6634

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

An Efficient, Accountable, and Privacy-Preserving
Access Control Scheme for Internet of Things in
a Sharing Economy Environment

Yu Liu, Kaiping Xue

and Mohsen Guizani

Abstract—The Internet of Things (IoT) has set off a new
information technology revolution due to its convenience and
efficiency. An IoT enables sharing economy, as more people are
willing to share their own things (mostly mobile devices) to lever-
age the under-used value. In such a situation where owners
and users are often not familiar with each other, an efficient
access control mechanism is needed to deal with the trust issue
and support service accountability to help owners accurately
get their deserved profits. Besides, in such a sharing economy
environment, the mobility of most shared IoT devices and their
privacy preserving should also be taken into account. Regrettably,
the existing schemes cannot achieve all of the aforementioned
goals simultaneously and only few schemes were implemented
to evaluate the claimed performance. In this article, we propose
an efficient, accountable, and privacy-preserving access control
solution for IoT in a sharing economy environment. In our
scheme, we utilize the one-time signature to achieve anonymous
authentication and let gateways store the signatures as service
credentials for accountability. Meanwhile, we adopt the identity-
based authentication to exclude malicious gateways and shared
devices from the system and design a specialized protocol for
those devices moving with the users. We conduct a detailed secu-
rity analysis to show that our scheme can effectively defend
against potential attacks, and also implement a prototype system
to demonstrate that our design is indeed an efficient one.

Index Terms—Anonymous authentication, mobility, privacy-
preserving access control, service accountability, sharing
economy.

I. INTRODUCTION

NTERNET of Things (IoT) has brought us into a highly
connected age in recent years, in which intelligent devices

Manuscript received September 29, 2019; revised January 6, 2020 and
February 13, 2020; accepted February 16, 2020. Date of publication
February 19, 2020; date of current version July 10, 2020. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61972371, and in part by the Youth Innovation Promotion Association
Chinese Academy of Sciences under Grant 2016394. (Corresponding author:
Kaiping Xue.)

Yu Liu is with the School of Economics and Management, Hefei University,
Hefei 230601, China (e-mail: sissi_liuyu@163.com).

Kaiping Xue and Peixuan He are with the Department of Electronic
Engineering and Information Science, University of Science and
Technology of China, Hefei 230027, China (e-mail: kpxue@ustc.edu.cn;
hnythyq @mail.ustc.edu.cn).

David S. L. Wei is with the Computer and Information Science
Department, Fordham University, New York, NY 10458 USA (e-mail:
wei@cis.fordham.edu).

Mohsen Guizani is with the Department of Computer Science and
Engineering, Qatar University, Doha, Qatar (e-mail: mguizani @ieee.org).

Digital Object Identifier 10.1109/JI0T.2020.2975140

, Senior Member, IEEE, Peixuan He, David S. L. Wei, Senior Member, IEEE,

, Fellow, IEEE

and their users are connected via Internet [1]-[3] and wireless
networks [4], [5]. An IoT is actually changing the method
of man—machine interaction and people’s lifestyle through the
technologies of intelligence, automation, etc., e.g., autonomous
driving [6], [7] and smart grid [8]-[11]. Meanwhile, sharing
economy is developing rapidly and is bringing lots of business
opportunities. Mastercard reported that only the total address-
able market of shared transportation has reached $72 billion
and it is predicted to increase to $350 billion in 2020 [12]. To
adapt to the sharing economy trend, many technology com-
panies, such as Bird’s shared electric skateboards [13], are
sparing no effort in popularizing the shared IoT devices. It
has been the trend that more and more individuals are willing
to share their assets to earn some profits. Most companies or
individuals provide their services using their own platforms
and it brings in much trouble for users to install all kinds of
platforms. So there have been some big companies, such as
Alibaba and Microsoft Azure, providing a united platform for
all kinds of shared IoT services, and it largely improves users’
experience. The combination of sharing economy and IoT
has also drawn much attention from researchers in academia
[14]-[16]. However, the involved security problems have been
rarely investigated. Due to the higher exposure of the IoT
devices in the sharing economy environment, they are much
more vulnerable than those in the traditional scenarios, such as
smart home, smart healthcare, and so on. So, the security chal-
lenges for IoT in a sharing economy environment are critical
issues and access control is the most fundamental one of them.

The question we need to answer is: what is the differ-
ence between the IoT in traditional scenarios and the IoT
in sharing economy environments? The main difference is
that IoT devices in traditional scenarios are not employed
for profits, while in the sharing economy environment, peo-
ple usually lease their IoT devices to earn profits and users
must pay the owners for using the devices. Also, owners
of IoT devices in traditional scenarios are barely concerned
about the usage status of their devices. But owners in the
sharing economy environment would like to know some
feedback information (like the peak period of usage) to
improve their services. Based on these observations, access
control for the IoT in sharing economy environments should
consider service accountability and information feedback,
in addition to device mobility, without exposing users’
privacy.

