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Abstract—Recently, truth discovery in crowdsensing systems
has received considerable attention with its appealing features
for extracting truthful information from multiple unreliable data
sources. However, it also poses new challenges to the issues of
privacy and security. On the one hand, workers’ sensed data
can be used to infer their privacy. On the other hand, work-
ers may be selfish and lazy, especially in the Internet-of-Things
environment, devices are usually resource constrained, so they
may dishonestly execute the costly sensing task so as to reduce
resource consumption, or even break the protocol to obtain ille-
gal rewards. Although some privacy-preserving truth discovery
schemes have been proposed, they still cannot achieve strong
privacy protection while keeping efficiency on the worker side,
and still has no efficient incentive mechanism to persuade work-
ers to participate in the system operations. In this article, we
propose an incentive-based privacy-preserving truth discovery
framework, named InPPTD. By adopting the Paillier homomor-
phic cryptosystem and two noncolluding servers, InPPTD not
only effectively protects workers’ sensed data information but
also preserves the privacy of these workers’ weight information.
Meanwhile, a weight-based incentive mechanism is introduced
in InPPTD to reduce the number of lazy workers. Security
and performance analysis shows that InPPTD can guarantee
stronger security features, while also ensure efficiency in terms
of computation and communication overhead.

Index Terms—Crowdsensing, incentive, privacy-preserving,
truth discovery.

I. INTRODUCTION

W ITH the rapid development of portable and mobile
devices (e.g., smartphone, smartwatch, smartglass, etc.)
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equipped with a series of sensors (such as accelerometer, GPS,
camera, and compass), a new sensing paradigm that collects
and analyzes sensed data from a crowd of diverse partici-
pating users (referred to as workers) has emerged. However,
workers’ sensed data are usually unreliable due to various fac-
tors, including background noise, hardware quality, insufficient
skill, as well as lack of effort. To discover truthful information
from these unreliable data, truth discovery has recently been
widely studied [1]–[3] and applied in many areas [4]–[7].
Rather than treating all participating workers equally, truth dis-
covery algorithms differentiate them by estimating the worker
reliability (also referred to as weight) from reported sensed
data, while updating truthful facts (referred to as the ground
truth) by quality-aware data aggregation [8], [9].

Although truth discovery can significantly improve the accu-
racy of aggregation results, this process also poses privacy
concerns. On the one hand, worker’s sensed data may be used
to infer private information and utilized by adversaries for
criminal purposes. If the system does not equip with the pri-
vacy preservation of workers’ sensed data, workers may not
be willing to provide their data to the system. On the other
hand, the worker’s reliability (i.e., weight) is also sensitive
information that should be well protected. For example, by
aggregating opinions regarding challenging social problems
may lead to a better solution, but the leakage of weight may
disclose worker’s education and intellectual level [10], [11].
Additionally, workers may be lazy and selfish as they usually
worry about the overuse of the resources of their own devices,
especially in the Internet-of-Things environment, devices are
often resource-constrained. In order to obtain higher bene-
fits, they may reduce their costly sensing effort, such as spent
time, resources, attention, and carefulness in the sensing tasks.
Obviously, these misbehaviors will significantly impair the
aggregation accuracy [12]. More seriously, workers may mali-
ciously manipulate the weight, which is often used as the
reference for rewards [13], [14], and get additional illegal
rewards.

In order to address the privacy issues, a few privacy-
preserving truth discovery schemes (PPTDs) have been
proposed. In general, they can be divided into two cate-
gories: 1) single-server scheme and 2) two-server scheme.
Single-server schemes, such as [15] and [16], can be easily
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implemented and can achieve the privacy preservation for
worker’s sensed data and weight. But each worker has to
perform some costly operation for encrypting data and also has
to keep online until the algorithm of iteration ends. Thus, any
workers’ failures would impair the accuracy of the final aggre-
gation result. While two-server schemes are proposed aiming
at freeing the workers from the big burden of computation.
Among them, Zheng et al. [15] proposed a lightweight two-
server scheme, in which each worker’s data are perturbed by
a random number, which is more efficient than performing
complex encryption. However, the worker directly participates
in the calculation of its weight, which may cause the weight
to be modified by a malicious worker, and the problem of
workers’ failures still exists in their scheme. In [17], work-
ers are offline after they report their sensed data, and the
iteration is only executed between the two clouds. However,
this scheme cannot guarantee strong privacy protection since
each worker’s weight information is disclosed to one of the
two clouds.

The existing PPTD schemes, whether with a single server
or two servers, have not yet considered the issue of incentives,
which is also an important factor in determining whether work-
ers would participate in the truth discovery program. Although
the incentive mechanisms have been studied [14], [18], which
use the auction model and game-theoretic model to encourage
workers to honestly carry out the sensing tasks, the pri-
vacy issues of the incentive mechanism have not yet been
further discussed. Especially, when it is incorporated into
the truth discovery, how to simultaneously ensure privacy in
truth discovery and incentive mechanism remains a research
challenge.

Observing that the above issues have not yet been addressed
adequately, in this article, we design an incentive-based
PPTD (InPPTD) for crowdsensing systems. Our proposed
scheme integrates the truth discovery with an incentive mecha-
nism which offers payments to incentivize high-effort sensing
task from workers. It can achieve strong privacy protection
by leveraging a high-security level homomorphic encryp-
tion algorithm, while it is extremely efficient on the worker
side. Moreover, the well-designed protocol is able to avoid
workers’ selfish and malicious behaviors for gaining the ben-
efits through illegal means. Specifically, this article makes the
following contributions.

1) We propose an efficient and privacy-enhanced truth
discovery scheme for crowdsensing systems. Both the
workers’ sensed data and weight information can be well
protected, while each worker needs less computation and
can be offline after reporting his perturbed data.

