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Abstract—As the user demand for data transmission over
high-speed and long distance (hereafter abbreviated as HSLD)
networks increases significantly, multipath TCP (MPTCP) shows
a great potential to further improve the utilization of HSLD
network resources than traditional TCP, and provides better
quality of service (QoS). It has been reported that TCP causes
serious waste of bandwidth in HSLD networks, while MPTCP can
transmit data by using multiple network paths simultaneously
between two distant hosts, thus provides better resource
utilization, higher throughput and smoother failure recovery for
applications. However, the existing multipath congestion control
algorithms cannot perfectly meet the efficiency requirements of
HSLD network, since they mainly emphasize fairness rather
than other critical indicators of QoS such as throughput,
but still encounter fairness issues when coexist with various
TCP variants. To solve these problems, we develop weighted
Compound (wCompound), a loss-and-delay-based compound
multipath congestion control algorithm which is originated from
Compound TCP, and is applicable to HSLD networks. Different
from the traditional methods of setting an empirical value as the
threshold, wCompound innovatively adopts a dynamic threshold
and have the flexibility to adjust the sending window of each
subflow based on current network state, so as to effectively couple
all subflows and fully utilize the network capacity. Moreover,
with the cooperation of delay-based and loss-based methods,
wCompound also ensures good fairness to different types of TCP
variants. We implement wCompound in the Linux kernel, then
carry out sufficient experiments on our testbed. The results show
that wCompound achieves higher utilization of network resources
and can always maintain an appropriate throughput no matter
competing with loss-based or delay-based network traffic.

Index Terms—Multipath TCP, coupled congestion control, loss-
and-delay-based, high-speed and long distance network

I. INTRODUCTION

Nowadays, high-speed and long distance (HSLD) network is

widely used across the world [1] and is becoming increasingly

commonplace in modern networks, such network usually

has a high bandwidth delay product (BDP). Currently, next-

generation networks are developing towards high speed and

long delay, reflected in two aspects. Firstly, due to the

vigorous growth of Internet applications such as online video,

online games and life services, users’ demand for bandwidth

is increasing sharply. Secondly, the increasing demand for

Internet applications also results in the enlargement of data

amount and globally expansion of data centers. The traffic

generated by data centers will account for most of the total

traffic around the world. Among them, traffic transmitted

between data centers is likely to establish cross-boundary, or

even cross-continent connections, and such connections are

quite possible to face the situation of high bandwidth and

long delay. Therefore, to fulfill the demand of customers for

network bandwidth, so as to ensure good quality of service

and user experience, as well as to improve the connectivity

between data centers and take great advantage of network

resources, the transmission optimization over HSLD networks

is a valuable research topic.

Unfortunately, HSLD network is not a typical environment

for which the standard TCP is designed. TCP has been

shown to substantially underutilize network bandwidth over

HSLD networks by some research, and the QoS provided

to applications is also far from satisfaction [2]. The existing

TCP congestion control algorithms can be mainly classified

into four types, namely delay-based, loss-based, compound

(Compound TCP [2]) and congestion-based (BBR [3]), but

most of them have poor performance in HSLD scenario

[2]. Specifically, loss-based approaches are highly aggressive

to improve the utilization efficiency of high-speed network

links, which cause severe RTT unfairness and TCP unfairness.

While delay-based approaches have problems coexisting with

loss-based flows, and loss-based flows are likely to occupy

delay-based flows’ bandwith than their fair share. And for

BBR, a novel method for solving the bufferbloat problem in

HSLD network, its mechanism inherently causes a massive

amount of packet retransmission, and also suffers from

serious performance imbalance and excessive packet loss

while competing with loss-based flows on a shared link [4]

(especially when BBR shares the same link with CUBIC

[5]). On the other hand, although there are scholars believe

that the transition of congestion control algorithms from loss-

based to delay-based is inevitable [6], this transition cannot

be completed overnight. Loss-based congestion controls are

still widely deployed and many other strategies still coexist

in current networks. So a transitional approach is needed,

which should be able to coexist and perform well with the

varied existing TCP variants. In response to these problems,

Compound TCP (CTCP) provides a very good instance, since

it combines loss-based and delay-based methods, which can978-0-7381-3207-5/21/$31.00 © 2021 IEEE



complement each other in practice. CTCP introduces an extra

scalable delay-based component in standard TCP, and can

maintain good fairness to regular TCP flows while obtaining

free network resources more efficiently, which meets all the

requirements of high-speed protocol [2]. All in all, CTCP are

of great reference value to solve the problems of the existing

algorithms in HSLD networks.
MPTCP is an extension of TCP, and is of great benefit

to the efficiency improvement of HSLD network. We list

the QoS benefits induced by the use of MPTCP: Firstly,

MPTCP can transmit data through multiple network interfaces

/ paths concurrently, which can obtain aggregate bandwidth

and increase the throughput, thus it can utilize network

resources more efficiently than traditional TCP. Secondly,

benefits from the use of multiple paths, MPTCP can provide

better robustness and smoother failure recovery. Finally, since

MPTCP can shift load between paths, it can effectively reduce

packet loss by avoiding sending traffic to routers with full

buffers, thus avoid serious delay in the overall transmission.