2327-4662 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0002-8972-8094

LIU et al.: EFFICIENT, ACCOUNTABLE, AND PRIVACY-PRESERVING ACCESS CONTROL SCHEME FOR IoT

Various access control schemes have been proposed for
wireless sensor networks, which mainly include list-based [17]
and role-based access control [18], [19] methods. But they are
not scalable in the IoT environment because of the massive
number of edge devices. To better adapt them to the IoT envi-
ronment, two different types of access control methods have
been proposed: 1) attribute-based encryption (ABE-based) and
2) capability based. In ABE-based solutions [20]-[22], to
ensure the confidentiality, the data collected by the devices
are encrypted by ABE before they are sent out and only
authorized people or devices can decrypt the data successfully.
ABE-based approaches enable fine-grained access control, but
they bring in too much computation overhead to the resource-
constrained IoT devices due to several heavy pairing related
operations. In capability-based schemes [23]-[25], authorized
users can get a token from a central point (e.g., cloud servers)
before requesting services and they can show the granted
token to IoT devices or gateways to get services. However,
user identity is needed to be included in the tokens, and
this information will be exposed to the verifier endangering
users’ privacy. Besides, the direct use of tokens to conduct
service accounting will also leak users’ privacy to IoT device
providers.

The data transmitted among all kinds of IoT entities in a
sharing economy environment contain a wealth of information
related to the user. But, since the wireless links in IoT are
exposed, it is effortless for attackers to get users’ private
information and even monitor user activities (e.g., when users
use sharing bikes to go to work and which path they chose
to take) by eavesdropping [26]. So, privacy protection should
be taken into account and well addressed. A few solutions
have been proposed to preserve users’ privacy [17], [27]-[29].
Unfortunately, these proposed schemes make it hard for IoT
device providers to get useful feedback information. So these
solutions cannot meet the security demands in the sharing
economy environment.

Motivated by these observations, in this article, we propose
an efficient, accountable, and privacy-preserving access control
for IoT in the sharing economy environment. In our scheme,
we utilize the identity-based authentication to make gateways
only discover services provided by legitimate IoT devices. We
also further make decentralized gateways authenticate users
directly through one-time signatures (OTSs) [30] generated
by users to keep anonymous rather than leveraging a central
server. Even when the server breaks down, our system can
still work properly. Moreover, for service accounting, these
signatures can be used as trusted service credentials, but it is
irrational for the central server to verify each single signature
due to its huge overhead. Therefore, we make gateways aggre-
gate collected signatures regularly and the central server can
only verify the aggregated signatures to check the validity of
the credentials received from gateways. Our contributions can
be summarized as follows.

1) We propose a secure and efficient access control scheme
for IoT in sharing economy environments. Our scheme
can support mobility and service accountability, and
the operations in the processes would not affect users’
experience much.

6635

2) We introduce the OTS to accomplish anonymous authen-
tication and make services accountable by aggregating
OTSs. Besides, IoT device providers improve their
services by collecting other feedback information, pro-
vided they cannot get any user’s privacy information.

3) We thoroughly analyze the security strength of our
scheme and implement a prototype system to evaluate
the performance of the main phases in our system.

The remainder of this article is organized as follows.

Section II reviews the related work. Section III describes our
system model, security assumptions, design goals, and prelim-
inaries, while Section IV presents the details of our proposed
scheme. Sections V and VI show the security analysis and
performance evaluation, respectively. Finally, in Section VII,
we conclude this article.

II. RELATED WORK

Since the beginning of the 21st century, access control has
caused widespread concern in the field of wireless sensor
networks. The intuitive thought is maintaining an access con-
trol list (ACL) at the sensors on the owner’s side, similar to the
work in [17] proposed by He et al., to decide who can access
a certain sensor. Afterward, to ease the privilege management
in ACL-based schemes, role-based access control schemes
were proposed [18], [19]. In these schemes, the sensor owner
assigns privileges to a role instead of a person, which is more
efficient. However, due to the huge number of IoT devices,
managing the privileges becomes more intractable, so these
methods cannot be used in IoT directly.

To better solve the access control problem in IoT, many
new methods have been proposed. ABE is one of the popular
methods widely used in many network scenerios [31]—-[34],
including IoT. Phuong et al. [20] proposed puncturable ABE
to make sure that the sender can revoke the compromised IoT
devices’ decryption capability for the past messages in time.
Zhang et al. [21] proposed to hide some sensitive attributes
in access policies of CP-ABE to protect privacy and add
a decryption test to improve the decryption efficiency. As
shown in [22], the direct use of ABE in IoT indeed brings in
much computation overhead because ABE needs to conduct
heavy pairing-related operations for several times. Therefore,
it is unfriendly and unadaptable to resource-constrained IoT
devices. Besides, the problem to reduce the computation over-
head in IoT devices without increasing much communication
overhead is not well dealt with in these schemes.