2) A weight-aware incentive mechanism is integrated into
the truth discovery. The amount of earned rewards for
each worker is determined based on his contribution to
the final truth. Therefore, lazy workers can be easily
identified and removed from the system.

3) Based on the two noncolluding servers, the proposed
incentive mechanism can not only preserve privacy for
each worker but also prevent malicious workers from
manipulating the interactions to get additional rewards
illegally.

The remainder of this article is organized as follows. We
discuss the related work in Section II. We state our system
model, security assumptions, and design goals in Section III.
We give the brief preliminaries of truth discovery, incen-
tive mechanism, and the Paillier cryptosystem in Section IV
and present the detailed incentive-based PPTD in Section V.
Security analysis is shown in Section VI and performance eval-
uation is presented in Section VII. We conclude this work in
Section VIII.

II. RELATED WORKS

Recently, truth discovery is recognized as an effective
method to extract truthful information from multiple data
sources and has attracted more and more attention from
researchers and practitioners. Compared to the traditional aver-
aging or voting approaches, recent truth discovery schemes,
such as conflict resolution on heterogeneous (CRH) [19], opti-
mized CRH [1], and TruthFinder [20], can provide more
reliable results by considering device reliability. However,
these schemes execute the truth discovery process in the
plaintext domain and do not consider participants’ privacy.

Some PPTD schemes have been proposed with an increase
in privacy concerns. In general, they can be classified into two
categories: 1) single-server scheme and 2) two-server scheme.
The single-server scheme considers the framework with only
one server (also called cloud server), which usually requires
workers (participants) to perform some complex computa-
tions and participate in every iteration of truth discovery. For
example, Miao et al. [16] adopted the threshold Paillier cryp-
tosystem to design a single-server PPTD system, in which both
the sensed data and weight are privacy preserved. However,
each worker needs to encrypt its data with the Paillier
cryptosystem, which is challenging for resource constrained
devices. To reduce the computation cost, Zheng et al. [15] and
Xu et al. [21] utilized a lightweight homomorphic encryption
technology, respectively, which can achieve the requirements
of privacy protection of sensed data and weight. However,
these two single-server schemes cannot be successfully exe-
cuted without the real-time participation of each worker, which
means the problem of workers’ failures would be an obsta-
cle for the deployment of single-server schemes. Moreover,
workers’ weights are calculated by themselves, which makes
the schemes vulnerable to modification attacks from malicious
workers. In addition, Li et al. [22], [23] utilized local differen-
tial privacy technology and proposed two schemes, which use
a two-layer randomized response mechanism and a Gaussian
noise mechanism, respectively. PPTD methods based on local
differential privacy are generally more efficient and strike a
balance between accuracy and the level of privacy protection.

The two-server truth discovery scheme utilizing two non-
colluding servers is more appropriate for the PPTD scenario.
Through the division of labor between the two servers, the
two-server schemes can protect workers’ privacy, while not
requiring workers to participate in iterations of truth discovery.
Therefore, workers do not need to perform large burden com-
puting, and their failures also do not have any impact on the
system running. However, some serious drawbacks have not
been tackled in existing works. Zheng et al. [15] introduced
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noise to perturb the plaintext data so that workers’ sensed data
and weights can be protected. The drawback of this scheme is
that each worker still has to participate in each round iteration
of the truth discovery procedure. Miao et al. [17] proposed two
lightweight PPTD protocols, named L-PPTD and L2-PPTD,
respectively. L-PPTD can protect each worker’s sensed data
and weight, but workers are still involved in the calculation of
their own weight for each iteration. In L2-PPTD, workers can
be offline after they upload their data to the clouds. However,
workers’ privacy of weights is disclosed to a cloud. Then,
Tang et al. [24] used the garbled circuit (GC) technology to
design a noninteractive PPTD (named NPPTD) protocol on
the basis of two noncolluding servers. This design removes
the online requirement for workers and guarantees workers’
privacy of sensed data and weights. But owing to the inher-
ent disadvantages of GC, NPPTD has a huge computation
and communication overhead of GC generation and transmis-
sion. Meanwhile, Zheng et al. [11] constructed a new system
architecture that can protect both of the sensed data and the
corresponding weight of each worker, but it cannot prevent the
modification of malicious workers and reduce lazy workers.

In fact, it is quite challenging to design a PPTD scheme
that can meet all of the following requirements: high effi-
ciency, workers’ failure resistance, data, and weight privacy
preservation, resistance to the modification attack from mali-
cious workers, and reduction of lazy workers. As far as we
know, there is no existing PPTD scheme possessing all of the
above important properties at the same time. In addition, the
existing PPTD schemes have not yet considered the incen-
tives for workers. Although some works have conducted such
research that constructs an incentive mechanism for crowd-
sensing system [14], [18], [25], it is still a challenging work to
combine the incentive mechanism with PPTD protocol while
preserving worker’s privacy. In this article, we thus propose a
novel PPTD scheme, named InPPTD, which leverages a two-
server framework and introduces an incentive mechanism. Our
scheme does not need workers to be online during the entire
process of truth discovery and thus can achieve failure resis-
tance and strong privacy guarantee while providing fairness of
rewards according to the workers’ contributions.

III. SYSTEM MODEL, SECURITY ASSUMPTIONS, AND

DESIGN GOALS

A. System Model

We consider a two-server crowdsensing architecture that
consists of a service provider (SP), a cloud provider (CP), and
a group of participating workers, as shown in Fig. 1. The SP
is a cloud-based platform that posts sensing tasks that usually
require the sensed data on a collection of objects (e.g., lit-
ter, pothole, automated external defibrillator objects, etc.) from
participating workers, and rewards each participating worker
according to the worker’s contributions. The CP is responsible
for performing some secure computation and assists the SP to
execute the secure weight estimation and truth estimation dur-
ing the truth discovery processes. The participating workers
are a set of mobile device users who carry out sensing tasks
with their mobile devices for financial incentives.