Therefore, compared to TCP, MPTCP has greater potential for

performance improvement in HSLD networks.
However, in HSLD networks, the existing various MPTCP

schemes do not give full play to the advantages of MPTCP (see

Section II). As stated earlier, the single-path scheme CTCP

performs well in HSLD networks, and its advantages will be

further magnified if it is reasonably extended to a multipath

scheme. Therefore, we expect to extend CTCP to MPTCP

with the aim of handling multipath transmission in HSLD

network efficiently and addressing the problems in the existing

algorithms. But we do not simply and directly introduce CTCP

into MPTCP. Instead, we aim at coupling all the subflows

together so as to achieve both effciency and fairness.
The main contributions of this paper are as follows:

• We propose an improved MPTCP congestion control

algorithm adapted to HSLD network, namely wCom-

pound. To effectively couple all the subflows, we design

the utility function of wCompound and derive the

weights for each subflow based on Network Utility

Maximization (NUM), and adaptively adjust the weights

to ensure that all flows can share the network resources

fairly and efficiently. Different from traditional methods,

wCompound uses an adaptive threshold rather than

configuring a constant threshold to determine when

to back off or forge ahead. Therefore, wCompound

flows can obtain more accurate and flexible congestion

control. A fine-grained load balancing is realized through

the accurate adjustment of weights, so the traffic

can be effectively transferred from congested paths

to noncongested paths. Consequently, wCompound can

utilize the free available bandwidth more sufficiently,

and since wCompound will not send too many packets

on congested paths, the packet loss caused by buffer

overflow is greatly reduced, which avoids serious increase

of delay.

• A key challenge of wCompound is to derive an

appropriate weight for each subflow to achieve reasonable

bandwidth allocation of the network. To this end, we

formulate the network bandwidth allocation problem

as a NUM problem, and transform it into a solvable

problem by using an approximate iterative algorithm.

Through theory analysis, we obtain the optimal solution

of NUM problem in multi-path situation, and also prove

the effectiveness of our utility function. Then design

wCompound on the basis of these conclusions.

• We implement wCompound algorithm in the Linux

kernel, and carry out sufficient experiments on our testbed

to verify its validity. The results prove that wCompound

can always achieve fair bandwidth allocation on

bottleneck links and high link utilization no matter

competing with what kinds of background flows, which

is better than some of the existing MPTCP algorithms.

The rest of the paper is organized as follows. Section

II elaborates the related work in detail, including the basic

principle of CTCP, and some existing and recently proposed

research of multipath congestion control. Section III analyzes

the model of wCompound, carries out the derivation on the

weighted parameter and presents the wCompound algorithm.

Section IV discusses the implementation of wCompound

and evaluates its performance based on experimental results.

Section V concludes the paper.

II. RELATED WORK

A. Basic Idea and Relative Studies of Compound TCP

Compound TCP [2] is a loss-and-delay-based TCP variant

proposed for HSLD environment. CTCP inherits from TCP

Vegas [7], and combines two modes of High-Speed TCP

(HSTCP) [8] and NewReno [9] to meet the bandwidth

utilization over high-BDP networks. CTCP compares α to

the estimated Δ to determine the increase or decrease of

congestion window every round, where α is a predefined

constant and Δ is the backlog which should be calculated

every round. CTCP tracks the minimal Round Trip Time

(RTT) observed so far, so called RTTmin, and updates the

variable Δ during the congestion avoidance phase as Eq. (1):

Δ = (W/RTTmin −W/RTT ) ·RTTmin, (1)

When Δ exceeds α, CTCP will gracefully reduce Wfast

based on predefined ζ, and add Wfast to the final congestion

window W , as shown in Eq. (2) and Eq. (4). Where Wfast

is a smooth movement from HSTCP fastmode to NewReno

slowmode. When Δ is less than α, which means there is

neither congestion nor queue increase or packet loss occurs,

CTCP will increase W as shown in Eq. (3) and Eq. (4). After

the occurrence of packet loss, W is multiplicatively decreased

as Eq. (5):

Wfast(n+ 1) = Wfast(n)− ζ ·Δ, (2)

Wfast(n+ 1) = Wfast(n) + (γ ·W (n)
k − 1), (3)

W (n+ 1) = Wreno(n+ 1) +Wfast(n+ 1). (4)

W (n+ 1) = Wreno(n+ 1) · (1− β). (5)



Tunable parameters k, γ and β can be adjusted according

to practical situation to provide desired scalability, smoothness

and responsiveness. The suggested values given by [2] are

0.75, 0.125 and 0.5. Parameter ζ only affects the decreasing

degree of window when early congestion occurs, ζ > 0.

An important change to CTCP algorithm is that it combines

both loss and delay based congestion avoidance approaches.

The delay-based approach helps CTCP make use of the free

bandwidth more efficiently and proactively slacken data rate

when a link queue is sensed, and the loss-based approach

ensures the lower bound of CTCP’s throughput no less than

TCP Reno. These two approaches are complementary.

Although CTCP has been proposed many years ago, it

still plays an essential role in understanding and improving

the network performance. Literatures [10] and [11] discuss

the application of CTCP in WiFi, and mainly pay attention

to improving its performance and guaranteeing throughput

fairness. Literature [12] points out that in the current wireless

local area network (WLAN) environment, CUBIC-TCP used

in Linux operation system (OS) and CTCP used in Microsoft

Windows OS are selected by most terminals as their TCP

protocol, and introduces a throughput control method to

guarantee that the terminals using CUBIC-TCP and the

terminals using CTCP attain the same total throughput.

B. Existing Approaches and Their Limitations

Improving network transmission has been a long-term

research interest all the time, and congestion control (CC)

is one of its important research issues. In this paper, we

focuse on CC. And we first introduce some classic and latest

multipath congestion control schemes in this section to lay the

groundwork for our algorithm.

We first introduce MPTCP. MPTCP is a fully backward-

compatible extension of TCP. There are three constraints must

be satisfied when designing MPTCP [13], [14]:

(i) Performance enhancement. MPTCP should at least

perform as good as a single-path TCP running on the best

available path.