The capability-based access control is another popular type
of methods because of its flexibility that can meet vari-
ous requirements of different IoT architectures. This type of
scheme uses a central point (e.g., backend in [23], owner
in [25], and specialized server in [24]) to authenticate users
and assign tokens to users. Users request services with the
received tokens, and IoT devices or gateways verify the tokens
to decide whether to provide services. However, since the
tokens in these schemes always contain private information
(such as user identity, user privileges, etc.), and verifier can
easily get these private information, so these schemes cannot
satisfy the security demands considering privacy protection.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

6636

In the IoT scenario, the data are produced when the users are
using IoT devices and always contain users’ behavior, iden-
tity, and some other critical private information. Meanwhile,
because of the exposed and dynamic environment, these
private information is easily compromised by malicious attack-
ers [35]. Thus, privacy preserving in such an IoT environment
has become a vital issue [17], [27]-[29], [36]. Some schemes
try to design a privacy-preserving protocol for IoT using
temporary identity [27], hash function [29], or ring signa-
ture [17]. Aitzhan and Svetinovic [28] proposed a solution to
ensure privacy preserving via multisignatures and blockchain.
However, these schemes are proposed for specific IoT appli-
cations, such as smart home and smart healthcare, which is
greatly different from the IoT in a sharing economy environ-
ment. Specifically, they are incapable of service accountability,
information feedback, and device mobility support. The dif-
ferential privacy and the homomorphic encryption are also
two important cryptographic techniques to provide privacy
preserving in many network scenarios [8], [9], [37], [38],
which are mainly used for privacy protection of private data.
Some other privacy-enhancing techniques, e.g., trusted execu-
tion environment, are also leveraged to achieve data privacy
preservation [10], [39], [40].

III. MODEL, ASSUMPTION, GOALS, AND PRELIMINARIES
A. System Model

1) Components: Our system model is similar to the model
proposed in smart homes [27], [41] with minor modification.
As shown in Fig. 1, our system is mainly composed of users,
gateways, a central server, and IoT device providers with their
shared IoT devices.

Users connect with gateways to obtain IoT services through
the subject devices (e.g., smartphones). We assume that the
subject devices have a considerable degree of computation and
storage capability (e.g., 2.3-GHz CPU and 64-GB ROM).

Gateways are connected with a large number of shared IoT
devices. They are responsible for authenticating users through
the signatures received from users, aggregating the signatures
as the trusted credentials, and sending commands to the con-
nected devices. Note that at first [oT device providers can pay
some institutions at first for gateway provision to run the fun-
damental services. In order to improve the service, individuals
are also allowed to provide gateways for helping shared IoT
services subsequently. For increasing the motivation of pro-
viding gateways, IoT device providers need to give individuals
some incentive in economic according to the number of sig-
natures that the gateways have helped authenticate. In such
a way, gateways provided by institutions and individuals can
cover a large area to enable users to enjoy the services when-
ever and wherever they want to. We assume that the gateways
have constrained computation capability but sufficient storage
capability (e.g., 1.2-GHz CPU and tens of GB ROM).

A central server is a united platform for all of the IoT
device providers like Alibaba, and it is responsible for key
management and fund management. Users can buy tokens
from the central server to obtain IoT services and IoT device

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

IoT Device Provider

UBER

moblke

V@
¢
Gateway

SPIN s Vi
Central Serve ((() ,’ Shared IoT Device

Gateway

Py

Shared IoT Device

ANKER

BOX

wireless link wired link

Fig. 1. System model.

providers can get their profits from it according to the num-
ber/time of services their devices provide. Note that there are
two kinds of IoT devices according to their charge ways:
1) pay-per-unit-time (e.g., shared smart cars) and 2) pay-
per-use (e.g., shared smart printers). For simplicity, we call
pay-per-unit-time shared IoT devices type A devices and call
pay-per-use shared IoT devices type B devices in this article.
Besides, the IoT device providers provide shared IoT devices.
These devices are often resource constrained with a weaker
computation capability (e.g., 1.2-GHz CPU or weaker).

2) Communication Model: Users’ subject devices and
shared IoT devices can communicate with gateways through
wireless links in many ways (e.g., WiFi, Bluetooth, ZigBee,
etc.), and they can also connect with a central server by WiFi,
GPRS, etc. Gateways and IoT device providers communicate
with the central server through wired links (e.g., Ethernet).
Besides, we assume that there exist secure channels between
gateways/shared IoT devices and the central server.

B. Security Assumption

We assume that users are untrusted in our system and they
will try to pay as little money as possible to get as much
services. The IoT device providers and their shared IoT devices
are assumed to be rational but greedy. On the one hand, big IoT
device companies (e.g., ofo and SPIN) will not risk providing
malicious IoT devices that cannot work to maintain their good
reputations. On the other hand, some individuals may provide
malicious devices to get some profits.

