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Abstract—With the dramatically increasing deployment of the
Internet of Things (IoT), remote monitoring of health data
to achieve intelligent healthcare has received great attention
recently. However, due to the limited computing power and
storage capacity of IoT devices, users’ health data are gener-
ally stored in a centralized third party, such as the hospital
database or cloud, and make users lose control of their health
data, which can easily result in privacy leakage and single-point
bottleneck. In this paper, we propose Healthchain, a large-scale
health data privacy preserving scheme based on blockchain tech-
nology, where health data are encrypted to conduct fine-grained
access control. Specifically, users can effectively revoke or add
authorized doctors by leveraging user transactions for key man-
agement. Furthermore, by introducing Healthchain, both IoT
data and doctor diagnosis cannot be deleted or tampered with
so as to avoid medical disputes. Security analysis and experimen-
tal results show that the proposed Healthchain is applicable for
smart healthcare system.

Index Terms—Blockchain, dynamic key management, fine-
grained access control, Internet of Things (IoT), privacy
preserving, smart healthcare.

I. INTRODUCTION

THE INTERNET of Things (IoT) is an emerging and
promising technology that connects a large number of

smart devices to the Internet, where devices collect and
exchange data to help people monitor changes and respond
to them to improve efficiency [1], [2]. Currently, it has been
applied in many fields, such as vehicle network [3], smart
grid industry [4], and smart home [5], in which, by leveraging
IoT technology, smart healthcare has received more and more
attentions.

IoT technology-based smart healthcare has been proposed to
significantly improve efficiency and accuracy, break geograph-
ical restrictions to achieve remote monitoring [6], conduct
disease risk assessment [7], and construct disease prediction
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systems [8]. In smart healthcare system, IoT devices, such as
wearable sensors, keep collecting users’ physiological data,
such as electrocardiogram (ECG), blood pressure, tempera-
ture, and so on. Usually, these physiological data are sent to the
user’s local gateway to perform further data processing, aggre-
gation, and then sent to a healthcare provider for diagnosis and
feedback, so that users can further better understand their own
health status. However, these personal smart health devices are
characterized by miniaturization and ultralow power consump-
tion, resulting in limited computing and storage capacity [1].
Therefore, smart health devices require additional methods to
assist in computing and storage. So far, a common approach is
to outsource personal health data and electronic health records
(EHRs) to cloud servers [7].

Cloud-assisted healthcare system improves efficiency and
reduces cost compared with traditional health system.
However, it should be noted that there are still many drawbacks
in the system.

1) Large-scale smart health devices require high computing
and storage capabilities of cloud servers. Since cloud
storage and computing can also be seen as centralized
to a certain extent, once cloud servers break down or
are attacked, all users might be affected.

2) Health data is highly sensitive and should be well
protected. Cloud server may leak user privacy for com-
mercial benefits. For example, users only allow their
health data to be accessed by authorized professional
healthcare staffs, but cloud providers may leak users’
personalized EHRs, for medical research, drug adver-
tising, and so on, without the user’s permission for
increasing their own benefits [9].

3) When a medical dispute occurs, the user may suspect
that the original EHRs stored in the cloud has been
modified as the distrust of the third party. Besides, it
is difficult to share data stored in cloud among different
platforms with specific access control policies.

The blockchain technology provides a public, digitized, and
distributed ledger, which is first proposed by Nakamoto [10].
It has been widely used in cryptocurrency transactions, such as
Bitcoin [10] and Ether [11]. Meanwhile, it has also become
the key technology for various IoT scenario for more inno-
vations. All nodes in the blockchain construct a peer-to-peer
(P2P) network to interconnect with each other. All partici-
pating nodes are equal and collaboratively provide services
without a single central point, which can avoid the risk of
single-point bottleneck. The blockchain consists of a series
of blocks and grows over time, in which each block mainly
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contains a hash of its previous block, a timestamp, a nonce,
and some transactions. A transaction records the data that a
user wants to add to the blockchain, and new transactions are
broadcast to other nodes. Some nodes collect new transactions
into a block. The method to add a block to a blockchain is
determined by a specific consensus mechanism. Nodes accept
the block only if all transactions in it are valid. Once a block
is added to the blockchain, it cannot be tampered with under
certain security assumptions. The blockchain cannot be forked
and all nodes keep working on its extension.

In this paper, we propose Healthchain, a blockchain-based
privacy preserving scheme for health data. In Healthchain,
users can periodically upload the health data collected by IoT
devices and publish them as a transaction. Doctors or artificial
intelligence (AI) health analyzers can diagnose anytime and
anywhere based on the IoT data and publishes the diagnosis
as a transaction. In fact, with the explosive growth of the IoT
devices, there will be large-scale health data and these health
data will continue to increase. It is not appropriate to record
users’ complete data on the blockchain, as resource require-
ments for each node on the blockchain will be extremely high.
Otherwise, the blockchain will be too complex to maintain,
search, and verify. Considering the limited storage capacity of
each blockchain node, we introduce interplanetary file system
(IPFS), which is a content-addressable, distributed file system
to store data with high integrity and resiliency. There is no
central server in IPFS, and data are distributed and stored in
different IPFS nodes all over Internet. Thus, IPFS has no single
point of failure. IPFS can efficiently distribute large amounts
of data without duplication [12]. Each file uploaded to the
IPFS system has a unique hash string through which the file
can be retrieved. In our proposed Healthchain, users’ complete
health data is stored in IPFS storage system. Only hash string
of health data, stored in blockchain, is used to verify data’s
integrity and map to the complete data in IPFS storage. In
this way, Healthchain supports large-scale health data and has
good scalability.

However, in addition to storage pressure of the massive
data, the issue of data security and user privacy is also one
of the major challenges. On one hand, the open and trans-
parent nature of the blockchain makes users’ privacy easy to
be compromised. On the other hand, authorized professional
healthcare providers, e.g., doctors or AI health analyzers, need
to access users’ health data. Therefore, users’ health data
should be encrypted and fine-grained access control should
be conducted over the encrypted data. Only authorized pro-
fessional healthcare providers can get specific users’ health
data. In order to enhance the security protection of health data,
Healthchain allows users to update encryption keys, revoke,
and add authorized professional healthcare providers at any
time.

The main contributions of this paper can be summarized as
follows.