(ii) Load balancing. The load of a MPTCP connection

should be able to be shifted reasonably among all subflows.

Namely the traffic on congested paths should be moved to

non-congested paths as much as possible, but on the premise

of meeting goal (i) and goal (iii).

(iii) Do no harm. MPTCP flow should ensure the fairness

of bandwidth usage and be friendly to single-path flow.

When several MPTCP subflows and single-path flows sharing

the same bottleneck, on this bottleneck, the total bandwidth

obtained by MPTCP subflows should be very similar to that

of a single-path flow.

Congestion control is a key research content of MPTCP,

and many congestion control algorithms (CCAs) have been

proposed so far. Similar to TCP, MPTCP CCAs can also be

divided into two main types:

Loss-based congestion control algorithms: for example,

Linked increase algorithm (LIA) [14], OLIA [15], BALIA

[16], D-LIA [17] and Couple+ [18]–[20], where packet loss

plays a directive role in their load balancing and congestion

control. However, in the phase of congestion avoidance, these

algorithms adopt a very conservative approach to update their

window. Such as LIA, which is the currently adopted MPTCP

CCA, limits the increment of the total window of all subflows

to no more than one packet in every round, which is very

inefficient in HSLD network. It will require an unreasonable

time to expand its window to a proper value [2].

Delay-based congestion control algorithms: such as

weighted Vegas (wVegas) [21], mVegas [22] and mVeno

[23], which adjust the transmission rates according to the

variation of packet queuing delay. wVegas has been proven

to behave less efficiently on paths with high BDP. However,

these algorithms encounter problems when competing with

aggressive flows, especially when the majority flows are loss-

based, the throughput of delay-based algorithms tends to

be severely compressed. This is because that delay-based

algorithms are very sensitive to changes in network conditions,

and once bottleneck queue is built, they will reduce their

sending rate. Although this behavior can avoid self-induced

packet losses, it also provides an incentive for loss-based

flows to increase their rate. And the more loss-based flows

increase their rate, the more delay-based flows will give

in. Consequently loss-based flows will continue taking up

bandwidth until it severely exceeds the fair share, while the

rate of delay-based flows will keep getting lower and even be

exhausted.

There are also schemes based on non-traditional methods.

Inspired by BBR, several multipath BBR implementations

have been proposed recently. In literature [24], Nguyen et al.
extend BBR to MPTCP, in order to adapt to the situation of

more commonly packet loss in wireless networks. But in their

work, the single-path BBR is just simply applied to multipath

scenarios without any changes. Zhang et al. [25] introduce

another multipath BBR scheme named Delay-BBR, which sets

a certain threshold for the round trip delay signal to avoid the

bottleneck buffer being fully occupied. However, these two

approaches, i.e., [24] and [25], are both uncoupled and might

cause serious fairness issues for single-path flows. Han et al.
[26] emphasize the improvement on fairness, and introduce a

multiplication factor related to the bandwidth of each subflow.

Zhu et al. [27] design weighted BBR (wBBR) based on the

Congestion Equality Principle [21]. The algorithms introduced

in [26], [27] are coupled, but attach too much importance

to fairness. As a result, they can not satisfy constraint (i)

and may even achieve lower throughput than single-path

flows. Wei et al. [28] proposed BBR-based congestion control

and data scheduling under the consideration of bottleneck

fairness. Currently the vast majority of BBR-based multipath

implementations are not widely used, and also do not solve

the built-in problem of BBR mechanism (see Section I).

At present, there are still large vacancies in the research of

using MPTCP to improve the performance of HSLD networks.

Most of the MPTCP CCAs described previously mainly

emphasize the goal of fairness, but incapable of meeting the

goal of improving performance in most scenarios [29]. And



such feature does not fit the needs of HSLD networks.

III. THE PROPOSED WCOMPOUND ALGORITHM

We provide a loss-and-delay-based congestion control

algorithm for MPTCP that is adapted to HSLD network,

named wCompound. As the name indicates, wCompound is

originated from CTCP. It controls the sending rate of each

subflow by assigning various weights to different subflows

and affecting their thresholds. With reasonably designing the

weight allocation algorithm, all the subflows can be effectively

coupled and thus improve the overall performance of MPTCP

in HSLD network. In this section, we first introduce the

utility function of wCompound, then the derivation of the

weighted parameter of each subflow, and finally we design

the wCompound algorithm.

Table I summarizes the mathematical notation used in our

model and derivation.

A. Extending CTCP from Single-path to Multi-path

In multipath transmission, we model the network is shared

by a set S = {1, · · · , s} of flows, and each flow s ∈ S consists

of a set of subflows Rs. Every subflow r ∈ Rs may take a

different route, and maintains its own sending window wins,r.

The transmission rate of flow s on subflow r is set as xs,r,

so the total rate ys of flow s is the sum of the rates of all

subflows, we have ys =
∑

r∈Rs
xs,r.

Since wCompound is a multipath transmission scheme

derived from CTCP, it also adopts CTCP’s congestion control

method. The sending Window of CTCP is controlled by two

parts: loss-based cwnd and delay-based dwnd. The sending

window (hereafter called win) is calculated as Eq. (6):

win = min(awnd, cwnd+ dwnd), (6)

where awnd is the advertised window from the receiver.