Unlike the traditional IoT environment, in this article, we
assume that gateways are semitrusted. They will follow the
predesignated protocol faithfully. But to earn more profits, they
may claim more services they provided by forging more signa-
tures which are the accounting credentials. Besides, they may
be curious about the privacy of users, e.g., who prefers which
kind of coffee, etc. Finally, the central server is assumed to

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EFFICIENT, ACCOUNTABLE, AND PRIVACY-PRESERVING ACCESS CONTROL SCHEME FOR IoT

be trusted, and it can be a committee composed of some big
IoT device providers in a real-world scenario.

C. Design Goals

In this article, we would like to design an efficient and
secure access control scheme for IoT in sharing economy
environments with the following goals.

1) Secure Access Control: The proposed scheme should
conduct access control accurately and block unautho-
rized users outside of the system. Also, malicious
gateways and devices cannot join the system.

2) Privacy Preservation: Our solution needs to ensure that
malicious attackers are unable to infer any users’ privacy
information, such as user identity, user preference, a user
moving track, etc. While preserving privacy, shared IoT
device providers can get information which can be used
to improve their services normally.

3) Efficient Service Accountability: Our proposed approach
should provide a service accounting mechanism in which
the central server can efficiently know the exact amount
of services offered by IoT device providers so that
providers and gateways are able to get their profits
accurately.

4) Mobility Support: Our scheme is required to address the
trust and accounting problem brought by the situation
where shared IoT device moves with users in the sharing
economy environment.

D. Preliminaries

From the security perspective, the security of our scheme is
based on the intractability of the discrete logarithm problem
(DLP), the computation Diffie-Hellman (CDH) assump-
tion, and the divisible CDH (DCDH) assumption on the
multiplicative cyclic group G [42].

Definition 1 (DLP): The DLP is, given g, h = g* € Gy, to
compute x = log, h.

Definition 2 (CDH Assumption): Given (g%, g* € Gy) for
unknown a, b € Z;k, it is infeasible to compute g“b .

Definition 3 (DCDH Assumption): Given (g%, g” € Gy) for
unknown a, b € Z;*, it is infeasible to compute g”/ b,

IV. PROPOSED SCHEME
A. System Overview

Fig. 2 shows an overview of our system. As shown in
this figure, in our system, entities, including users, gateways,
and shared IoT devices, are required to register to the central
server for getting corresponding secret keys. Since in a sharing
economy environment, all these three entities cannot be fully
trusted, thus before communicating with other entities, they
must authenticate the communication peers first. Specifically,
in the service discovery phase, we utilize an identity-based
mutual authentication protocol to keep malicious gateways
and shared IoT devices outside of the system. Besides, in
the service request phase, we make gateways and users
show identity-based signature (IBS) and OTS, respectively, to
identify themselves.

6637

Central Server

Fig. 2. System overview.

Moreover, we design a special protocol (i.e., service termi-
nation) for the situation that shared IoT devices move with
users to a new place. To record the exact amount of OTSs
authenticated by gateways, in the service accounting phase,
gateways aggregate the signatures they collect regularly, and
it is easy for a central server to conduct service accounting by
verifying the aggregated signatures. To let the central server
improve its services in time without exposing users’ privacy,
gateways send device-related information to the central server
regularly. Then, to make our system more robust, the cen-
tralized point (e.g., a central server) is not involved in the
authentication process to users.

Next, we will describe the details of our system in eight
phases: 1) system initialization; 2) entity registration; 3) ser-
vice discovery; 4) service request; 5) command execution;
6) service termination; 7) service accounting; and 8) entity
revocation.

B. System Initialization

In this step, the central server initializes the system and

generates the public and private parameters as follows.

1) Generate a bilinear map group system S = (g, G1, Gr,
e(.,.)), where G1 and Gr are multiplicative cyclic
groups of the same order ¢g. Randomly select generators
g1, h € Gy and set g» = e(g1, &1)-

2) Select a random master private key s € Z;]k and compute
the corresponding public key A = g;°.

3) Choose several cryptographic hash functions H; : {0, 1}*
— {0, 1}* and H, : {0, 1}* — Z;‘.

4) Publish the system public parameters as: (S, g1, g2, i, X,
Hi, H>, E(.)), where E(.) is a symmetric encryption
algorithm.

C. Entity Registration

In this step, gateway i (with its identity ID;) and shared IoT
device j (with its identity ID;) need to send their identities to
the central server for registration. For gateways, the central
server computes

PK; = Hy(ID{||TS;), SK; = g '/ CH(DilTS)

where TS; is the current timestamp. Then, the central server
randomly selects r; € Z; and computes

Ri = g1", A; = ri + sHy(ID; || TS;||R;).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

6638

Finally, gateway i can get its public keys PK; and private keys
(SK;, R;, A;) from the central server.
For each shared IoT device j, the central server computes

PK; = H>(ID}||TS,), SK; = g1/ (s+H2(ID}IITS)))

and generates a signed profile;, which states the provided
services of IoT device j, the provider to which the devices
belong, etc. Then, the central server sends the public key PK;,
the private key SKj, and the signed profile; to the IoT device.
To be noted, as the existence of the timestamp TS;, which
represents the time when implementing key generation, the
central server should periodically update secret keys for legit-
imate gateways and shared IoT devices. It is outside the scope
of this article, so we will not cover the details of this.