Fig. 1. System model.

In this article, we assume that there are M objects (denoted
O = {o1, o2, . . . , oM}) in the sensing task, and K participat-
ing workers (referred to as U = {u1, u2, . . . , uK}), and the
weights for workers are presented as W = {w1, w2, . . . , wK}.
The problem we aim to address is to facilitate the SP to
accurately estimate the ground truths {tm}M

m=1 for objects in
a secure and efficient way with the assistance of CP. To make
our system model clearer, we give an example of a practical
crowdsensing application, i.e., indoor floorplan [26]. In such a
crowdsensing system, SP poses the sensing task for measuring
the distances between two specified points and constructs the
indoor floorplan based on the collected sensed data from par-
ticipating workers. For the sake of privacy and efficiency for
workers, CP is introduced into our truth discovery framework
such that the iterations of weight and truth estimation are only
performed between CP and SP.

B. Security Assumptions

In truth discovery, the sensed data and weight information
of each worker may be disclosed to CP, SP, and other par-
ties. These parties may try to infer the sensitive and private
information of each worker for the purpose of their own ben-
efits or crime. On the other hand, workers may be lazy and
malicious. Lazy workers may strategically reduce the partici-
pation of costly sensing tasks. Meanwhile, malicious workers
may try to tamper and forgery the transmitted data to illegally
get some financial benefits.

In this article, we follow the same assumptions that the
two servers, SP and CP, are semihonest and nonconcluding
as defined in [17] and [24]. We consider that the two servers
are honest-but-curious. They will honestly follow the proto-
col, while they hold all the data they have sent and received,
and may attempt to infer the private information of other
parties, such as individual worker’s sensed data and weight
information. We also assume that there is no collusion between
these two servers in the system, which means they will not
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collude with each other outside the protocol. Additionally,
we assume that there exist secure channels among workers,
SP, and CP. These secure channels can be constructed by the
TLS/SSL protocol.

C. Design Goals

In this article, we intend to devise an PPTD scheme, which
can provide more accurate ground truth. Specifically, our
scheme achieves the following design goals.

1) Efficiency: The proposed scheme must achieve high effi-
ciency in terms of computation and communication,
especially for workers, since the workers’ devices are
usually resource-constrained and thus are not given the
ability of complex operations.

2) Strong Privacy Preservation: Individual worker’s sensed
data and weight information should be well protected
from disclosure to any other parties during the truth
discovery and incentive processes.

3) Failure Resistance: The proposed scheme should have
the capability of failure resistance, so workers’ failures
will not influence the operation of the system and the
accuracy of the final results.

4) Resistance to the Modification Attack From Malicious
Workers: The proposed scheme should be able to resist
the modification attack so that malicious workers cannot
gain benefits through their misbehavior.

5) Reduction of Lazy Workers: Considering the existence
of lazy workers, the proposed scheme should be able
to distinguish normal workers from lazy workers, e.g.,
introducing an incentive mechanism to reward honest
and diligent workers according to their contributions
(i.e., weight), thereby making lazy workers unprofitable
so as to reduce lazy workers.

IV. PRELIMINARIES

A. Truth Discovery

With the explosion of information, data for one object
can be collected from multiple sources. However, there usu-
ally exist conflicts among multisource noisy information. To
extract truthful information from these data, traditional meth-
ods usually treat all information sources equally and derive the
final result by averaging/voting method. While truth discovery
approaches resolve the conflicts and infer truthful information
based on the different reliability degrees between different
sources. Recently, some truth discovery algorithms have been
proposed. Though the algorithmic details are a bit different
from each other, the fundamental principle of assigning device
weights and estimating ground truth is more or less the same.
The CRH data framework [19] has been widely used in many
PPTDs as the truth discovery algorithm. Therefore, without
loss of generality, we follow the CRH framework to briefly
introduce the procedure in truth discovery.

The truth discovery algorithm starts with a random guess
of ground truths and then iteratively carries out the weight
estimation and truth estimation phase until it satisfies the
convergence criterion. The convergence criterion can be a
predefined iteration number or a threshold of the change
between two estimated truths in consecutive iterations.

1) Weight Estimation: In this phase, weight for each worker
(e.g., worker k) is computed. Given the estimated ground truth
tm for object m, the weight wk is derived as

wk = log

(
K∑

k=1

M∑
m=1

d
(
xm,k, tm

)
/

M∑
m=1

d
(
xm,k, tm

))
(1)

in which the distance function is adopted by the squared dis-
tance d(xm,k, tm) = (xm,k − tm)2. In this article, we focus on
continuous sensed data type, but it can be easily extended to
support categorical data in the same way as [17].

2) Truth Estimation: After the weight of each worker has
been estimated, the ground truth for each object om can be
computed as follows:

tm =
K∑

k=1

(
wkxm,k

)
/

K∑
k=1

wk (2)

where tm represents the estimated ground-truth value.

B. Incentive Mechanism

Recently, some incentive mechanisms for truth discovery
have been studied to avoid lazy workers. The worker’s effort
(weight) in these mechanisms is an important reference for
rewards. Generally, the number of rewards for a worker can
be formulated as

pk = f

(
wk/

K∑
k=1

wk

)
(3)

where wk is worker k’s weight representing his/her effort in
the sensing task, pk is rewards for worker k, and function f (·)
is a defined incentive algorithm. Without loss of generality,
we utilize a simple incentive algorithm that is

pk = P ·
(

wk/

K∑
k=1

wk

)
(4)

where P is the total rewards for this sensing task. Other com-
plex incentive algorithms that may be implemented by the
game theory or optimization theory can be extended from our
scheme, and will be discussed in the future.