From Eq. (6) we know that CTCP can send cwnd+ dwnd
packets every round, hence the increment of cwnd on

receiving each ACK should also be changed:

cwnd = cwnd+
1

cwnd+ dwnd
. (7)

CTCP maintains a state variable named baseRTT , which

is used to record the minimum RTT observed so far. So in the

last round, the number of backlogged packets diff in queue

is calculated as Eq. (8):

diff = (
win

baseRTT
− win

RTT
) · baseRTT, (8)

where win/baseRTT expresses the estimation of throughput

in the case of not overrunning the network capacity, i.e.

the expected throughput. win/RTT expresses the throughput

actually obtained. Subtract the actual throughput from the

expected throughput and multiply by baseRTT , we can have

the number of backlogged packets in bottleneck queue.

Then, compare diff with the threshold value α. If diff ≥
α, the path is considered to be busy, which is a cue that

network congestion has occurred so far, so the delay-based

component will reduce its window appropriately to alleviate

TABLE I
MATHEMATICAL NOTATION USED IN MODEL AND DERIVATION

Description
S A set of all flows in a network
s A flow in set S, s ∈ S
Rs A set of all subflows of flow s
r A subflow in set Rs, r ∈ Rs

L A set of all available links in a network
l A link in set L, l ∈ L
c A set of the capacity of link l, for l ∈ L
A A routing matrix describing the relationship between L

and R
B A matrix describing the relationship between s and Rs

λ Lagrange multiplier associated with link l, for l ∈ L
(λl ≥ 0)

ε Search step size (ε > 0)
t Iteration index
wins,r Sending window of flow s on subflow r
winmax The maximum sending window during the transmission

(for single-path situation)
winmax r The maximum sending window of flow s on subflow r

during the transmission (for multipath situation)
xs,r Transmission rate of flow s on subflow r
x Represents the vector (xs,r, s ∈ S, r ∈ Rs)
ys Total rate of flow s (calculated as ys =

∑
r∈Rs

xs,r)

y Represents the vector (ys, s ∈ S)
diff Number of backlogged packets in the queue (for single-

path situation)
diffs,r Number of backlogged packets in the queue of flow s on

subflow r (for multipath situation)
αs,r Expected backlogged packets in link queues of flow s on

subflow r
αs Total backlogged packets in link queues of flow s
γ, β, k, ξ Tunable parameters which affect the scalability, smooth-

ness and responsiveness of CTCP and wCompound
·
xs Average reduction factor (needs to be discussed in

different cases)
E [ηi] Average decrease factor when no packet loss occurs (for

single-path situation)
Es [ηi] Average decrease factor for flow s when no packet loss

occurs (for multipath situation)
Pdiff<m Probability that diff is less than m (where m is the

threshold selected by a certain subflow)
qr Path price of subflow r
qs The same price owned by all working subflows of flow

s at the equilibrium point
ks,r Weight of flow s on subflow r
C, Cs, Cs

′ Constants generated in the derivation process, and have
no impact on the final results

(∗)+, [∗]+ Projection onto the nonnegative orthant, synonymous
with max(∗, 0)

U(x) Utility function of a flow when its data rate is x (it is
built for single-path CTCP in this paper)

Us(ys) Utility function of flow s when its total data rate is ys
(it is built for multipath wCompound in this paper)

U ′
s(ys) First derivative of Us(ys)

the network congestion. Otherwise, the path is considered to

be under-utilized.

On each subflow, wCompound works in the same way as

CTCP. wCompound similarly calculates diff according to

Eq. (8) and compared it with the corresponding threshold.

However, the threshold mentioned here is different from the

fixed empirical value set in CTCP, but a dynamic threshold

which can be adaptively adjusted according to current network

state. Here we set the expected number of backlogged packets

on subflow r as αs,r, and wCompound’s behaviour on each



subflow is as follows: If diff < αs,r and no packet

loss occurs, subflow r increases its sending window wins,r

according to:

wins,r(t+ 1) = wins,r(t) + γ · wins,r(t)
k. (9)

Otherwise, if diff > αs,r, wins,r is reduced by:

wins,r(t+ 1) = wins,r(t)− ξ · diff+1. (10)

When there is a loss due to congestion, wins,r is

multiplicatively decreased as:

wins,r(t+ 1) = (1− β) · wins,r(t). (11)

Accordingly, the delay-based component dwnd needs to be

complementary to cwnd, so dwnd is adjusted according to

Eq. (12).

dwnd(t+1)=

⎧⎪⎨
⎪⎩
dwnd(t)+(γ · win(t)k−1)+, diff <αs,r

(dwnd(t)−ξ · diff)+, diff >αs,r

((1−β) · win(t)−cwnd/2)+, packet loss
(12)

where (∗)+ is defined as the projection of ∗ onto the

nonnegative orthant. Parameters β, γ and k are adjustable to

provide ideal scalability, smoothness and responsiveness. And

parameter ξ defines the decreasing degree of the delay-based

component when early congestion is detected, here we need

to make sure that ξ is positive.

For the congestion avoidance phase, assuming no packet

loss occurs, the average reduction factor is:
·
xs = E [ηi].

The average reduction factor in the event of congestion loss

is:
·
xs = −β · xs.

Pdiff<m represents the probability that diff is less than

m. According to literature [23], we define it as:

Pdiff<m = min

(
1,

m ·RTT

(RTT − baseRTT ) · winmax

)
, (13)

where winmax stands for the maximum window size during

the transmission.