In the system, we use OTSs as accounting credentials. Secret
keys associated with OTSs can be used only once, and the
central server must generate massive secret keys in advance.
To manage the massive secret keys, the central server assigns
an [-bit identifer pid to each pair of secret keys and utilizes
a bitmap to record the unused pids. Suppose there are several
charge choices (e.g., $1, $5, and $10). Users can pay money
for requesting secret keys according to the charge choices with
a certain exchange ratio (e.g., $1 for requesting five keys). The
central server can generate secret keys for different charge
choices in advance. First, it generates an original key pair
(UPKq, USKy) as follows:

USKo = (bi Ezea &, 1}1,)

m

m
=

UPKy = (V,’ <« glbihci) X
=

where [, represents the length of ¢;, and m is the number of
bilc; pairs, which is related to the signature generation for
allowed length of messages. Then, the central server further
generates a set of keys USK; for i € [1, m], as shown in Fig. 3,
we can get

biw = Hy(bix-1), cix =Hi(cix-1), k €[2,n] (1)

where b; 1 = Ha(b;) and ¢;;1 = Hi(c;). Then it computes all
the corresponding UPK; and generates an unused pid (pid,)
to associate with each UPK;/USK; pair. To be noted that the
parameter n is determined by charge choice and exchange
ratio. For example, if the charge choice is $5 and exchange
ratio is $1 for five keys, n is 24.

The central server only stores USKp and all the corre-
sponding pids (e.g., pidy, pida, . . ., pid,), called manifest, for
reducing the storage overhead. In order to access IoT devices,
when user k pays some money to request a specific number
of secret keys, the central server will select an appropriate
manifest from the storage and send it to the user k. After
receiving the manifest, the user can recover the remaining
secret keys as (1). Besides, the central server needs to send
all the records <pid, UPK> to the legitimate gateways and
update these records every day.

D. Service Discovery

To join the system, a shared 10T device sends its authenti-
cation request to the nearby gateway to register their services,

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

USK,=(,,,c;,) UPK, | pid,
w]
H, TH,
USK, = (b,.c.,) UPK, | pid,
H2T TH'
USK, = (b.c,) | UPK, |pid,

Fig. 3.

(‘ .,’ S1: .78, profile,

A S2:k,. 8

Key generation.

Gateway Shared IoT Device
S2. S1.
Compute shared secret key sk. Compute y.
Compute authentication S3.

information k,, 5. Compute shared secret key sk.

S4. Authenticate gateway.
Authenticate IoT device. Compute authentication
Verify the signature of profile. information S.

Fig. 4. Service discovery process.

and then a mutual authentication will be conducted between
the IoT device and the gateway, which is shown in Fig. 4. In
this article, we utilize an identity-based mutual authentication
protocol, like the one in [43], to conduct mutual authentication.

The details of communications between the shared IoT

device j and gateway i are as follows.

S1: IoT Device j — Gateway it {y, TS, proﬁlej}. The
shared IoT device j randomly chooses o € Zj and
computes x; = Hp(«||SK;). Then, it computes y =
(g M2DilITS) 3)%t and then sends y and profile; to the
gateway |i.

S2: Gateway i — IoT Device j: {k2, 8}. Gateway i chooses a
random number § € Z;‘ and computes x» = H>(8]|SK;).
Then it generates the secret key sk by computing

ki = e(y, SK;) = g2"!
sk = Hy(ki*?) = Ha(g2"?). 2

Afterward, the gateway computes k, = g)zcz, B =
H (sk||k1]|k2]ID;]|y) and sends them to the IoT device
J to make it generate the secret key and authenticate the
gateway.

S53: 10T Device j — Gateway i: {S}. IoT device j obtains
the shared secret key by computing sk = Hp(ky*') =
H(gy*1*2). Then, it computes k; = g",8 =
H (sk||k1]|k2]||ID;]|y) and authenticates the gateway by
checking whether 8/ = B. Finally, it computes S =
SK]-"""‘Yk, and then sends it to the gateway and stores
<ID;, sk>.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EFFICIENT, ACCOUNTABLE, AND PRIVACY-PRESERVING ACCESS CONTROL SCHEME FOR IoT

Service Request Phase I

S1: Squery,n
S2: 5,0,SL
S3:C,0",R' -
User Gateway
S1.
Select a random number 7 . S2. . I'st.
S3. Generate corresponding IBS o 1

Verify the validity of o. Select a random number 6. I

Generate corresponding OTS o'
Compute shared secret key sk'
and related information R'.
Generate encrypted command C.