1) We propose a blockchain-based smart healthcare system
for large-scale health data privacy preserving, named
Healthchain. In Healthchain, users are enabled to upload
IoT data and read doctors’ diagnoses, and meanwhile,
doctors are allowed to read users’ IoT data and upload
diagnose. In addition, all IoT data and diagnoses cannot

be tampered with or denied, which can avoid medical
disputes.

2) Healthchain separates transactions for publishing data
from transactions for fine-grained access control, and
meanwhile data is encrypted and stored in IPFS,
which can efficiently reduce communication over-
head and computation overhead while ensuring privacy
preserving.

3) Furthermore, by uploading updated transactions about
security keys, Healthchain can allow users to dynami-
cally revoke doctors and update keys at any time.

The rest of this paper is organized as follows. In Section II,
we review the related work. The system model, threat
model, and design goals are introduced in Section III. In
Section IV, we describe the details of our proposed scheme.
The security analysis and performance evaluation are given
in Sections V and VI. Finally, Section VII concludes this
paper.

II. RELATED WORK

In this section, we discuss the related works in terms of
traditional smart healthcare system, blockchain application in
network scenarios, and smart healthcare based on blockchain.

A. Traditional Smart Healthcare System

Nowadays, people are increasingly hoping to get more accu-
rate, comprehensive, and efficient health information about
themselves, and meanwhile their personal privacy can be well
preserved. With the development of information and communi-
cation technology (ICT), and cloud computing, many research
efforts have been devoted to improving the efficiency and
security of smart healthcare systems.

To protect personal health data stored in semi-trusted cloud
servers, attribute-based encryption (ABE) is introduced to
achieve fine-grained access control [13]. In 2013, Li et al. [14]
proposed a novel patient-centric framework for fine-grained
and scalable data access control by using ABE technology to
encrypt users’ EHR data. In order to solve the problem of
revealing access policies in traditional ciphertext-policy ABE
(CP-ABE), Zhang et al. [13] proposed to hide the specific
and sensitive attribute values in the access policy. Recently,
Zhang et al. [15] analyzed and found that there are a large
amount of duplicate EHR data in the cloud storage. In order
to reduce the storage cost in cloud servers, in [15], they fur-
ther proposed an effective solution to allow cloud servers to
remove duplicate data and reduce storage costs. Hua et al. [16]
proposed CINEMA, which is an effective, privacy-preserving
primary diagnostic framework for online healthcare, in which,
based on the fast secure permutation and comparison technolo-
gies, users can implement query operations on cloud servers
without decrypting their private data. However, CINEMA
requires cloud servers to have high computing and storage
performance to enable millions of users to query online at the
same time.

Although these schemes provide secure storage and fine-
grained access control in cloud, there are still some problems
existing in the systems, such as how to prevent internal mali-
cious attacks and cloud server crashes. Therefore, in this paper,
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we introduce a distributed blockchain-based system instead of
cloud servers for data storage and privacy protection.

B. Blockchain Application in Network Scenarios

Blockchain has been originally proposed for construct-
ing a public distributed ledger for all transactions in
Bitcoin [10]. After that, many research efforts focus on
key problems of the blockchain technology itself, such as
performance improvement [17], [18], solving the double
spending attack [19], [20], and constructing efficient dis-
tributed consensus mechanisms [21], [22]. Meanwhile, there
are also many other researches which focus on developing
blockchain-based practical applications. In addition to acting
as the infrastructures for cryptocurrency systems [11], it can
also be integrated to many IoT scenarios.

For example, in the vehicular networks, to effectively evalu-
ate the trustworthiness of vehicles in nontrusted environments,
Yang et al. [22] proposed a decentralized trust manage-
ment system based on blockchain techniques to update and
publish the trust information of all the vehicles in vehicu-
lar networks. They also improved distributed consensus by
proposing a new consensus mechanism to compete for updated
trust for all RSUs. Compared to [22], Kang et al. [23]
utilized smart contracts to store and share vehicular data
for efficient automated data management. In smart grid, in
order to realize optimal scheduling and protect user’s private
information, Guan et al. [24] proposed a blockchain-based
privacy-preserving and efficient data aggregation scheme,
where users are divided into different groups and for each
group a user is selected as a miner to aggregate the data in the
group and adds it to the group’s private blockchain. However,
these schemes can address their stated issues in the specific
network scenarios, but they cannot be straightly adopted in
smart healthcare systems. In smart healthcare, for privacy
preserving, not only user’s IoT data but also doctor’s diag-
nosis should be protected. In particular, from the perspective
of the participants, although the user can be anyone, in order
to ensure the safety of the users, the doctors who diagnose
users need to be examined for eligibility. Therefore, we pro-
pose Healthchain, which includes a Userchain and a Docchain
to achieve privacy protection in smart healthcare.

C. Smart Healthcare Based on Blockchain

In recent years, many studies have shown that blockchain
is a promising solution to achieve personal health
information security and privacy protection. Some research
efforts [25]–[27] devote to demonstrating the advantages of
smart healthcare systems based on blockchain and propose
architectures, but lack specific implementation details. Some
literatures, such as [28] and [29], focus on fine-grained access
control of IoT data collected from users. However, they
do not further consider the privacy protection of electronic
medical records (EMRs) generated by the doctors. In addition,
some schemes [30]–[34] are dedicated to utilizing blockchain
technology to enable users to control their EMRs, which
are controlled by the hospital in traditional smart healthcare
systems. Al Omar et al. [30] presented a user centric health-
care data privacy preserving scheme called MediBchain. In

Fig. 1. System model of Healthchain.

MediBchain, users encrypt sensitive health data and store
them on permissioned blockchain. Only users with the correct
password can get data from MediBchain. However, users
must share passwords when sharing their health data, which
can conduct a coarse-grained access control, but it may lead
to key leaks easily. MediBchain lacks password update and
key update schemes. Moreover, MediBchain is vulnerable
to replay attacks and offline dictionary attacks. After that,
Zhang and Poslad [31] utilized Shamir’s secret sharing to
authenticate users and doctors for fine-grained access autho-
rization. However, in Zhang et al.’s scheme, EMRs are stored
in a blockchain, and the blockchain is maintained in a trusted
cloud, which leads to centralization. The same problem
exists in Yue et al.’s [32] scheme. References [30]–[32] can
achieve health data mastered by users, but as the number
of users and the volume of health data increase, due to the
limited size of blocks, these schemes may lead to intolerable
authentication delay and storage. In order to reduce the
user’s storage overhead and improve the throughput of the
blockchain, in [33], medical records are stored in external
databases, and the pointers to external databases for medical
records and reading permissions are stored in smart contract
on the Ethereum blockchain. Recently, Dagher et al. [34]
proposed to use blocks to store hash values of medical records
while sending the actual query link information in a private
transaction over HTTPS. However, this method is vulnerable
to DoS attacks.