Therefore, the source will receives win · Pdiff<m positive

acknowledgments or win·Pdiff>m negative acknowledgments

per round. According to Eq. (9) and Eq. (10), positive

acknowledgment and negative acknowledgment correspond

to different multiplicative coefficients respectively. So put

the expected increment and decrement together, the average

decrease factor E [ηi] is calculated as:

E[ηi] = γ · wink · Pdiff<m + (−ξ · diff) · Pdiff>m

=

(
γ · wink+ξ · diff) ·m ·RTT

(RTT − baseRTT ) · winmax
− ξ · diff. (14)

B. Network Utility Maximization Model

As proved by Kunniyur et al. [30], TCP’s behavior could

be modeled by a framework based on the utility maximization

approach when taking no account of slow start phase. In the

modeling of this paper, we also do not consider slow start and

the impact of timeout, and design the utility function according

to the framework and matching method proposed in literature

[31].

Hurley et al. [32] propose an utility function applicable to

TCP-type congestion avoidance. They start their analysis with

a stochastic model and an ordinary differential equation can be

derived from this model. Literature [32] also uses a discrete-

time model since the events in TCP usually occur at packet

level, it proves that the utility function applicable to TCP-type

congestion avoidance is in the form of log x
1+x . When x is

large:

log
x

1 + x
= log

1

1 + 1
x

≈ log

(
1− 1

x

)
≈ − 1

x
. (15)

This approach does not model TCP precisely, since it

ignores partial TCP phases such as slow-start and timeout.

But 1
x in Eq. (15) still reveals the negative correlation between

throughput and the product of RTT and loss probability.

Reference to the existing research [33], we can construct

the utility function of CTCP:

U(x) =

(
E [ηi]

β
+ x

)
[log (E [ηi] +βx)− 1]

− x [log (βx)− 1] + C, (16)

where C is a constant, and has no effect on the subsequent

derivation.

According to Eq. (16) for single-path situation, replace rate

x with rate ys, similarly, the utility function of wCompound

can be constructed as:

Us(ys) =

(
Es [ηi]

β
+ ys

)
[log (Es [ηi] +βys)− 1]

− ys [log (βys)− 1] + Cs, (17)

where Cs is a constant.

When modeling a network, suppose it contains finite links

accessed by finite users. The link set is described as L, the

user set is described as S, and all links have finite capacities

c = (cl, l ∈ L). Matrix A describes the relationship between

link l and path r. Specifically, A = (al,r, l ∈ L, r ∈ R), and

al,r = 1 if l ∈ Lr, or else al,r = 0, where a path r ∈ R is

defined as the subset Lr ∈ L. Each flow s ∈ S is associated

with a subset Rs ∈ R, matrix B describes the relationship

between flow s and Rs. Specifically, B = (bs,r, s ∈ S, r ∈ R),
and bs,r = 1 if r ∈ Rs, or else bs,r = 0. Represent the vector

(xs,r, s ∈ S, r ∈ Rs) by x, and the vector (ys, s ∈ S) by y. As

described in [34] by Kelly, the network bandwidth allocation

problem can be formulated as a NUM problem. The main

purpose of NUM is to maximize the aggregate utility of users

receiving bandwidth on the premise of limited link capacity,

which can be formulated as:

maximize
∑

s∈S
Us(ys)

s.t. y = Bx

Ax ≤ c. (18)

In order to solve the NUM problem effectively, the idea of

convex optimization is used to obtain approximate solutions.



A NUM problem is considered to be solvable if it can be

classified as a convex optimization problem. Moreover, the

local optimal solution of the convex optimization problem

is also its global optimal solution, and this excellent

characteristic makes it easier for us to solve the NUM

problem. There are some necessary conditions for convex

optimization [35]: The constructed utility function U(x) must

be non-decreasing smooth function, strictly concave, and

differentiable in the range of x > 0.

For the objective function is strictly concave for y and

the feasible region is compact [21], the existence and

uniqueness of the optimal solution for y can be easily proved.

Nevertheless, the optimal solution for x is not necessarily

unique. Consider the Lagrangian function [21]:

L(x, λ) : =
∑
s∈S

Us(ys) +
∑
l∈L

λl

(
cl −

∑
r∈R

al,rxr

)

=
∑
s∈S

Us(ys)−
∑
l∈L

∑
r∈R

λlal,rxr +
∑
l∈L

λlcl

=
∑
s∈S

Us(ys)−
∑
r∈R

qrxr + λcT

=
∑
s∈S

Us(ys)−
∑
s∈S

∑
r∈R

bs,rqrxr + λcT

=
∑
s∈S

Us

(∑
r∈Rs

xs,r

)
−

∑
r∈Rs

qrxs,r + λcT , (19)

where

qr =
∑
l∈L

λlαl,r, (20)

and parameter λ = (λl, l ∈ L) is a introduced Lagrange

multiplier used for combining the constraint conditions with

the original objective function. We can regard λl as the

congestion mark or price of link l. Suppose subflow r is

constituted by several links, which is represented by matrix

A. Thus qr is the path price of subflow r.

Define:

Ls(λ) := max
xs,r≥0

Us

( ∑
r∈Rs

xs,r

)
−

∑
r∈R

qrxs,r, (21)

D(λ) :=
∑
s∈S

Ls(λ) + λcT . (22)

According to the Lagrangian dual method, the original

problem (18) can be solved by transforming it into its dual

problem, which can be expressed as:

min
λ≥0

D(λ). (23)

So far we decompose the original objective function (18)

into a main problem (23) and a set of subproblems (21). Every

subproblem has an local optimal solution which is only related

to the local knowledge qr of a path (r ∈ R).