S4.
Compute shared secret key sk ' I
Decrypt the command. |
Verify the validity of . |

Fig. 5. Service request and command execution process.

S4: Gateway i checks whether e(S, g1H2(IDf||TSj)A) =k X
g2°*. Then, the gateway verifies the signature of profile;
and store the related information as <IDj, sk, proﬁlej>.

E. Service Request

As shown in the left side of Fig. 5, in the request phase,
users send OTSs to gateways to show that they are the autho-
rized users who have paid for the services. But before users
sending signatures, they need to authenticate gateways to
prevent malicious gateways stealing from their signatures with-
out helping them get corresponding services. Here, we use
an IBS to let gateways show their legitimate identities. The
request process is as follows.

S1: User k — Gateway i: {Squery, n}. User k selects a ran-
dom number € Z; and sends service query message
and the random number 7 to the gateway.

S2: Gateway i — User k: {0,6,SL}. The gateway selects
two random numbers d € Z;‘ and 6 € {0, 1}”/ with »’
satisfying C,Z"/ 21> 2" Then it computes D; = g%,z =
d + A; x Hy(ID;||TS2|In||0||R;i||D;) and gets the IBS
o =< R, D;, z, TS> >. Finally, the gateway sends o, 0,
and SL to the user, where SL is the available services
list consisting of shared IoT devices’ identities, the type
of the services, the providers to which they belong, etc.

S3: User k — Gateway i: { Eg (cmd, parm, ID;, pid), o' ,R'}.
The user verifies the signature o by checking g} =
D;x (R; x A2 (DTS, \\Ri))Hz(lDiHTszlln\\9\\RillDi)_ If the ver-
ification passes, it is reasonable for the user to believe
that the gateway is legitimate and it stores the tuple
(0,0, n). Then, he/she can generate an OTS by using
Algorithm 1. Afterward, the user selects a random num-
ber ¥ € Z;‘ and computes R’ = g’f sk =D Finally,
he/she chooses the service according to SL and sends
the encrypted command. The c¢md in it is the command
that the user wants to execute, like turn on the machine,
which can be further clarified by the parameter parm.
For example, when the user wants to get shared coffee

g .
-

6639

Command Execution Phase

S1: E; (cmd, parm,TS)

S2: E, (fbac,TS)

Shared IoT Device

S2.
Decrypt the command.
Execute the corresponding service.

Encrypt feedback information
E, (fbac,TS),

Generate encrypted command
E (cmd, parm,TS),

Algorithm 1: OTS Generation
Input: Received random number 6, the security
parameter n, unused secret key USK = (b;, ¢;).
Output: A valid signature.

1 temp = ka = |m/2];

2 for i=1 to m do

3 if 6 > Cf;“_i then

4 €temp—ka+1 = bis Ptemp—ka+1 = Ci
5 0=0-C ka=ka-1;

6 end

7 end

8 € =¢llea]... ||6temp;

9 p=pille2l... ||ptemp;

10 return o’ = (¢, p)

machine service, the parm here can be the type of coffee
he/she would like to drink.

S4: Gateway i computes s = R and decrypts the
encrypted command. Then, it verifies the signature by
using Algorithm 2 and stores (€gtal, Protal, Pid, 6) for
future accounting. Meanwhile, it maintains a counting
table to record the number of signatures received for dif-
ferent shared IoT providers and it increases the number
by 1 for the corresponding provider.

F. Command Execution

The right side of Fig. 5 shows the process of command
execution. In this phase, the gateway will help the user get
the service by encrypting the command through the secret
key shared with the shared IoT device. The gateway finds the
shared secret key sk with device i and it communicates with
the device as follows.

S1: Gateway i — Device j: Egx(cmd, parm, TS). Gateway i
generates timestamp 7S and implements encryption over
message {cmd, parm, TS}. Then, send the encrypted
message to device j.

§2: Device j — Gateway i: Ey(fbac, TS). After the device
received the message, it first decrypts the message

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

6640

Algorithm 2: OTS Verification

Input: The random number 6, the security parameter
m, [, the secret key UPK with identity pid.
Output: Valid or Invalid.
1 temp = ka = |m/2];
ka ka

2 €total = Z €, Ptotal = Z Pis
i=1 i=1
3 if 0 < proral < m(2 — 1)/2 then

4 temp) = g?"“‘lh”“"al, tempy = 1;

5 for i=1 to m do

6 if 6 > Cffii then

7 tempy = tempy X Viemp—i+1;
8 0=60—C ka=ka—1;
9 end

10 end

11 if temp, == temp, then

12 | return Valid;

13 end

14 end

[

5 return Invalid,

and verifies whether timestamp 753 is in a permit-
ted time period. Then it executes the correspond-
ing service and returns some feedback information
(Eg(fbac, TS)), where fbac can be the current status
feedback information, such as normal, damaged, the
remaining power, etc.