In addition to the problems pointed out above, there are
still difficulties in key management and flexible revocation.
Therefore, we propose Healthchain, which not only sup-
ports fine-grained access control for large-scale data but also
implements key management and flexible revocation using
independent key transactions.

III. SYSTEM MODEL, THREAT MODEL,
AND DESIGN GOALS

In this section, we introduce the system model, threat model,
and design goals of a blockchain-based smart healthcare
architecture, named Healthchain.

A. System Model

As shown in Fig. 1, Healthchain can be divided into sev-
eral different components, which are described in details as
follows.
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• IoT Devices: They may be wearable sensors or implanted
sensors. IoT devices monitor users’ health parameters,
such as weight, heart rate, calories burned, sleep patterns,
blood glucose levels, and so on. Each IoT device has
one and only one user node as its management node.
They send various collected health-related data to the
user node periodically. IoT devices are characterized by
portability, low power, and personalization, and limited
computing and storage capabilities. Thus, they are not
directly involved in the blockchain.

• User Nodes: Each one Ui is the management of one
or more IoT devices, which can aggregate, encrypt data
from IoT devices and send them to the storage node.
There are many lightweight user nodes that only store
the block headers of Userchain, and they can only gen-
erate and publish transactions. Meanwhile, there are also
some user nodes with strong computing and storage capa-
bilities, called core user nodes. They can store complete
Userchain, which is defined below. Core user nodes can
generate, publish, verify and assist lightweight user nodes
to search transactions. They can also mine new Ublocks
and add new user transactions to a new Ublock. In
addition, all user nodes can also implement information
search on Docchain but cannot add transactions on
Docchain.

• Doctor Nodes: Each one Dj can be not only a real doc-
tor from a hospital but also an AI health analyzer from
a smart healthcare service company. They can provide
continuous diagnosis based on users’ IoT data. All hos-
pitals and companies in Healthchain form a consortium,
and all doctor nodes’ behaviors is restricted by the rules
of the consortium. Authorized doctor nodes can read the
information on Userchain and generate transactions for
Docchain. Especially, doctor nodes themselves cannot
add transactions to Docchain.

• Accounting Node: It is a special node in the system,
which is deployed by the consortium. It can verify that
whether the transactions from doctor nodes are correct
and valid. At each time period, all accounting nodes
select a leader. The leader aggregates valid transactions
from doctor nodes in the consortium, and generates new
Dblock and adds new Dblock to Docchain.

• Storage Nodes: They collaboratively store complete
encrypted users’ IoT data and encrypted doctors’ diag-
noses in a distributed manner. In this paper, we assume
that each storage node is IPFS-based, where IPFS system
is managed and maintained by the consortium of health-
care providers, e.g., hospitals. IPFS uses a content
addressing method where the address is derived from the
content of the file. Each file is hashed into a hash string
and each hash string is unique to identify the file. Anyone
can find the complete file stored in IPFS via the hash
string of the file on Userchain or Docchain. IPFS makes
it possible to distribute high volumes of data with high
efficiency.

• Userchain: It is a public blockchain, which is used to
publish users’ data. Anyone can join Userchain to read
transactions, send transactions, and mine at any time.
Userchain consists of a series of Ublocks and grows

over time. Each Ublock contains the hash of the previous
Ublock and transactions generated by users.

• Docchain: It is a consortium blockchain, which is used
to publish doctors’ diagnoses. Only doctor nodes autho-
rized by consortium can generate diagnosis transactions,
which can be added to Docchain by the accounting nodes.
However, anyone can read the information on Docchain.
Docchain consists of a series of Dblocks and grows over
time. Each Dblock contains the hash of the previous
Dblock and transactions doctors generated.

As illuminated in Fig. 1, here we briefly show data flows in
our scheme: IoT devices send health data to the user node peri-
odically or on event triggers. The user node encrypts the IoT
data and sends them to an IPFS storage node. User node adds
the hash of the encrypted data as a transaction to Userchain.
The doctor node decrypts the users’ data and gives real-time
online diagnoses. Then the doctor sends the encrypted diagno-
sis to the storage node and generates a transaction for diagnosis
which includes the address of the encrypted diagnosis. Users
read the information on Docchain to understand their own
health status.

B. Threat Model

We assume that there is a secure channel between the IoT
device and the user node. The doctor nodes strictly enforce
the specification and give the diagnoses honestly. The private
keys of users and doctors are secure in storage. We introduce
distributed IPFS nodes for storage, and by using encryption,
users’ and doctors’ data can be securely and stably stored.
There are active adversaries and passive adversaries in the
system, where passive adversaries eavesdrop on communica-
tion channels to get all transmitted data and active adversaries
attempt to tamper with or delete messages from users or
doctors.

In addition, we assume that all adversaries cannot control
more than 51% of the core user node that can generate new
Ublocks in Userchain. We assume that there are 3f +1 account-
ing nodes in the consortium, of which there are no more than
f malicious nodes.

C. Design Goals

We aim to achieve privacy-preserving for intelligent medical
systems, and the following design goals should be met.

• Supporting Large-Scale IoT Devices: It is estimated that
there will be more than 24 billion connected IoT devices
all over the world by 2020 [35]. For smart health-
care, more and more IoT devices continue to generate
health data, which brings challenges to system design.
Therefore, the system needs to be able to process mas-
sive data generated by massive IoT devices and further
support devices’ dynamically joining and exiting.

• High Efficiency: The large amounts of health data needs
to be stored and analyzed timely and securely. Real-time
online diagnosis is also very important, which can even
save the lives of users. Therefore, the user’s health data
is uploaded in time and read with specific access poli-
cies. Similarly, the doctor’s diagnosis also needs to be
uploaded in time and accurately and read by the user.
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• Privacy-Preserving: Each user’s health data can be only
obtained by himself/herself and his/her authorized pro-
fessional healthcare staff (doctors, AI health analyzers,
etc.). Meanwhile, doctor’s diagnosis can be accessed
by the diagnosed user and the authorized professional
healthcare staffs. No adversary can get the user’s private
information.