C. Paillier Cryptosystem

The Paillier cryptosystem [27] is one of the most popular
public-key encryption schemes, which can achieve the homo-
morphism properties. Specifically, the Paillier cryptosystem
includes the following three algorithms.

1) Key Generation: Select two large and independent prime
numbers p and q randomly, and compute λ = lcm(p −
1, q − 1) and N = pq, where λ is the least common
multiple of p − 1 and q − 1. Then, define a function
L(x) = [(x − 1)/N], choose a generator g = (1 + N),
and compute μ = (L(gλ mod N2))−1 mod N. The public
key is (N, g), and the private key is (λ, μ).

2) Encryption: Given the message m ∈ Z
∗
N , we select a

random number r ∈ Z
∗
N . Then, we can compute the

ciphertext as

C = E(m) = gm · rN mod N2. (5)
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3) Decryption: To decrypt a ciphertext c, where C ∈ Z
∗
N2

using the private key (λ, μ), we can compute the
plaintext message as

m = D(C) = L
(

Cλ mod N2
)

· μ mod N. (6)

The Paillier cryptosystem has an additive homomorphism
property, that is, given two ciphertexts C1 and C2 for messages
m1 and m2, respectively, we can obtain the ciphertexts of m1+
m2 by performing the product C1C2.

V. OUR PROPOSED INPPTD

A. Overview

As described in Section IV, truth discovery is an iteration
between weight estimation and truth estimation. To protect
workers’ privacy and make the protocol efficient, two noncol-
luding servers SP and CP are introduced. As shown in Fig. 1,
there are mainly three phases in our proposed InPPTD: Report
Phase, Iteration Phase, and Rewards Phase.

In the report phase, each worker reports his perturbed sensed
data to CP, while the random number is uploaded to SP. After
that, workers can stay offline until the end of truth discov-
ery. Then, the iteration phase is carried out, which contains
a secure weight estimation step and a truth estimation step.
In the secure weight estimation step, CP computes the secure
distance function, and sends the ciphertexts of aggregated dis-
tance

∏K
k=1 Ck and perturbed distances C2ak

k to SP. Then, SP
decrypts them and computes each worker’s perturbed weight
wk − ak. In the truth estimation step, SP sends encrypted per-
turbed weights E(wk − ak) and E(

∑K
k=1 (wk − ak) · rm,k) to

CP. Then, CP computes E(
∑K

k=1 wkxm,k) and E(
∑K

k=1 wk), and
sends them to SP. SP decrypts them and computes the esti-
mated ground truth as tm = ∑K

k=1 wkxm,k/
∑K

k=1 wk. These
two steps are iteratively executed until the convergence con-
dition is satisfied, and output the final estimated truth. Every
time a truth discovery task is completed, each participating
worker obtains corresponding rewards based on his contribu-
tions (i.e., weight) to the final truth. In the rewards phase, each
worker can redeem his rewards from SP without violating his
privacy.

B. Initialization Phase

In this phase, SP generates the necessary public and pri-
vate parameters for the system setup. Assume that there are a
totally K participating workers and M objects are required to
be sensed for each worker. SP initializes the system as follows.

1) SP first chooses two large and independent random
primes p and q, computes N = pq, and chooses a
generator g = (1 + N). The public key is PK = (N, g).

2) Then, SP computes λ = lcm(p − 1, q − 1) and μ =
(L(gλ mod N2))−1 mod N, where L(x) = [(x − 1)/N].
The private key is SK = (λ, μ).

3) Finally, SP publishes the public key PK to CP to finish
this phase.

C. Report Phase

In this phase, each worker reports its sensed data to CP. For
the sake of privacy preservation, data will be obfuscated by

Fig. 2. Report phase of InPPTD.

random noises before being reported to CP. The procedure of
this phase is shown in Fig. 2.

Step 1: To perturb worker k’s sensed data xm,k for object
m, the worker first chooses two random numbers
rm,k and r′

m,k, then computes the perturbed data as

x̃m,k = xm,k − rm,k

x̃2
m,k = x2

m,k − r′
m,k. (7)

Finally, worker k reports all perturbed data and
random chosen numbers to CP and SP through a
secure channel, respectively.

Step 2: When SP receives the reported random number
from workers, it first encrypts them by utilizing
the Paillier cryptosystem, then sends the ciphertexts
to CP through a secure channel. The encryption
process for rm,k and r′

m,k is given as follows:

E
(
rm,k

) = grm,k · hr

E
(
r′

m,k

) = gr′
m,k · hr′

(8)

where r and r′ are random numbers in ZN chosen
by SP.

Step 3: After receiving perturbed data (e.g., x̃m,k and x̃2
m,k)

and encrypted random numbers from workers and
SP, CP first encrypts the perturbed data x̃m,k and
x̃2

m,k by SP’s public key to get E(x̃m,k) and E(x̃2
m,k),

then performs the following computation to obtain
the ciphertexts of xm,k and x2

m,k:

E
(
xm,k

) = E
(
x̃m,k

) · E
(
rm,k

)
E
(

x2
m,k

)
= E

(
x̃2

m,k

)
· E

(
r′

m,k

)
. (9)

It should be noted that the data which are encrypted by the
Paillier cryptosystem may not be integers. We use a public
parameter R to round the factional values. For example, the
rounded integer of a can be computed as ã = �Ra�, and the
value of a can be recovered by computing ã/R.
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Fig. 3. Iteration phase of InPPTD.