On the source side, given the premise of λ, flow s obtains

the optimal solution x∗
s,r(λ) by solving (21). Then x∗

s,r(λ) is

broadcasted to other links, and the price λl of link l is adjusted

in the opposite direction to the gradient of Eq. (22) as follow,

and then announced to flows:

λl(t+ 1) =

[
λl(t)− ε

(
cl −

∑
r:l∈Lr

x∗
s,r(λ)

)]+

, (24)

where ε represents the search step size, t represents the

iteration index. These steps are executed cyclically, until they

eventually converge to the dual optimal solution λ∗, thus the

corresponding optimal solutions of the original problem is

x∗(λ∗).
Next, we need to optimize the foregoing iterative process

with the consideration of the particularity of multipath

congestion control. There are some problems deserve

consideration: First, at each step of the iterative process, every

flow turns off all its subflows except for the least congested

one, which is not applicable to real network. Second, when a

flow receives the same price from multiple subflows, it cannot

determine a unique solution of Eq. (21).

To solve the above problems, we choose an iteration method

for calculating approximate value of the original problem. It

is of more feasibility to calculate an approximate solution

xs,r(λ) than calculating the optimal solution x∗
s,r(λ). Each

iteration step starts from current rates and advance a distance

in the direction of the gradient of

Gs(x) := Us

(∑
r∈Rs

xs,r

)
−

∑
r∈Rs

qrxs,r (25)

to get the new rates, and then broadcast them to links.

Take the derivative of Eq. (25):

∂Gs(x)

∂xs,r
= U ′

s(ys)− qr. (26)

Karush-Kuhn-Tucker (KKT) conditions indicate the essential

conditions which should be simultaneously satisfied for the

optimal solution of (21):

∂Gs(x)

∂xs,i
= U ′

s

(
n∑

r=1

xs,r

)
− qi ≤ 0, (27)

∂Gs(x)

∂xs,i
xs,i = 0, (28)

xs,i ≥ 0, (29)

where i = 1, 2, · · · , n. First, suppose q1 = q2 = · · · =
qn. For there is at least one subflow with a positive rate,

denoted as j, from (28) we have ∂Gs(x)/∂xs,j = 0, thus

U ′
s (

∑n
r=1 xs,r) − qj = 0. Second, suppose q1 = · · · =

qa < qa+1 ≤ · · · ≤ qn. If we have subflow j (j > a)

with xs,j �= 0, then we have ∂Gs(x)/∂xs,j = 0, and

from (27) we have U ′
s (

∑n
r=1 xs,r) − qj = 0. So there is

U ′
s (

∑n
r=1 xs,r) = qj > q1 ≥ U ′

s (
∑n

r=1 xs,r), which leads

to a contradiction, thus this assumption is invalid. All in all,

the optimal solution x∗
s,r(λ) of (21) is proved to satisfy:

U ′
s

(
a∑

r=1

x∗
s,r(λ)

)
− q1 = 0, (30)



x∗
s,r(λ) = 0, r = a+ 1, · · · , n. (31)

This result indicates that a flow strives to maximize its utility

by giving up expensive paths and only choose the cheapest

one. And as more traffic is injected into a path, its price will

increase accordingly, and vice versa. When every path shares

the same price, which means the congested degree perceived

on all available paths is equal, the requirement of Eq. (18) is

fulfilled perfectly. And we can achieve this congestion equality

by traffic shifting.
As to the gradient direction mentioned in Eq. (25), since the

rate tends to increase on less congested paths but decrease on

more congested paths, the convergence of the iterative process

is still guaranteed while obtaining the approximate solution.

As t approaches infinity, we will have the dual optimal solution

λ∗ and the primal optimal solution x∗(λ∗).
According to Eq. (26), flow s updates its rates by

xs,r(t+ 1) = [xs,r(t) + θ(U ′
s(ys)− qr)]

+
, r ∈ Rs (32)

at each iteration step, where θ is a positive step size. And the

physical significance of U ′
s(ys) is the expected path price of

flow s, where all its subflows are merged into a virtual single

path with the rate of ys.
According to Eq. (32), if U ′

s(ys) is lower than the current

path price qr, the sending rate will decrease, or else increase.

Consequently, traffic on the congested paths is always shifted

to non-congested paths, so each path tends to be equally

congested. Therefore, the Congestion Equality Principle [21] is

satisfied, which means the congestion degree of each subflow

should be as consistent as possible, thus to achieve effective

load balancing and fair sharing of network resources between

subflows. Accordingly, replace the optimal solution x∗
s,r(λ) in

Eq. (24) with the approximate solution xs,r(λ):

λl(t+ 1) =

[
λl(t)− ε

(
cl −

∑
r:l∈Lr

xs,r(λ)

)]+

. (33)

So far, Eq. (32) and Eq. (33) together constitute the

approximate iterative algorithm for solving (23).
Next we want to verify whether the utility function

constructed earlier satisfies these necessary conditions for

convex optimization. Take the derivative of Eq. (17):

U ′
s(ys) = log (Es [ηi] +βys)− log (βys)

= log

(
Es [ηi]

βys
+ 1

)
. (34)

According to Eq. (34), obviously, the constructed utility

function Us(ys) is increasing, twice continuously differen-

tiable and strictly concave in the nonnegative domain, which

satisfies all the necessary conditions for convex optimization.

As Es [ηi] ≥ 0, we have U ′
s(ys) ≥ 0.

C. Design of wCompound Algorithm
Next, it is known that diff will converge to α at the

equilibrium point, we set qr = RTT − baseRTT , xs,r =
win/RTT , and replace diff with αs,r, so there is:

xs,r =
αs,r

qr
, r ∈ Rs. (35)

At this point, the prices of all working subflows of flow s are

the same, represented as qs, and there is:

ys =
∑
r∈Rs

xs,r =
∑
r∈Rs

αs,r

qr
=

1

qs

∑
r∈Rs

αs,r =
αs

qs
. (36)

Based on the approximate iterative algorithm and the

necessary conditions satisfied by the optimal solution, we can

construct the utility function of wCompound in another form.