• Accountability: In order to prevent medical disputes, the
doctor needs to be responsible for the diagnosis he/she
has made and cannot tamper with or deny it. Anyone
can audit whether past diagnoses have been tampered
with.

• On-Demand Revocation: The user can revoke the right
of a doctor to access his/her IoT data at any time. The
revoked doctor cannot read the data after revocation,
which is called forward security.

IV. PROPOSED SCHEME: HEALTHCHAIN

In this section, we first give the overview of our proposed
efficient privacy preserving for smart healthcare system.

A. Overview

To achieve both nontampering of IoT data and diagnosis, as
shown in Fig. 1, Healthchain consists of two subblockchains,
respectively, named as Userchain and Docchain.

Userchain is introduced to ensure that users’ transactions
cannot be tampered with by anyone including the users them-
selves. There are two types of user transactions on Userchain:
1) IoT transactions and 2) key transactions. IoT transactions
are used to protect the integrity of IoT data, and key trans-
actions are used for access control. The main part of an IoT
transaction is a hash of encrypted IoT data, which can be used
to address encrypted IoT data at IPFS nodes. The main part
of a key transaction is two symmetric keys: one called IoT
key for encrypting/decrypting IoT data and the other called
diagnosis key for encrypting/decrypting diagnosis. Both sym-
metric keys are generated by the user and encrypted with the
authorized doctor’s public key. The authorized doctor node
can obtain two symmetric keys to decrypt users’ IoT data or
encrypt diagnosis by decrypting the key transaction. IoT trans-
actions and key transactions are generated independently, and
users can generate them based on their needs. Core user nodes
add users’ transactions to Userchain.

There is only one type of transactions in Docchain called
diagnosis transaction, which are encrypted with users’ diag-
nosis key. In order to generate a diagnosis transaction, the
authorized doctor node first searches Userchain for transac-
tions of the users they are responsible for. If the transaction
found is a key transaction, the doctor node updates the stored
keys for encrypting/decrypting IoT data or diagnosis. If it is
related to IoT data, the doctor node goes to the IPFS system to
get the complete IoT data based on the hash of user’s IoT data
in the IoT transaction. Then, the doctor node generates corre-
sponding diagnosis for the user based on the IoT transactions
in a timely manner. The doctor node encrypts the diagnosis
and stores it to IPFS system. The doctor node further generate
a transaction including a hash of the encrypted diagnosis, and
then broadcasts the diagnosis transaction to nodes involved

Fig. 2. Architecture of Healthchain.

Fig. 3. Structure of userchain.

in Docchain. Accounting nodes collect diagnosis transactions
and add them to Docchain. By leveraging blockchain technol-
ogy, Docchain can ensure that diagnosis transactions cannot
be tampered with by anyone.

Therefore, our scheme implements privacy preserving of
users’ health data and conducts fine-grained access control
with Userchain and Docchain.

B. Details of Our Proposed Scheme

In the following, we give a detailed introduction of our
proposed system, which can be divided into five layers. As
shown in Fig. 2, from bottom to top, these five layers are
given as: 1) data layer; 2) network layer; 3) consensus layer;
4) incentive layer; and 5) application layer.

1) Data Layer: The data layer is at the bottom. There are
two main data structures in the data layer: 1) Ublock and
2) Dblock, and a few cryptographic algorithms.

• Ublock: Userchain consists of Ublocks, where each
Ublock contains information about users. As seen from
Fig. 3, each Ublock can be divided into two main parts:
a) block header and b) block body. The block header
contains an index Index, a timestamp Gtime, a hash of
the previous block prehash, a nonce nonce, and a root
of the merkle tree userroot. The merkle tree, as the
block body in a Ublock, contains hash values of user
transactions.

To protect the privacy of users, we use a symmetric encryp-
tion algorithm, such as AES, to encrypt IoT data in users’
transactions. In the existing schemes, encrypted data and a
corresponding secret key protected in a digital envelope are
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usually combined together and sent to the authorized receivers.
Different from this way, in order to reduce the overhead
for doctors to decrypt digital envelopes, we decouple the
encrypted data and the corresponding keys, respectively, in
the form of IoT transactions and key transactions. Users can
update key transactions as needed instead of updating the key
each time the IoT transaction is updated. The user keeps using
the key contained in the current key transaction. Therefore,
users can update keys more flexibly. It is worth mentioning
that the key transaction also contains the key for encrypt-
ing the doctor’ diagnosis generated directly by the user. We
record the symmetric key for diagnosis encryption as diag-
nosis key, and the symmetric key for IoT data encryption as
IoT key.

Therefore, there are two types of transactions for Ublock:
1) transactions about IoT data txIoT and 2) transactions about
keys txkey. Users generate txIoT to transmit encrypted IoT data
to authorized doctors and generate txkey to flexibly adjust the
authorization for doctors, such as adding or revoking autho-
rized doctors. In addition, if the IoT key or diagnosis key is
compromised, the user can update it at any time by generating
and transmitting a new key transaction txkey. The latest txkey
contains updated IoT key and diagnosis key that are encrypted
separately with all currently authorized doctors’ public keys

txIoT = {
IDUi , ts1, HEIoT, Si, htxIi

}

where

Si = Sign
(
skUi , H

(
IDUi , ts1, HEIoT

))

htxIi = H
(
IDUi , ts1, HEIoT, Si

)
. (1)