D. Iteration Phase

As shown in Fig. 3, this phase iteratively executes the secure
weight estimation step and the truth estimation step until it
satisfies the convergence criterion.

1) Secure Weight Estimation: In this step, the weight of
each worker is estimated based on the published ground
truth and worker’s sensed data. It should be noted that the
ground truth for the first time weight estimation is ran-
domly chosen. First, CP computes the secure distance function
E((xm,k − tm)2) as

E
((

xm,k − tm
)2

)
= E

(
x2

m,k

)
· E

(
t2m

)
· E

(
xm,k

)−2tm . (10)

Then, CP aggregates the distances of objects and workers as

Ck =
M∏

m=1

E
((

xm,k − tm
)2

)
(11)

C =
K∏

k=1

Ck. (12)

Finally, CP randomly chooses a random number ak for each
worker k, computes C′

k = (Ck)
2ak , and sends C′

k and C to SP.

In fact, C′
k is the encryption form of 2ak · ∑M

m=1(xm,k − tm)2,
C is the encryption form of

∑K
k=1

∑M
m=1(xm,k − tm)2.

After receiving C′
k and C from CP, SP decrypts them

to obtain 2ak · ∑M
m=1(xm,k − tm)2 and

∑K
k=1

∑M
m=1(xm,k −

tm)2, respectively. Then, performs following formula for each
worker to derive its perturbed weight:

wk − ak = log

×
(

K∑
k=1

M∑
m=1

(
xm,k − tm

)2
/

(
2ak

M∑
m=1

(
xm,k − tm

)2

))
.

(13)

2) Truth Estimation: In the weight estimation step, SP can
obtain a perturbed weight for each worker. To estimate the
ground truth, SP first computes E(

∑K
k=1 (wk − ak)rm,k) and

encrypts the perturbed weight [e.g., E(wk − ak)], and sends
them to CP. Then, the CP, respectively, performs (14) and
(15), and sends E(

∑K
k=1 wkxm,k) and E(

∑K
k=1 wk) back to SP

E

(
K∑

k=1

wk

)
=

K∏
k=1

E(wk − ak) · E(ak) (14)

E

(
K∑

k=1

wkxm,k

)
= E

(
K∑

k=1

akxm,k +
K∑

k=1

(wk − ak)xm,k

)

= E

(
K∑

k=1

akxm,k

)
· E

(
K∑

k=1

(wk − ak)rm,k

)

× E

(
K∑

k=1

(wk − ak)
(
xm,k − rm,k

))

=
K∏

k=1

E
(
xm,k

)ak · E

(
K∑

k=1

(wk − ak)rm,k

)

×
K∏

k=1

E(wk − ak)
xm,k−rm,k . (15)

Upon receiving E(
∑K

k=1 wkxm,k) and E(
∑K

k=1 wk) from CP,
SP decrypts them and computes the estimated truth as

tm =
K∑

k=1

wkxm,k/

K∑
k=1

wk. (16)

Subsequently, SP determines whether the convergence condi-
tion is satisfied, and if not, SP transmits the ground truth to
the CP to continue the next iteration.

E. Reward Phase

At the end of the iteration phase, SP gets the final perturbed
weight for each worker, while CP holds the corresponding
randomly chosen number. For each task i, the following steps
will be executed.

1) First, CP aggregates all random numbers as Si =∑K
k=1 ak and transmits it to SP.

2) Then, SP computes the total weight Wi = ∑K
k=1(wk −

ak) + Si, and psi
k = [(wk − ak)/Wi] · Pi, where Pi is the

total reward for task i. Subsequently, SP sends the total
weight Wi to CP.
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3) When receiving the total weight from SP, CP computes
pci

k = (ak/Wi) · Pi.
It should be noted that the real reward of task i for worker

k is psi
k + pci

k, and workers can learn the real-time rewards
for each task by querying the CP and SP. However, we do not
recommend workers redeem their rewards in real time. On the
one hand, workers’ weights can be easily inferred by SP when
redeeming the rewards after complete the task intermediately.
On the other hand, the amount of rewards for each task is
generally minor in reality, and frequent redemption will bring
excessive transaction costs. Therefore, we adopt an aggrega-
tion incentive mechanism. In detail, SP and CP will store psl

k
and pcl

k for multiple tasks (e.g., l = i, . . . , j). Upon worker k
wants to redeem its rewards, CP first sends aggregated result∑j

l=i pcl
k to SP. Then, SP computes the total rewards during

the period from task i to j as follows:

pk =
j∑

l=i

psl
k +

j∑
l=i

pcl
k. (17)

Finally, SP transfers the corresponding incentives to worker
k’s account. For clarity, all the above steps are depicted in
Fig. 4.

It should be noted that SP is able to recognize the lazy
workers from the total rewards. In this weight-aware incen-
tive mechanism, lazy workers are usually assigned fewer
weights, and gain fewer rewards. In fact, our experiments in
Section VII-E have shown that the gap in rewards between nor-
mal workers and lazy workers is obvious. Therefore, SP can
remove lazy workers from the system through the incentive
mechanism.

F. Generalization

In our proposed scheme, the truth estimation step and the
incentive mechanism are both general to be applied to other
truth discovery algorithms, but the weight estimation step can-
not be directly applied to other weight functions. This is
because in our proposed scheme, no server is able to obtain
the plaintext value of each worker’s distance, which is per-
turbed by a random number, and thus no server can estimate
each worker’s weight locally.