From Eq. (30), Eq. (31) and Eq. (36), we have:

U ′
s(ys)=

∑
r∈Rs

qr=qs=
αs

ys
. (37)

Perform an inversion operation via Eq. (37), and another

expression of Us(ys) can be obtained as:

Us(ys)=αslogys + Cs
′, (38)

where Cs
′ is a constant. It can be observed that Eq. (38) has

the same characteristics as Eq. (17), they are both increasing,

strictly concave and twice continuously differentiable. So take

the derivative of the right half of both Eq. (34) and Eq. (37):[
αs

ys

]′
=

[
log

(
Es [ηi]

βys
+ 1

)]′
,

αs =
Es [ηi](

Es[ηi]
βys

+ 1
)
· β

=
Es [ηi] · ys

Es [ηi] + βys
, (39)

where Es [ηi] represents the average decrease factor of flow

s. Let diffs,i denote the diff of subflow i, so Es [ηi] can be

calculated as:

Es [ηi] =
∑
i∈Rs

Es,i [ηi]

=
∑
i∈Rs

{(
γ · wins,i

k + ξ · diffs,i
) · αs,i ·RTTs,i

(RTTs,i − baseRTTs,i) · winmax i

−ξ · diffs,i} . (40)

Set θ = xs,r(t)/qr and substitute it into Eq. (32), so flow s
updates its rate according to

xs,r (t+ 1) =
U ′

s(ys)

qr
xs,r (t) , r ∈ Rs (41)

every iteration step.

As explained earlier, U ′
s(ys) is the expected path price, so

Eq. (41) follows the Congestion Equality Principle. And we

substitute Eq. (37) into Eq. (41) to get the formula used to

update rate:

xs,r (t+ 1) =
αs

qr
· xs,r (t)

ys
, r ∈ Rs. (42)

Set ks,r (t) = xs,r (t)/ys. So the αs,r assigned to subflow

r can be solved as:

αs,r=ks,r · αs =
xs,r∑

i∈Rs

xs,i
· Es [ηi] · ys
Es [ηi] + βys

, (43)

Specifically, ks,r determines the share of weight on a certain

subflow, while αs determines the weight that the whole



Algorithm 1: Congestion Avoidance Phase of wCom-

pound

1 Initialization :
2 begin
3 for r ∈ Rs do
4 Initialize αs,r, xs,r;

5 Weight Adjustment( ) :
6 begin
7 ks,r ← xs,r/ys;

8 Calculate Es [ηi] and Es,i [ηi] according to Eq.(40);

9 αs ← (Es [ηi]× ys) / (Es [ηi] + β × ys);
10 return ks,r × αs;

11 Upon receiving each ACK :
12 begin
13 rtts,r ← ∑

r sampled rtts,r/sampled nums,r;

14 baseRTTs,r ← min{sampled rtts,r};

15 baseRTT ← min{baseRTTs,r};

16 winmax r ← max{wins,r};

17 diffs,r ← wins,r × (rtts,r − baseRTTs,r) /rtts,r;

18 // calculate weights and alphas

19 xs,r ← wins,r/rtts,r;

20 ys ←
∑

r∈Rs
xs,r;

21 αs,r ← WeightAdjustment();
22 // window adjustment

23 cwnds,r ++;

24 if diff < αs,r then
25 dwnds,r +=(γ · wins,r

k − 1)+;

26 wins,r = cwnds,r + dwnds,r;

27 else
28 if dwnds,r > ξ · diff then
29 dwnds,r −=ξ · diff ;

30 else
31 dwnds,r = 0

32 wins,r = cwnds,r + dwnds,r;

MPTCP connection should be assigned under current network

state.

It should be noted that diffs,r, Es [ηi] and αs,r need to be

calculated in each round. Here, the weight ks,r quantifies the

level of bandwidth competitive intensity. The less congested

the subflow is, the greater the weight is allocated to this

subflow, which will also lead to the increase of competitive

intensity, thus affect the following weight allocation, and vice

versa. Eventually, an equilibrium point will be reached where

each flow is equally congested.

This subsection introduces the methods for calculating the

weighted parameter αs,r for each subflow r, and the steps

outlined in this subsection form the algorithm of wCompound.

The pseudo-code is given by Algorithm 1. The initial value of

αs,r is set to 6, but has little effect on the subsequent operation.

TCP
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S1 D1

D2Link 1

Link 2

1 1 1c T p

MPTCPMPTCP 2c T p

TCP

(a) Topology 1

MPTCP

S2

S1 D1

D2

MPTCP
c T p

TCP TCP

(b) Topology 2

Fig. 1. The network topologies

IV. PERFORMANCE EVALUATION

We validate the proposed wCompound algorithm experi-

mentally in our testbed. We implement wCompound as Linux

model, and this scheme only need to be executed on the server.

Our deployed testbed consists of two file servers, two routers

and two clients, both the servers and the clients are running on

Linux ubuntu 16.04 OS with MPTCP kernel version 4.19.142

[36]. We use these components to build two classic network

topologies as shown in Fig. 1(a) and Fig. 1(b), where every

MPTCP connection consists of two subflows, and c represents

the bandwidth of link, T represents the propagation delay,

p represents the random packet loss rate. Then compare the

performance of wCompound in these scenarios with four

existing algorithms: LIA [14], OLIA [15], Balia [16] and

wVegas [21], which have already been implemented in the

kernel.