As in (1), a transaction of IoT data txIoT contains the iden-
tity of the user IDUi , who publish the transaction, timestamp
of the transaction ts1, hash of the encrypted IoT data HEIoT,
the signature Si signed with the specific user’s private key skUi ,
and htxIi, which is the hash of all the other parts in the trans-
action. Besides, htxIi is the identity of the transaction, and is a
leaf node of the merkle tree, which makes it more efficient for
users to find a specific transaction. It is noteworthy to include
htxIi in txdiag to denote the corresponding IoT data as the
cause of diagnosis. In fact, htxIi is a link between Userchain
and Docchain, and each diagnosis transaction is associated
with multiple IoT transactions, further reducing the possibility
of medical disputes. The symmetric key used to encrypt IoT
data is Iki. Especially, in order to reduce user’s storage over-
head, only the hash HEIoT of the encrypted IoT data is in the
transaction instead of the completed encrypted IoT data. Users
can obtain a corresponding hash string HEIoT by uploading
encrypted IoT data Enc(Iki, IoT) to the IPFS system. Anyone
can get completed encrypted IoT data from IPFS storage nodes
based on HEIoT

txkey = {
IDUi , ts2, Envij, EnvUi , Sigi, htxki

}

where

Envij = {
IDDj , htxIi, Enc

{
pkDj ,

(
Iki, dkij

)}}

EnvUi = Enc
{
pkUi ,

(
Iki, dkij

)}

Sigi = Sign
(
skUi , H

(
IDUi , ts2, Envij, EnvUi

))

htxki = H
(
IDUi , ts2, Envij, EnvUi , Sigi

)
. (2)

Fig. 4. Structure of Docchain.

As in (2), a transaction about session key txkey contains the
identity of the user IDUi , who publish the transaction, the iden-
tity of current authorized doctor node IDDj , identity of IoT
transaction htxIi that keys contained in the key transaction
can decrypt, timestamp of the transaction ts2, the encrypted
updated key, the signature Sigi signed with specific user’s pri-
vate key skUi , and htxki, which is the hash of other all the
other parts in the transaction. It should be noted that htxki is
the identity of the transaction and also is the first layer of
the merkle tree, which makes it more efficiently for users to
find a specific transaction. Especially, the encrypted updated
key contains two types of digital envelopes, one for autho-
rized doctors and the other for user. Digital envelope for each
authorized doctor IDDj contains the current IoT key Iki and
diagnosis key dkij encrypted with the doctor’s public key pkDj .
Digital envelope for the user contains the current IoT key
Iki and diagnosis key encrypted with user’s public key pkUi .
Therefore, both authorized doctors and the user can obtain the
IoT key or diagnosis key by searching the key transaction. It
should be pointed out that an IoT key Iki may decrypt several
encrypted IoT data, and a user can enjoy health service from
several doctor nodes at the same time. When a user updates an
IoT encryption key Iki, in order to increase the efficiency of
key update, several doctor identities and digital envelopes can
be included in a key transaction. When a user needs to revoke
a doctor, he/she only needs to generate a new key transaction,
which contains updated digital envelopes containing a new IoT
key to authorized doctors.

Because the genesis block of Userchain is the first block of
Userchain, it does not contain the previous block hash. The
genesis Ublock contains the identity of the genesis Ublock
Index, a timestamp Gtime, a nonce nonce, the root of the
merkle tree userroot, and genesis users’ transactions.

• Dblock: Docchain is composed of Dblocks. Similarly to
Ublock, as shown in Fig. 4, each Dblock can be divided
into two main parts: a) block header and b) block body.
The block header contains an index Index, a timestamp
Gtime, a hash of the previous block prehash, a nonce
nonce, and the root of the merkle tree diagroot. The
merkle tree, as the block body in a Dblock, contains hash
values of diagnosis transactions.

txdiag = {
IDDj , ts3, htxIi, HEdm, Sj, htxdj

}
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where

Sj = Sign
(
skDj , H

(
IDDj , ts3, htxIi, HEdm

))

htxdj = H
(
IDDj , ts3, htxIi, HEdm, Sj

)
. (3)

As in (3), a transaction of diagnosis txdiag contains the iden-
tity of the doctor IDDj , who publish the transaction, timestamp
of the transaction ts3, the identifier of the user’s IoT transac-
tions htxIi, hash of encrypted diagnosis HEdm, signature Sj
signed by doctor Dj, and htxdj, which is the hash of all other
parts in the transaction. In addition, htxdi is the identity of
the transaction and is also the first layer of the merkle tree,
which makes it more efficiently for users to find a specific
transaction. It is important to highlight that the IoT data asso-
ciating with htxIi is the cause of the corresponding diagnosis
and htxIi is also a link between Userchain and Docchain. If the
doctor generates a diagnosis based on several txIoT, the diag-
nosis transaction contains several corresponding htxIi. In this
way, the diagnosis produced by the doctor bases on the cor-
responding IoT data, which can further reduce the possibility
of medical disputes. The symmetric key used to encrypt diag-
nosis diag is dkij, which is obtained by decrypting the digital
envelope in key transaction. Especially, in order to reduce the
doctor’s storage overhead, only the IPFS hash of the encrypted
diagnosis HEdm is in the transaction instead of the completed
encrypted diagnosis. Doctor can obtain the corresponding hash
string HEdm by uploading encrypted diagnosis Enc{dkij, diag}
to the IPFS system. Anyone can get the completed encrypted
diagnosis Enc{dkij, diag} from the IPFS based on HEdm.

Because the genesis block of Docchain is the first block of
Docchain, it does not contain previous block hash. The genesis
Dblock contains the identity of the genesis Dblock Index, a
timestamp Gtime, a nonce nonce, a root of the merkle tree
diagroot, and doctors’ genesis transactions.

2) Network Layer: The second layer is the network layer.
Blockchain is a P2P network based on the Internet. In
Healthchain, there are IoT devices, user nodes, doctor nodes,
storage nodes, accounting nodes, and others in the network.
Each IoT device has one and only one user node as its manage-
ment node. IoT device periodically sends the data it collects
to its management node. After receiving IoT data, user node
aggregates and encrypts the data. The complete encrypted data
is sent to an IPFS storage node and the hash of the encrypted
data, which is the address of the encrypted data, is added to
the user’s transaction. User node broadcasts the transaction to
other user nodes it knows in the network. If core user nodes in
the network receive the transaction, they first verify whether
the signature in the transaction is correct, whether the struc-
ture of the transaction is correct, whether the size is within the
specified range and so on. If all the verification is successful,
the transaction will be further aggregated and added to a new
Ublock.

There are several accounting nodes in Docchain that are
deployed by the consortium. They act as miners to aggre-
gate transactions generated by doctor nodes. At each time
period, all accounting nodes select a leader to add the new
Dblock to Docchain. The result of selected leader is broadcast
to all accounting nodes and doctor nodes. When a diagnosis
is generated, diagnosis is encrypted and sent to IPFS stor-
age node. Then, the doctor generates a diagnosis transaction.