If the weight estimation function is changed, the secure
weight estimation step should be modified accordingly. For
example, in the weight estimation step, if we use the affine
function wk = 1 − p

∑M
m=1 d(xm,k,tm) as the weight estimation

function, CP computes E(p
∑M

m=1 d(xm,k,tm)+ak) = Cp
k ·E(ak)

and sends it to SP, where p is a parameter chosen based on
the specific application scenarios, d(xm,k,tm) = (xm,k − tm)2,
Ck = ∏M

m=1 E(d(xm,k,tm)), and ak is randomly chosen by CP.
Then, SP decrypts E(p

∑M
m=1 d(xm,k,tm) + ak) and computes

wk − ak = 1 − (p
∑M

m=1 d(xm,k,tm) + ak). Thus, the truth esti-
mation step and the reward phase can be continued without
any modification.

VI. SECURITY ANALYSIS

In this section, we first prove that each worker’s privacy of
sensed data and weight information will not be disclosed to CP,
SP, and other workers. Then, we demonstrate that our scheme

Fig. 4. Reward phase of InPPTD.

can provide failure resistance, and reduce malicious and lazy
workers. Finally, the security comparisons of our work with
the related works are presented.

A. Preventing Privacy Disclosure to CP

During the InPPTD procedure in Section V, CP can obtain
plaintexts of data {xm,k+rm,k}M,K

m,k=1 and {x2
m,k+r′

m,k}M,K
m,k=1, total

weight Wi, and some ciphertexts. Obviously, without knowing
random numbers {r}M,K

m,k=1 and {r′}M,K
m,k=1, CP cannot infer indi-

vidual worker’s sensed data and weight from these plaintexts.
On the other hand, the ciphertexts are encrypted by the Paillier
cryptosystem which is semantically secure against the cho-
sen plaintext attack. CP cannot decrypt any ciphertext without
knowing the private key SK. Therefore, our scheme achieves
the protection of privacy disclosure to CP.

B. Preventing Privacy Disclosure to SP

For SP, it holds the private key for the Paillier cryptosys-
tem, so it can decrypt all the ciphertexts it received. However,
the following theorem can prove that SP cannot obtain an
individual worker’s sensed data and weight information.

Theorem 1: Suppose that the number of participating work-
ers’ tasks satisfies K ≥ 2 and |j − i| ≥ 2, and for each object,
there are at least two workers providing different sensed data.
If the two servers are semihonest and noncolluding, individ-
ual worker’s sensed data and weight information will not be
leaked to SP under the InPPTD framework.

Proof: SP receives two random numbers, {rm,k}M,K
m,k=1

and {r′
m,k}M,K

m,k=1, in the report phase, four aggregated results∑K
k=1

∑M
m=1(xm,k−tm)2, 2ak ·∑M

m=1(xm,k−tm)2,
∑K

k=1 wk·xm,k,
and

∑K
k=1 wk, and perturbed weights {wk − ak}K

k=1 in the
iteration phase, and the aggregated results of

∑K
k=1 ak and

{∑j
l=i pcl

k}K
k=1 in the reward phase.
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First, we only consider one iteration. Clearly, based on these
information and the assumption that K ≥ 2, SP cannot deduce
individual worker’s sensed data. For weight information,
although SP can learn the numerator

∑K
k=1

∑M
m=1(xm,k − tm)2

of weight formula, the denominator is perturbed by random
number {2ak}K

k=1. Thus, SP can only deduce {wk − ak}K
k=1

by (13). While in the reward phase, SP only receives the aggre-
gation results

∑K
k=1 ak and {∑j

l=i pcl
k}K

k=1. When |j− i| ≥ 2, it
is impossible for SP to deduce the weight information about
workers.

Furthermore, we consider multiple iterations. Since ak

is randomly chosen in each iteration, ak is always a new
unknown variable for SP in 2ak · ∑M

m=1(xm,k − tm)2 in dif-
ferent iterations. Also, SP cannot calculate the difference
in weights of worker k between any two iterations with
{wk − ak}K

k=1. As wk differs in different iterations, {wk}K
k=1

are always new unknown variables for SP in
∑K

k=1 wk ·
xm,k and

∑K
k=1 wk. So it is impossible to form an equa-

tion set with a unique solution by accumulating 2ak ·∑M
m=1(xm,k − tm)2,

∑K
k=1 wk · xm,k, and

∑K
k=1 wk of multiple

iterations.
For the aggregated distance, there are K · M unknown

variables for SP in
∑K

k=1
∑M

m=1(xm,k − tm)2. Therefore, to
enable workers’ sensitive and private data to be calculated,
at least K · M iterations are needed to accumulate a set
of K · M equations. Our experiments in Section VII-B will
illuminate that the proposed algorithm can converge in just
a couple of iterations. In most practical cases, the num-
ber of iterations is much less than K · M. Therefore, it is
reasonable to believe that the aggregated distance will not
expose an individual worker’s sensed data. When stronger
security is needed, we further provide an extension method
as follows.

In the secure weight estimation step, CP randomly chooses
another random number bk for each worker, and calculates
C = (

∏K
k=1 Ck)

2bk , C′
k = C2ak+bk

k . Thus, D(C) = 2bk ·∑K
k=1

∑M
m=1(xm,k − tm)2, D(C′

k) = 2ak+bk ·∑M
m=1(xm,k − tm)2.

The remaining process is the same as the basic scheme
in Section V-D1. Since the aggregated distance is perturbed
by random numbers {2bk}K

k=1, it is impossible for SP to
form an equation set with a unique solution by accumulating
D(C) = 2bk · ∑K

k=1
∑M

m=1(xm,k − tm)2.

