodicity of the 

network traffi  c. This is to meet the fi rst challenge 
analyzed above. Once the requirement is satisfi ed, 
LNTP moves on to the initialization learning phase. 
In this stage, historical data is iteratively learned 
many times to initialize the model to tackle the 
second challenge. Then, in the online learning pro-
cess, we propose a weight optimization algorithm 
SWGD that is more suitable for network traffic 
prediction. The SWGD can effectively suppress 
the weight fluctuation caused by network traffic 
burstiness corresponding to the third challenge, 
which makes the model always maintaining good 
accuracy in the online learning/prediction phase.

eVAluAtIon
dAtAsets

The real network traffic of private ISPs provid-
ed by the United Kingdom academic network 
backbone and European cities network back-
bone is used as our experimental datasets, called 
uk_data_set and ec_data_set, respectively. Both 
datasets are sampled at intervals of fi ve minutes. 
uk_data_set has 19888 sets of sampled data, and 
ec_data_set has a total of 14772 sets of sampled 
data. The overall traffi  c trend of the two datasets 
is shown in Fig. 4, where Fig. 4a is uk_data_set
and Fig. 4b is ec_data_set.

eVAluAtIon metrIcs
The experiments use root mean square error 
(RMSE) and mean absolute percent error (MAPE) 
as evaluation metrics, the lower values of the two 
metrics, the smaller error between the predicted 
value and the true value, and the higher accuracy 
of the model. The value of the evaluation metric 
is aff ected to some extent by the dataset. There-
fore, the evaluation metrics of different datasets 
should not be directly compared, and can only 
be used as a relative reference for the results of 
diff erent models of each dataset.

eXperIment settIng
The datasets are divided into multiple intervals 
in time order and all the predicted data are also 
divided into multiple intervals by intervals of one 
week in the experiment. The prediction result of 
each interval is evaluated separately, to evaluate 
the performance of the LNTP model from multi-
ple dimensions.

First, a series of experiments were done and 
the predicted error is calculated with the differ-
ent number of neurons in the hidden layer. The 
experimental results show that when the number 
of neurons is greater than or equal to 6, the error 
tends to be stable. When the number of neurons 
is equal to 10, the lowest error is obtained, and 
increasing the number of neurons directly increas-
es the amount of computation of the neural net-
work. Therefore, the number of neurons in the 
hidden layer is set to 10.

In the initialization phase, Adam, an adaptive 
learning rate optimization algorithm, is used to 
update neural network weights for its characteris-
tics to fast convergence and eff ectively escaping 
the saddle point [15]. The recommended values 
of the parameters in Adam are utilized. We com-
pare four diff erent models in the experiments, in 
which instance 1 is the DBNG model, instance 2 
is the LNTP model without using online learning 

FIGURE 3. SWGD algorithm: a) Running scenario of the algorithm; b) the change 
of weight value of a neuron in the online learning process of LSTM model 
using SWGD as the optimization algorithm.
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algorithms, instance 3 is the LNTP model with the 
SGD as the online learning weight optimization 
algorithm, and instance 4 is an LNTP model with 
the SWGD algorithm as the online learning weight 
optimization algorithm. Based on the extensive 
experiments mentioned above, when the value of 
m is fi xed at 0.02, we can fi nd that the system per-
forms better with a lower error rate when N rang-
es from 3 to 5. However, when N becomes larger 
than 5, the error rate of both RMSE and MAPE 
shows an obvious increasing tendency. When N is 
3 and m is in the range of 0.01 and 0.06, the sys-
tem performs best with the lowest error. When m
is too small (i.e., ≤ 0.005) or too large (i.e., ≥ 0.06 
), the error of RMSE and MAPE becomes larger. 
Without loss of generality, the parameters used in 
the SWGD algorithm are fi nally determined to be 
N = 3 and m = 0.02.

eXperImentAl results
Based on the uk_data_set and ec_data_set, we 
conduct experiments to compare the perfor-
mance of the four instances mentioned above. 
The size of the training set and test set are 2888 
and 17000, respectively, in the uk_data_set. In 
the ec_data_set, the values are 2772 and 12000, 
respectively. During the simulation process, the 
training dataset is visible in the initialization phase. 
However, in the online learning/prediction pro-
cess, the real data of the next moment in the test 
dataset can be visible only when the model com-
pletes the prediction of the next moment based 
on the historical data. Although instances 1 and 
2 do not use online learning, how the data is pro-
vided is consistent with instance 3 and 4. The dif-
ference lies in that the model does not update its 
weights based on new data. It is to note that the 
validity of the wavelet transform is verifi ed before 
evaluating the performance of different models, 
the experimental results show that the model uses 
the wavelet transform to decompose the original 
data can reduce the prediction error by 15 per-
cent compared to the ones without using it when 
other parameters are identical.