The diagnosis transaction is first sent to the leader of account-
ing nodes for the current time period. The leader of accounting
nodes first verifies whether the signature in the transaction is
correct, whether the transaction is generated by a legitimate
doctor node, whether the structure of the transaction is correct,
whether the size is within the specified range and so on. If all
the verification is successful, the transaction will be broadcast
to other accounting nodes. After the accounting node veri-
fies the transaction, it broadcasts its verification result to all
accounting nodes including the leader. The leader collects the
results of the transaction verification from the other accounting
nodes. If all the verifications are successful, the leader aggre-
gates the transactions and records them in the new Dblock.
Specifically, the IPFS is led by the consortium.

3) Consensus Layer: Since blockchain is a P2P network,
each node may receive different transactions at a certain
time. The consensus mechanism determines when and which
node adds a new block to the blockchain for the transac-
tion it receives. Because Userchain is a public blockchain,
and Docchain is a consortium blockchain, the two blockchains
have their own consensus in Healthchain.

• Userchain: Since Userchain is a public blockchain, any-
one can send and aggregate transactions. A malicious user
node may masquerade as several user nodes at a low cost,
known as Sybil attack. However, other users cannot dis-
tinguish whether it is a Sybil node or a real user. This
makes it difficult to fairly select a core user node to add a
new block to Userchain. We choose the consensus mech-
anism of proof of work (PoW) to select a core user node
to aggregate users’ transactions, generate a new Ublocks
and add it to Userchain. Through PoW, a core user node
can prove that it has certain capabilities, and it is a legit-
imate user node rather than a Sybil node. Core user node
continues to generate nonce until a nonce is found to sat-
isfy H(nonce||prehash||userroot)<target, before the other
core user node successfully generates a new Ublock. It
is noteworthy that target is dynamically changeable to
adjust the speed of new block generation. Our scheme
sets the generation period of the block to 1 min. Thus,
New target = Old target*(Actural time of last 2016
blocks/2016 min). Algorithm 1 shows the detail of the
PoW in Healthchain. Any user who successfully adds
a new Ublock to Userchain can have a Healthcoin.
Healthcoin is the token of our system, representing a cer-
tain amount of work in Healthchain. Its specific use is
described in Section IV-B4.

• Docchain: Since Docchain is a consortium blockchain,
only accounting nodes authorized by the consortium
can aggregate transactions generated by permissioned
doctors and add Dblock to Docchain. Instead of rely-
ing on the computationally intensive consensus mech-
anism PoW, as shown in Fig. 5, we choose practical
Byzantine fault tolerance (PBFT) [36] as the consensus
of Docchain.

We assume that there are a total of 3f +1 accounting nodes
in the consortium. There is only one leader in each time period,
which is rotated by accounting nodes. Each accounting node
broadcasts the transactions sent from doctor nodes to the whole
network. After the leader receives transactions, the leader first
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Algorithm 1: Consensus Algorithm for Userchain
Input: Hash of the previous block prehash, collected

users’ transactions txIoT or txkey
Tx = [tx1, tx2, ..., txn], current difficulty value
target;

Output: Nonce value nonce;
1 Set userroot = BlockMerkleRoot(Tx);
2 Initialise nonce = 0;
3 Initialise Htemp = ∞;
4 Initialise par = 0;
5 while Htemp ≥ target and par = 0 do
6 nonce + +;
7 Htemp = H(nonce||prehash||userroot);
8 if Received new Ublock others generated then
9 par = 1;

10 end
11 if Htemp < target and par = 0 then
12 return nonce;
13 else
14 Continue;
15 end
16 end

Fig. 5. Overview of message flows in PBFT protocol instances.

sorts the transactions and assigns serial numbers to the trans-
actions. Then, the leader stores the transactions and serial
numbers in its log, and multicasts a PRE-PREPARE message
with the transactions and sequence numbers to other account-
ing nodes. After receiving transactions from the leader, each
accounting node verifies whether the signatures, timestamps,
sequence numbers, etc. are valid. If valid, the accounting node
multicasts the PREPARE message containing the signature of
authentication result. If an accounting node receives more than
2f PREPARE messages from different nodes within a specific
time range, it indicates that the PREPARE phase has been
completed and the accounting node multicasts a COMMIT
message to other accounting nodes. If an accounting node
receives more than 2f + 1 different commit messages includ-
ing itself, it considers that the COMMIT phase is complete
and all accounting nodes have reached a consensus to record
these transactions to a new Dblock. Finally, the accounting
node returns the corresponding reply to the doctor node who
generated the transaction. If the consensus fails, change the
leader, and restarts the PRE-PREPARE phase once again.

4) Incentive Layer: In order to promote more users to
continue to participate in Healthchain, economic factors are

Algorithm 2: IoT Data Security

Input: Ui’s IoT key Iki, IoT data IoT;
Output: Transaction txIoT ;

1 foreach IoT data upload time slot do
2 Encrypt IoT data EIoTi = Enc(Iki, IoT);
3 Send EIoTi to the IPFS storage nodes and get

HEIoTi;
4 Generate timestamp ts1;
5 Set Si = Sign(skUi , H(IDUi , ts1, HEIoTi));
6 Set htxIi = H(IDUi , ts1, HEIoTi, Si);
7 Set txIoT = {IDUi , ts1, HEIoTi, Si, htxIi};
8 return txIoT ;
9 end

considered in the incentive layer. Considering that Userchain
is a public blockchain, as many schemes [18], [23] do, we
introduce Healthcoin to Userchain as an incentive token. On
the one hand, any node with sufficient capability can act as
a core user node for mining, executing Algorithm 1 to find
the correct nonce to get Healthcoin. Miners can exchange the
Healthcoin into any currency they want, such as bitcoin, ether,
etc., at the trading center. On the other hand, users need to
exchange their own currency for Healthcoin at the trading cen-
ter to access smart healthcare services. On the premise that
the user gives enough Healthcoin to the consortium, the con-
sortium provides smart healthcare services to the user. The
user generates IoT transaction to Userchain, and generates the
key transaction to authorize the doctors in the consortium.
Healthcoin is consumed when the doctor’s diagnosis trans-
action is successfully added to Docchain. Doctor node gets
rewards from the consortium based on transactions he/she adds
to Docchain.