C. Preventing Privacy Disclosure to Workers and Providing
Failure Resistance

In InPPTD, workers are kept out of the execution of proto-
col after reporting their sensed data. Therefore, workers will
not receive any information from other parties. In addition,
workers’ sensed data and the interactions between SP and CP
are transmitted through the secure channel. So workers cannot
obtain sensitive and private information from the communica-
tions between other parties. Moreover, the feature that workers
can be offline after reporting sensed data allows the imple-
mentation of our scheme to be free from the influence of the
problem of workers’ failures. Overall, our proposed protocol
can prevent privacy disclosure to workers and provide effective
failure resistance.

D. Resistance to Modification Attack From Malicious
Workers

Since our scheme integrates the incentive mechanism and
workers are assumed to be selfish, there may be some
potential malicious workers trying to gain illegal rewards
through system vulnerability. The most direct approach is to
manipulate their corresponding weights.

In the proposed schemes in which workers participate in
each round iteration of truth discovery, such as PPTD, EPPTD,
and L-PPTD, weights are calculated by workers themselves.
Although workers’ privacy of weights is protected, workers
can easily manipulate their respective weights. However, in
InPPTD, after reporting their sensed data, workers are kept
out of the execution of the protocol. Workers’ weights are cal-
culated in the interactions between SP and CP. Thus, workers
cannot manipulate weights directly in plaintext. Considering
that the Paillier cryptosystem has an additive homomorphism
property, the interactions between SP and CP are through the
secure channel. Thus, workers cannot tamper with any cipher-
texts. Therefore, our scheme can resist modification attacks
from malicious workers.

E. Reduce the Number of Lazy Workers

In InPPTD, we adopt a weight-based incentive mechanism,
that is, the reward for a task of each worker is proportional
to the corresponding weight. This mechanism is simple and
effective. According to formula (1), for each task, when the
sensed data of other workers are constant, the closer the sensed
data of worker k is to the ground truth, the smaller the dis-
tance d(xm,k, tm) = (xm,k − tm)2 is, and the greater the weight
of worker k is. In general, data fabricated or inaccurately
sensed by lazy workers are more random, and more likely
to differ greatly from the ground truths when the estimated
ground truths finally converge. Thus, lazy workers are usually
assigned smaller weights and receive fewer rewards than nor-
mal workers. If the total rewards for each task are sufficient,
lazy workers will not get more benefits by reducing costly
sensing effort. They cannot even get enough rewards from our
devised incentive mechanism to make up for the power and
bandwidth overhead of sending data.

It should be noted that SP is able to recognize the lazy
workers from the total rewards and remove them from the
system. Our experiments in Section VII-E have shown that
the gap in rewards between normal workers and lazy workers
is obvious. Therefore, the only way to increase rewards is to be
hardworking and provide higher quality/reliable sensed data.

F. Security Comparisons

We compare the proposed InPPTD with several other rep-
resentative PPTDs in terms of the aspects of data privacy,
weight privacy, modification resistance, failure resistance, and
incentive integrated, as shown in Table I. Schemes of PPTD,
EPPTD, and L-PPTD have no resistance to modification
attacks and workers’ failures since workers are involved in
each iteration phase. In L2-PPTD and NPPTD, workers can be
offline after reporting data, thus modification attacks and work-
ers’ failures are prevented. However, L2-PPTD cannot protect
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TABLE I
SECURITY COMPARISON WITH OTHER PPTD SCHEMES

weight privacy. Due to the use of GCs, as the performance
analysis in [24], NPPTD requires a massive computation
and communication overhead for carrying out the system.
Specifically, our proposed InPPTD possesses all of the features
while incorporating a secure incentive mechanism.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
InPPTD in terms of accuracy, convergence, computation
overhead, communication overhead, and average rewards.
Especially, lazy workers will be taken into consideration to
analyze the impact of the performance of some parts. The
experiments are conducted on an Intel Xeon 2.13-GHz server
running Ubuntu 14.04 with 8-GB RAM. Since the sensed
data for normal workers are most likely to be normally dis-
tributed [16], in the experiments, data of normal workers are
generated from the normal distribution. While lazy workers
have no prior knowledge of the given task, they generate
random fake sensed data from the uniform distribution (the
average of normal workers and lazy workers for each differ-
ent object is randomly chosen from 10 to 10 000). In what
follows, we present the experimental results of each part.

A. Accuracy

First, we evaluate the accuracy of the final estimated ground
truths in terms of the number of workers. Many existing meth-
ods (e.g., PPTD [16], L2-PPTD [17], and NPPTD [24]) and
our proposed InPPTD all adopt the CRH framework as the
basic truth discovery algorithm. If the initial ground truth,
weights, and workers’ data are the same, the final estimated
ground truth will be also the same, thus, the accuracy will
also be the same. Therefore, we only evaluate the accuracy of
our proposed InPPTD and focus on analyzing the accuracy of
the CRH framework when there are different numbers of lazy
workers in the system.

We fix the number of objects as 20 and use the root
of the mean-squared error (RMSE) to evaluate the devia-
tion between the estimated results and the real truths. Here,
RMSE = (

∑M
m=1(t

′
m−t)2/M)(1/2), in which t′m is the final esti-

mated ground truth and t is its corresponding real value. In
this experiment, different numbers of lazy workers are, respec-
tively, put into normal workers’ data to study their impact on
the accuracy of results. The experimental results are shown

Fig. 5. Accuracy for different number of lazy workers.

Fig. 6. Convergence for different number of lazy workers.

in Fig. 5. On the one hand, with the increase of the num-
ber of workers, the truth discovery algorithm can obtain a
more accurate estimated result. On the other hand, it can be
seen that only a few lazy workers can damage the system and
significantly reduce the accuracy of the estimation results.