Prediction results are divided by a time interval 
of one week, and each interval contains 2016 data 
nodes. Two metrics of the prediction error, namely, 
RMSE and MAPE, are calculated for each interval. 
Figure 5 shows in detail the changes of RMSE and 
MAPE for four instances on two datasets over mul-
tiple time intervals. It can be seen that on two dif-
ferent datasets, the proposed LNTP model has the 
lowest prediction error in each time interval. It is 
obvious that in the fourth and fi fth week of the uk_
data_set prediction interval in Figs. 5a and 5b, the 
prediction errors of instance 1 and instance 2 are 
significantly higher than instance 3 and instance 
4, because the traffi  c change pattern has changed 
greatly in this interval. From Fig. 4a, instance 3 and 
instance 4 benefi t from online learning so that the 
prediction results always maintain good accuracy 
and can adjust quickly. Instance 4 can effectively 
suppress the random burst of network traffi  c which 
results in weight fl uctuation during neural network 
training as it uses the proposed SWGD weight opti-
mization algorithm. As a result, the stability of the 
model is further improved and the prediction error 
is further reduced. At the same time, it is worth 
noting that for uk_data_set, the MAPE metric of 
instance 4 shows a steady downward trend. This is 

because the traffi  c data for neural network learning 
continues to accumulate, and the model continu-
ously optimizes itself so that the error continues to 
decrease.

The overall prediction results for all instances 
are also compared based on the two datasets. 
Figure 6 shows the overall prediction error of four 
instances, where Fig. 6a uses the RMSE metric 
and Fig. 6b uses the MAPE metric. As can be seen 
from Fig. 6, the errors of instance 3 and instance 
4 using the uk_data_set are much smaller than 
those of instance 1 and instance 2, but this phe-
nomenon is not obvious on the ec_data_set. This 
is because the traffi  c of the uk_data_set is greatly 
reduced in the middle for half a month, which 
can be seen by observing Fig. 4a. Instance 3 and 
instance 4 can perform online learning and will 
update its weight in real-time to adapt to the new 
data model. For the ec_data_set, network traffic 
data does not change over time, and it seems to 
follow a similar traffi  c pattern.

Above all, the experimental results reveal that 
the overall prediction error of the proposed LNTP 
model without the proposed SWGD algorithm 
has an average decrease of 19.59 percent and 
19.35 percent compared with the DBNG model 
with RMSE and MAPE, respectively, while the 
prediction error of the model with the proposed 
SWGD algorithm is reduced by 31.76 percent 

FIGURE 4. Datasets: a) the traffi  c trend of uk_data_set; b) the traffi  c trend of 
ec_data_set.
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and 29.67 percent. At the same time, on the uk_
data_set, the overall prediction error of instance 4 
compared with instance 3 has a decrease of 22.1 
percent and 25.64 percent with RMSE and MAPE, 
respectively, while the reduction of the two met-
rics with the ec_data_set data set is 6.15 percent 
and 11.67 percent. This verifies the advantages 
of the LNTP model and the SWGD optimization 
algorithm in dealing with network traffic predic-
tion problems.

conclusIons
To improve the efficiency of network manage-
ment, we have researched network traffic pre-
diction and proposed three innovations for the 
three major challenges currently faced by current 
network traffi  c prediction. 
• An end-to-end online traffi  c prediction model 

named LNTP is proposed. The model first 
uses the wavelet transform to decompose 
the original traffi  c data, and uses the decom-
posed component as the input of the LSTM 
neural network to capture the relationship 
between the components of the original traf-
fi c data to cope with the diffi  culty of captur-
ing network traffi  c data features. 

• This model is divided into three stages, name-
ly, data collection, initial learning, online 
learning, and prediction, so that the model 
can adjust itself in low complexity and high 
efficiency during the operation of the net-
work to adapt the current network traffic 
mode all the time and maintain good predic-
tive accuracy. 

• A weight optimization algorithm named 
SWGD is proposed to suppress the gradient 
turbulence caused by network traffic burst-
iness in the weight update of the model in 
the online learning process, and thus to fur-
ther improve the stability and accuracy of 
online learning of the model.

FIGURE 5. Comparison of various metrics in time interval: a) RMSE metrics on uk_data_set; b) MAPE metrics 
on uk_data_set; c) RMSE metrics on ec_data_set; d) MAPE metrics on ec_data_set.

FIGURE 6. Complete comparison of various metrics: a) RMSE metric; b) MAPE 
metric. 
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Finally, two different real datasets are used to val-
idate the existing DBNG model and several versions 
of the LNTP model proposed in the article under 
different conditions. The test dataset is innovatively 
divided into several intervals, and the experimental 
results of each interval are evaluated, which shows 
that the proposed LNTP model and the proposed 
SWGD optimization algorithm can reduce the pre-
diction error by 29 percent in the network traffic pre-
diction problem. For the next step, we will consider 
paying attention to the traffic characteristics of mul-
tiple network nodes simultaneously, and introduce a 
traffic matrix to analyze the features, looking forward 
to further improvement of the prediction accuracy.
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