5) Application Layer: The topmost application layer pro-
vides different services for users and doctors. Specifically, IoT
data security, key management, and disease diagnosis can be
provided in our scheme.

IoT Data Security: After receiving the latest IoT data from
IoT devices, the user node periodically encrypts the IoT data
and generate IoT transactions. Algorithm 2 shows the gen-
eration of txIoT for user Ui. The generated IoT transactions
are broadcast to other user nodes. Finally, the transaction are
added to Userchain by a core user node.

Key Management: Since doctor nodes may be compromised
and leak users’ key, the user needs to be able to revoke a doc-
tor at any time and in time. In addition, depending on the
need of the user, the user may need to add doctors dynami-
cally. By publishing a new key transaction, our scheme allows
users to dynamically add or revoke doctors at any time. When
the user establishes contact with a new doctor, the user gen-
erates a key transaction contains the current IoT key and a
diagnosis key issued to the additional doctor. When a user
needs to revoke a doctor, the user first generates a new IoT
key. Then, the user publishes a new key transaction, which
only contains digital envelopes issued to the currently autho-
rized doctors. Digital envelopes contain the updated IoT key.
Therefore, the revoked doctor does not have the new IoT key,
and can no longer read the user’s data. Besides, user regularly
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Algorithm 3: Key Management
Input: User Ui’s public key pkUi , the public key

pkD1 , ..., pkDj of all current authorized doctors
D1, ..., Dj, the identity of Ui’s IoT transaction
htxIi that the key contained in the digital
envelopes can decrypt;

Output: Transactions txkey;
1 foreach key update do
2 Generate new IoT key Iki;
3 foreach authorized doctor Dj do
4 Generate new diagnosis key dkij;
5 Set Envij = {IDDj , htxIi, Enc{pkDj , (Iki, dkij)}};
6 end
7 Generate timestamp ts2;
8 Set EnvUi = Enc{pkUi , (Iki, dki1, .., dkij)};
9 Set Ui’s signature of the updated keys

Sigi = Sign{skUi , H(IDUi , ts2, Envi1, ..., Envij, EnvUi)};
10 Set htxki = H(IDUi , ts2, Envi1, ..., Envij, EnvUi , Sigi);
11 Set

txkey = {IDUi , ts2, Envi1, ..., Envij, EnvUi , Sigi, htxki};
12 return txkey;
13 end

updates the IoT key to prevent offline dictionary attacks. Key
transactions and IoT transactions decoupling can reduce both
communication overhead and computational overhead for both
users and doctors. The steps in Algorithm 3 are implemented
in order to achieve both key management and dynamic doctor
enrollment or revocation.

Disease Diagnosis: The doctor node continuously detects
whether there is a transaction with IDUj on Userchain, which
is the identity of the user they are responsible for. Once
detected, the doctor first goes to the consortium to check
whether the user has paid enough Healthcoin. If so, the doc-
tor performs the following steps. If the transaction is a txkey,
then the doctor updates the user key in time. If the trans-
action is txIoT, the doctor uses the hash contained in the
IoT transaction to IPFS storage node to obtain complete IoT
data. Then, the doctor node gives the corresponding diag-
nosis based on the IoT data. Next, the doctor generates a
diagnosis transaction. Algorithm 4 illustrates the process of
the doctor generating a diagnosis transaction. Finally, diagno-
sis transaction is sent to the accounting nodes and added to
Docchain.

V. SECURITY ANALYSIS

In this section, we analyze the security of Healthchain based
on the design goals defined in Section III-C.

A. Privacy Preserving

The user’s IoT data and the doctor’s diagnosis are very sen-
sitive, and need to be inaccessible to illegal adversaries. As
described in the data layer Section IV-B1, Userchain only con-
tains the hash of encrypted IoT data HEIoT and adversaries
can only get Enc(Iki, IoT) from IPFS. IoT data is encrypted
with the IoT key Iki. Iki is encrypted with the doctor’s public

Algorithm 4: Disease Diagnosis
Input: Identity of the cause for diagnosis htxIi, doctor

Dj, diagnosis diag and diagnosis key dkij;
Output: Transaction txdiag;

1 Encrypted diagnosis Edmj = Enc(dkij, diag);
2 Send Edmj to the IPFS storage nodes and get HEdmj;
3 Generate timestamp ts3;
4 Set the signature of the diagnosis

Sj = Sign(skDj , H(IDDj , ts3, htxIi, HEdmj));
5 Set htxdj = H(IDDj , ts3, htxIi, HEdmj, Sj);
6 Set txdiag = {IDDj , ts3, htxIi, HEdmj, Sj, htxdj};
7 return txdiag;

key pkDj or the user’s public key pkUi . We assume that the
adversaries’ computing power is limited, and user’s private
key skUi and doctor’s private key skDj are secure. Adversaries
cannot get Iki without skUi or skDj . Without the key Iki, adver-
saries cannot get the IoT data. Therefore, our scheme could
provide conditional security of IoT data.

Similarly, Docchain only contain the hash of encrypted diag-
nosis HEdm and adversaries can only get Enc(dkij, diag) from
IPFS. The diagnoses is encrypted with the diagnosis key dkij.
The diagnosis key dkij is encrypted with doctor’s public key
pkDj or the user’s public key pkUi . We assume that adversaries’
computing power is limited, and user’s private key skUi and
doctor’s private key skDj are secure. Adversaries cannot get
dkij without skUi or skDj . It is worth noting that even the doc-
tor Dj′ who is authenticated by the user Ui cannot get the dkij.
Without the key dkij, no one can get the diagnoses. Thus, our
scheme could provide conditional security of diagnoses.

B. Accountability

Accountability means that any third party can audit whether
the IoT data is generated by a user and a diagnosis is made
by a doctor. On the one hand, users should be responsible for
their IoT data. Because the user’s transactions txIoT and txkey
both contain the user’s signature, under the assumption that
the user’s private key skUi is secure, no one can impersonate a
user to generate transactions without skUi . Once malicious data
is detected, the corresponding user can be found according to
the signature contained in the transaction. Therefore, malicious
data generated by a user to consume medical resources of the
entire system is undeniable.