A. Network Utilization

We adopt the topology of Fig. 1(a) to evaluate how

effectively can wCompound utilize the available bandwidth

in HSLD scenario. Specifically, we take no account of the

impact of random packet loss, and the parameters are set as:

c1 = c2 = 150Mbps, T1 = T2 = 80ms, p1 = p2 = 0.
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Fig. 2. The average rates of CUBIC and two subflows

In the first set of experiments, we run 5 TCP CUBIC flows

and 5 MPTCP flows simultaneously. In isolation TCP flow

and subflow1 run concurrently on Link 1, resulting in a higher

congestion level of Link 1 than Link 2. The aggregated data is

shown in Fig. 2, where MPTCP TOTAL stands for the sum

of the rates of subflow1 and subflow2. For wVegas, as shown

in the figure, when TCP flows adopt loss-based congestion

control method, it will preempt almost all the resources of

Link 1, and subsequently affect subflow2 on the less congested
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Fig. 3. Throughputs under different packet loss rates

link (Link 2), thus resulting in severe compression of the total

rate of wVegas. This is because the throughput maximization

is possible to the original MPTCP only when all its available

paths share a common bottleneck [37]. Among all the tested

MPTCP algorithms, wCompound achieves the highest total

rate, and shifts most of its traffic to the less congested Link

2. Meanwhile, the average rate of TCP with wCompound

basically reaches the same level of LIA and Balia, which

means wCompound achieves the throughput enhancement by

utilizing the free available bandwidth more sufficiently rather

than occupying the bandwidth of regular TCP. By contrast,

although OLIA achieves the same effect as wCompound in

load balancing, it does not utilize the bandwidth which is not

efficiently used by TCP on Link 1 as fully as wCompound

does.

We then conduct another set of experiments to further

verify the ability of wCompound to utilize bandwidth when

there are random packet losses in the network. We add

random packet losses to the network and do not consider

background flows, then compare wCompound with wVegas

and OLIA. We vary the loss rate p from 10−2 to 10−6

and run wCompound, wVegas, OLIA and regular TCP flows

respectively. The aggregated throughput is plotted in Fig. 3.

As OLIA is a loss-based approach, its throughput is lower

than the others when p > 10−3, while the throughput of

the other protocols is very close. However, as the packet loss

rate decreasing from 10−3 to 0, the bandwidth utilization of

wCompound is obviously higher than that of the other three

protocols, and OLIA shows a marked insufficiency in network

utilization.

B. Fairness to Different TCP Variants

To evaluate the fairness to different TCP variants, we adopt

the topology shown in Fig. 1(b) that two wCompound subflows

share the same bottleneck link with a regular TCP flow.

Specifcally, we set c = 300Mbps, T = 80ms, p = 0. We

run 5 TCP flows and 5 MPTCP flows simultaneously, and

average the testing values as statistical sample.

In the third set of experiments, we divide the MPTCP

algorithms involved into three groups: delay-based (wVegas),

loss-based (LIA, OLIA, Balia) and wCompound. We test two
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Fig. 4. Sharing bottleneck link with
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Fig. 5. Sharing bottleneck link with
delay-based TCP flows

scenarios, which take loss-based (CUBIC) flow and delay-

based (Vegas) flow as the background flow respectively, so

as to observe the performance of different MPTCP algorithms

in competing with different types of TCP variants. The results

are depicted in Fig. 4 and Fig. 5 respectively.

It can be seen from Fig. 4 that wVegas obtains much

less throughput than CUBIC, this illustrates that MPTCP

congestion control algorithms based on delay can hardly

compete with loss-based TCP variants, and sadly it is difficult

to remedy this defect by delay-based approaches themselves

[2]. LIA, OLIA and Balia behave the same, they can maintain

a relatively appropriate rate, but still far from catching up

with CUBIC. When the background flows changes from

CUBIC to Vegas, these two kinds of MPTCP approaches

have exactly the opposite behavior to before, see Fig. 5.

Delay-based MPTCP approaches show their fairness to delay-

based TCP variants, while loss-based MPTCP flows show

great aggressiveness and steal a lot of bandwidth from

Vegas. However, compare to algorithms purely based on

delay or loss, the proposed compound algorithm, namely

wCompound, can always maintain a similar rate to regular

TCP flows. wCompound provides better competitiveness

with loss-based competing flows, and avoids the starvation

caused by excessive concession. At the same time, under the

mediation of delay-based component, wCompound does not

behave aggressively and preempt additional bandwidth from

others when coexisting with delay-based flows, which avoids

the damage to the fairness of other flows. In a word, when

sharing a common bottleneck link, wCompound is much fairer

to different types of TCP variants than the existing MPTCP

approaches.

V. CONCLUSIONS

In this paper, we presented a compound multipath CCA

named wCompound to couple multiple subflows and help

users transmit data more efficiently over HSLD networks, so

as to provide a good QoS support. As the name indicates,

wCompound is derived from CTCP. We aimed to effectively

extend single-path CTCP to multipath to achieve coupled

congestion control while satisfying the MPTCP constraints.

The problem is analyzed based on the Network Utility

Maximization model and solved by an approximate iterative



approach, and we derived the weighted parameter and adaptive

threshold of wCompound. As wCompound is an effective

combination of loss-based method and delay-based method,

it inherits the advantages from loss-based schemes and delay-

based schemes to cope with multiple HSLD paths efficiently,

and also ensure fair bandwidth allocation to different types

of TCP variants at the shared bottleneck. We designed

and implemented wCompound based on Linux kernel, the

experimental results proved that wCompound outperforms the

existing schemes and is a suitable transitional approach for

HSLD networks.
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