Finally, the gateway sends the feedback information col-
lected to the corresponding IoT device providers regularly.
This can help IoT device providers know the status of their
devices, the peak period of usage, and the popular locations
where the services are provided so that providers can improve
their services in time according to this information.

G. Service Termination

In the traditional IoT scenario, the whole process will end
when the command execution is finished. However, in a shar-
ing economy environment, most IoT devices move with the
users and the users may return them back at a new place.
Therefore, an additional phase service termination is proposed
to deal with mobility.

1) For type B devices, it will be terminated automatically
once it finishes the service (e.g., a shared smart printer finishes
printing a paper).

2) For type A devices, we design a service termination pro-
tocol, which is illustrated in Fig. 6. In the protocol, the user
needs to terminate the device on his/her own initiative. When
the user moves to a new place connecting with a new gateway
to return the devices back, the communication process to be
performed is as follows.

S1: User k — New Gateway i': Rn, (0,0,), ID;, n’. Here,
n’ is a random number in Z;, ID; is the identity of the
original gateway, and (o, 6,) is the tuple that the user
stored in the service request phase.

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

S2: Gateway i — User k: opew, num, (01, ..., Ohum). New
gateway i’ first verifies the signature o. Then, the new
gateway computes the service time that the user enjoys
the service AT = TS3 — TS;, where TS3 is the current
timestamp and 7S, is the timestamp in o, and num is
the number of OTSs the user needs to give according
to the charging standard. The new gateway generates
a signature opey, like the request phase using n’, and
selects num random numbers (01, ..., Bhum).

§3: User — Gateway i R, (0],....,00m), 0,

Esk;l - (IDy, cmd, parm, pidy, . . ., pidym). The user veri-

fies opew and generates corresponding number of OTSs

using (01, ..., 6num). Then, he/she generates the secret

key, like step 4 in the service request phase using R},

and sends the OTS generated in service request phase
o', new num OTSs, and encrypted termination command
to the gateway.

S4: After receiving the message, the new gateway first ver-
ifies o’ using 0, and then it verifies other received
signatures. If the verification passes, it sends a successful
message to the user.

Then, the gateway conducts the mutual authentication with
device j like the steps in the service discovery phase and sends
an encrypted termination command message to the device. S5—
S9 in Fig. 6 are the detailed statements of these processes.
Besides, it records (ID;, IDy, IDy, and AT) and sends them
to IoT providers regularly, so that the providers can get the
information about the popular services and locations where
users return IoT devices back.

H. Service Accounting

Gateways may aggregate all the collected OTSs regularly
and get the aggregated signatures according to the num-
ber recorded for different shared IoT providers. Specifically,
for n different signatures (€otal,i, Protal,i) belong to the same
IoT provider, where i = 1,...,n, the new gateway can get
aggregated signature by computing

n n
(€as Pa) = (Z etotal,i(mOd q), Z Protal,i (mod Q)> .

i=1 i=1

To prove the amount of signatures authenticated, gateways
send (pidy, 61, ..., pidy, Oy, €4, pa) to the central server. The
central server first checks whether there exists the same pair
(pid, 0), and then it verifies the aggregated signature as shown
in Algorithm 3. If all the verifications pass, the central server
pays bills to the corresponding IoT device provider and after-
ward, IoT device provider gives some economic incentive to
gateways according to the amount of signatures they proved.

1. Entity Revocation

In our system, it is easy to achieve revocation. The central
server can stop updating the secret keys of malicious gateways
and shared IoT devices. So malicious shared IoT devices can-
not conduct the mutual authentication with legitimate gateways
and they cannot join the system any longer. The malicious
gateways cannot be authenticated by legitimate users either to
trick users out of signatures.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EFFICIENT, ACCOUNTABLE, AND PRIVACY-PRESERVING ACCESS CONTROL SCHEME FOR IoT

S1:Rtn,(0,0,n),ID,,n'

S2: o,,..hum,(6,,...,6,)

6641

S5:»,TS,, profile,

) S6:k,, B
< . SIS]
S3: R""’”" g, (o—‘l dal) O—;'“'"), C: S8: E, (cmd, parm, T§)
User Gateway Shared IoT Device
SI. S2. S6. Ss.
Select a random number 7' Verify the validity of old IBSo. Compute shared secret keysk, . . Compute y.

3. Generate corresponding IBSo,, .

Verify the validity of & Select a set of random numbers
new * (91,.“’9)

Generate corresponding OTSs um
(01::,,.). S4.
Compute shared secret key sk, ,,,
and related information R,,,.
Generate encrypted command C.

Decrypt the command.

Fig. 6. Service termination process.

Compute shared secret key sk, -

Verify the validity of (7},...,0,,,).

Algorithm 3: Aggregated Signature Verification

Input: The random numbers 61, ..., 8,, the security
parameter m, the secret keys UPK1, ..., UPK,
with identities pidy, ..., pid,, the aggregated
signature (€3, Pa)-

Output: Valid or Invalid.