On the other hand, in order to avoid medical disputes, doc-
tors should be responsible for the diagnoses. We assume that
authorized doctors make accurate diagnoses, and their private
keys are secure. Because diagnosis transaction txdiag contains
the cause of the diagnosis htxIi and the timestamp of the diag-
nosis, which are hashed and signed by the doctor, no one
can impersonate a doctor to generate the transaction. Since
all diagnoses are recorded on Docchain, they cannot be modi-
fied according to the assumptions of the threat model defined
in Section III-B. If the doctor fails to make the appropriate
diagnosis in accordance with professional rules, he/she needs
to be held accountable. Therefore, the proposed scheme is
accountable.
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TABLE I
KEY PARAMETERS IN THE BLOCK HEADER

C. Revocability

If a user is dissatisfied with a doctor, the doctor can be
revoked. In order to revoke a doctor, the user generates a
new txkey, which only contains digital envelopes for the other
authorized doctors. More precisely, the user first generates a
new IoT data key Ik′

i. Then, the user encrypts the new Ik′
i with

the other authorized doctors’ public keys. Miners add the new
txkey to the Userchain. The subsequent IoT data is encrypted
with the new Ik′

i, so the revoked doctor cannot obtain the
user’s IoT data any more. Therefore, our scheme successfully
provides revocability.

VI. PERFORMANCE EVALUATION

In this section, we experiment to validate the effectiveness
and feasibility of Healthchain. This section can be further
divided into three parts. In the first part, we design capac-
ity of Ublock and Dblock, which is an important indicator to
measure the throughput of Healthchain. In the second part, we
measure the generation time of the three types of transactions.
Furthermore, we measure the generation time of the compo-
nents of transactions, including encryption and decryption of
IoT data and diagnosis, and signature of user and doctor. In the
third part, we compare the computation cost and communica-
tion cost for user transactions generation of our scheme with
that of the traditional scheme. In the experiments we assume
that each user has an average of five authorized doctors.

A prototype of Healthchain has been implemented to eval-
uate its efficiency and effectiveness. We simulate the user
node with a smart phone, which has a 64-bit 8 core CPU
processor, highest 2.45 GHz. The experiment is built on the
platform Android 7.1.1. Java programming language is used
for prototyping of the IoT transaction and key transaction.
Userchain mining nodes and doctor nodes are measured on a
64-bit Windows 7 operating system with Intel Core i7-4790,
3.60-GHz processor. Userchain and Docchain are written in
Python.

A. Capacity of Block

First, we design the structures of Ublock and Dblock.
According to the design in Bitcoin [10], the lengths of Preshsh,
Index, and Merkle root are all set as 32 Bytes; Gtime and
Nonce are both with the length of 4 Bytes. Thus, the key
parameters’ length setting in the block header is shown in
Table I. In addition, in our experiment, we use 1024-bit
RSA for asymmetric encryption and signature, 128-bit AES
for symmetric encryption, and SHA-256 for hash operation.
Therefore, the key parameters’ length setting in the block body
is indicated in Table II.

The size of txIoT, txkey, and txdiag are 132, 1188, and 164
Bytes, respectively. After considering the merkle tree struc-
ture and so on, we can conclude that a Ublock of 1M Bytes

TABLE II
KEY PARAMETERS IN THE BLOCK BODY

TABLE III
PROCESSING TIME OF TRANSACTIONS

can contain either 5349 txIoT or 837 txkey. A Dblock of 1M
Bytes can contain 4599 txdiag. Assuming a Ublock is generated
every minute, the throughput can reach 89 txIoT per second or
13 txkey per second. Assuming a Dblock is generated every
minute, then the throughput can reach 76 txdiag per second.

B. Processing Time of Transactions

In this part, we measure the processing time on an Android
device and PC, respectively. We measure the detail processing
time for several major cryptographic operations as shown in
Table III.

As shown in Table III, we can find that the processing
time of RSA signing is much larger than several other crypto-
graphic operations. Then, we thoroughly test the time the user
and the doctor generated the transaction. The time to gen-
erate txIoT, txkey, and txdiag by Algorithms 2–4 is 3.735 ms,
4.809 ms, and 0.021 ms, respectively. It must also be men-
tioned that all processing times are the average of 10 000
repeated experiments.

C. Comparison of the Computation Cost and
Communication Cost With Traditional Scheme

In the third part, we compare the computation cost and com-
munication cost for user transactions generation of our scheme
with that of the traditional scheme. In the traditional scheme,
the sender encrypts data with a symmetric key. The encrypted
data is then sent along with the symmetric key encrypted
with the receiver’s public key. However, considering that users
may update IoT data much more frequently than updating
keys. In our scheme, users can update key transactions as
needed instead of updating the key each time the IoT trans-
action is updated. We assume that the user generates a txIoT
every 10 min and generates a txkey every 43 200 min (about
one month). Fig. 6 shows the comparison of the computation
time overhead of the user transactions generation between our
scheme and the traditional scheme. Fig. 7 shows the commu-
nication overhead of user transactions generation between our
scheme and the traditional scheme.

As illuminated in Figs. 6 and 7, both computation cost and
communication cost increase as system usage time increases.
As shown in Fig. 6, it takes only about 96 s for a user to
generate user transactions in Healthchain when the system is
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Fig. 6. Computation costs for user transactions generation.

Fig. 7. Communication costs for user transactions generation.

existing for six months, and meanwhile the traditional solu-
tion takes about 130 s. Compared with the traditional scheme,
Healthchain reduces the time for users to generate transactions.
As shown in Fig. 7, the size of the transactions generated by
users in Healthchain is 3 MB when the system is existing for
six months, and meanwhile the traditional solution generates
26 MB. On one hand, it means Healthchain can dramatically
decrease the communication overhead for users to send trans-
actions than that in the traditional scheme. On the other hand,
it also indicates that our scheme can reduce the size of trans-
actions generated by users and further reduce the storage in
blockchain.

VII. CONCLUSION

In this paper, we proposed a privacy-preserving scheme
(Healthchain) for fine-grained access control of large-
scale health data based on blockchain. We introduced two
blockchains to ensure that both users’ health data and doc-
tors’ diagnoses cannot be tampered to avoid medical disputes.
We decoupled the encrypted data and the corresponding keys
to achieve flexible key management. In addition, users can

revoke the doctors at any time to ensure the privacy of the user.
The security analysis presents that our proposal can meet our
expected security requirements. Performance evaluation shows
Healthchain is efficient and feasible in practice.
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