B. Convergence

For evaluating convergence, we utilize the Squared
Euclidean Distance ||ti − ti−1||2 as convergence value to
measure the distance between the estimated truths in two
consecutive iterations, in which ti represents the vector of
estimated truths in iteration i (t0 are randomly generated).
The experiments presented with five different number of lazy
workers are shown in Fig. 6, where the number of objects
and normal workers are fixed as 20 and 100, respectively. As
we can see, although the number of lazy workers influences
several convergence values at the beginning, the proposed
algorithm converges quickly in just a couple of iterations.

C. Computation Overhead

In this part, we evaluate the computation performance of
each phase in our proposed InPPTD. The experiments are
implemented with the library of GMP [28], and the key size is
set as a 2048-b strong security level. The results are compared

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on April 17,2021 at 14:37:28 UTC from IEEE Xplore.  Restrictions apply. 



4314 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

(a)

(b)

Fig. 7. Computation overhead in the report phase. (a) Running time for each
worker. (b) Running time for servers.

with the baseline method PPTD [16], the state-of-art scheme
L2-PPTD [17] and NPPTD[24].

The experimental results of the report phase are shown in
Fig. 7. The number of objects is set as 50, and the number of
workers ranges from 10 to 200. We evaluate the time cost for
the worker side and the server side, respectively. In our scheme,
each worker does not perform any cryptographic operations
and just perturbs sensed data with random numbers. The time
cost for our scheme is almost negligible for each worker when
compared to PPTD [see Fig. 7(a)]. Although, the computation
overhead of servers (i.e., SP and CP) is larger than L2-PPTD,
NPPTD, and PPTD [as shown in Fig. 7(b)], it is acceptable
since the report phase is executed only once. The servers are
usually implemented in the cloud platform with rich computing
resources. It can be executed quickly on the server side.

In the iteration phase, workers in L2-PPTD and our InPPTD
are not involved in the procedures. Therefore, only the time
cost for servers is evaluated, while the time costs for workers
and servers are measured in the PPTD scheme. The experi-
mental results are presented in Fig. 8. The time cost for our
InPPTD is much lower than L2-PPTD and PPTD. It means
that when the number of iterations is high, our InPPTD has

Fig. 8. Computation overhead for each iteration in the iteration phase.

a significant performance advantage. By the way, NPPTD is
implemented with GC and it is an NPPTD scheme. So we
cannot evaluate the time cost for each iteration of NPPTD. In
fact, the major part of computing time is spent on GC gen-
eration, much longer than the computing time of InPPTD’s
server side.

Although, in our InPPTD, a few computing operations are
conducted in plaintexts between two servers for the reward
phase. They can be regarded as negligible compared to cryp-
tographic operations. In summary, the computational overhead
of our proposed InPPTD is very efficient on the worker side
when compared to PPTD, and is more efficient than L2-PPTD
in the iteration phase.

The computation complexity analysis is as follows. In our
proposed InPPTD, workers are only involved in the report
phase. Therefore, the computational cost is O(M) for each
worker. SP and CP are both involved in the report phase, the
iteration phase, and the reward phase. In the report phase,
they both have to take O(KM) encryptions. SP has also to
take O(KM) ciphertext multiplications. In the iteration phase,
in each iteration, SP has to conduct O(K+M) encryptions and
O(K + M) decryptions. CP has to conduct O(K + M) encryp-
tions, O(KM) ciphertext multiplications and O(KM) ciphertext
exponentiations.

D. Communication Overhead

In this part, we evaluate the communication overhead with
the related works in terms of different numbers of objects
first. The size of keys and plaintexts are set as 2048 and
64 b, respectively, and the number of workers and the num-
ber of iterations are fixed as 100 and 5, respectively. Table II
shows the experimental results. From the table, we can see that
the communication overhead between workers and servers in
our InPPTD is more efficient than PPTD, and very close to
L2-PPTD and NPPTD. Since PPTD adopts the single-server
model, it does not have any cost of server–server communica-
tion overhead. While our InPPTD has a similar communication
overhead with L2-PPTD between the two servers.

Communication overhead between two servers of NPPTD
is huge. Since it is difficult for NPPTD to support both
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TABLE II
COMPARISON OF COMMUNICATION OVERHEAD

TABLE III
COMPARISON OF SERVER–SERVER COMMUNICATION OVERHEAD FOR

NPPTD AND INPPTD

Fig. 9. Average rewards for normal worker and lazy worker.

numerous objects and large worker bases, we compare major
communication overhead on servers of InPPTD and NPPTD
with fewer workers and objects. The size of plaintexts is set
as 16 b. The numbers of objects and iterations are set as 20
and 5, respectively. Table III shows the experimental results.
InPPTD can save a lot of bandwidth compared to NPPTD.

E. Average Rewards

To evaluate how our designed incentive mechanism moti-
vates workers to carry out sensing tasks normally rather than
lazily, we accumulate the average rewards for each normal
worker and lazy worker after multiple tasks. We set the average
price for each task to be 75, and Fig. 9 shows the experi-
mental results. From the figure, it can be seen that a normal
worker can obtain about six times more rewards than a lazy
worker. This huge gap in rewards between normal workers
and lazy workers proves that our scheme can greatly lessen
the lazy workers since they cannot get enough rewards from
our devised incentive mechanism to make up for the power
and bandwidth overhead of sending data.

VIII. CONCLUSION

In this article, we proposed an InPPTD, which is based
on two noncolluding servers and the Paillier homomorphic

cryptosystem. Considering that potential lazy workers exist
in the system, an incentive mechanism is integrated into the
truth discovery framework to motivate workers to behave nor-
mally. Security analysis demonstrates that our scheme can
achieve strong privacy guarantees—workers’ sensed data and
weight information are both well protected. Performance eval-
uation shows that our InPPTD can significantly reduce both
the computation and communication overheads. This enables
our designed framework to be more feasible to be implemented
in the crowdsensing system.
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