1 for i=1 to n do

2 temp = ka = \m/2], temp; = 1,

3 for j=1 to m do

4 if 6; > Cﬁi ; then

5 femp| = temp1 X Viemp—j+1;
6 6 =6 — C* ., ka = ka — 1;
7 end

8 end

9 end

10 tempy = gi*hPs;

11 if temp; == temp; then

12 | return Valid;

13 end

14 return Invalid,

For users, if they use up their secret keys, their privilege to
get 10T services will be naturally revoked. The central server
can also revoke users’ privilege beforehand by adding their
pids into the bitmap and informing the gateways of this update.

V. SECURITY ANALYSIS

In this section, we will analyze the security features of our
system in terms of message confidentiality, privacy preserving,
signature unforgeability, and auditability. It shows that our
scheme can effectively defend against potential attacks.

A. Message Confidentiality

Lemma 1: An attacker cannot obtain any information from
the encrypted messages.

Proof: Suppose the messages in service request D =

g‘f, R = gq/ can be obtained by an attacker A, and the attacker

Compute authentication
information &, 5.

S8.
Authenticate IoT device.
Verify the signature of profile.
Encrypt the command

E, (cmd,parm,TS).

Compute shared secret key sk,
Authenticate gateway.
Compute authentication
information S.

S9.
Decrypt the command and
terminate the service.

got the secret key through these messages. It means that the
attacker can compute g‘li’/, given D, R without knowing d, 7/,
which contradicts with CDH assumption.

Then, the suppose attacker A can get the communication
messages in service discovery y, profile, k>, 8, S, C by eaves-
dropping, there are two ways to compute the secret key sk.
Because sk = Hy(HZ(allSKj)HMHSK”)) A may compute sk

2(8, > y p
through this equation directly. It is hard for .4 to know all
the necessary information «, §, SK;, and SK;, so it is compu-
tationally infeasible to adversary .4 to obtain sk by this way.
Another way is given y, k» to compute sk as follows:

Ha(i]|TS1) 4 \™!
y= (glz(tH J)A) ="y =g§x1z)/z
k=e(yi,g1) =gy, sk = Ha(g5"™)
where gZ1 = gII-IZ(i”TS'))L. In other words, given g;”, g;cz, gjlclz,

and g, the attacker needs to compute g,'? and g)'. This
obviously contradicts CDH and DCDH assumptions. |

B. Privacy Preserving

Lemma 2: Malicious gateways or external attackers cannot
learn any information about the users’ privacy.

Proof: All the command related messages in both ser-
vice request and command execution phases are encrypted.
As proved in Lemma 1, attackers cannot know the service
which is going to be executed by decrypting the messages.
Besides, different OTSs are generated by using different secret
keys and there is no relation between different secret keys, so
the anonymity is ensured and attackers cannot infer who is
requesting the services by the signature sent. |

C. Signature Unforgeability

In our scheme, gateways should generate IBSs to prove that
they are legitimate to the users, and the users also need to
show OTSs to gateways to get services. So, we will analyze
the signature unforgeability in terms of both IBS and OTS.
First, if a malicious gateway can generate a valid IBS, it can
pretend to be a legitimate gateway to cheat users of service

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

6642

credentials (i.e., OTSs). But the IBS in our system cannot
be forged, which is proven in [44]. Then, if the OTS can be
forged, malicious users can get service without paying money.
But attackers are unable to generate a forged OTS either, and
the corresponding proof is as follows.

Lemma 3: If the DLP is hard to solve on group Gp, any
attacker cannot forge a valid OTS.

Proof: Suppose there exists an attacker A who can
break the unforgeability of OTS with nonnegligible probability
Adv 4, we can find an algorithm 5 to solve the DLP.

Given (g, h) as input, B generates (USK, UPKy),...,
(USK,,, UPK,,) using (g, h) as shown in the registration phase,
and sends UPK1, ..., UPK,, and public parameters to A. A
makes one signature query for each key and B returns the
valid signatures on random number Q = {0y, ..., 6,,}. Then,
attacker A outputs a signature (€, p) on a random number
m, which is verified using UPK;. Let (€, p) be the signature
generated by B using USK;. So, we can have the following
equation:

gftolal hp_lolal — gitotal hﬂtolal .

Here, we should consider two cases: 1) m ¢ Q and
2) m € Q, but (¢, p) # (€, p). Because the elements in p
are the uniformly random values from {0, 1}", in case 1), the
forged signature equals (€, p) with probability 1/ C}’: and the
probability of case 2) is 1 —1/ CZ‘. Because the advantage of A
forging a signature is Adv 4, A can forge a signature satisfying
case 2) with probability (1 —1/C;")Adv 4. In such a case, B
obtain two different signatures, which allows B to solve DLP
by computing IOggl h = (Protal — Protal)/ (€total — €total) With
a nonnegligible advantage. It contradicts to intractability of
solving the DLP. |

D. Auditability

The audit mechanism is provided in our scheme to make it
possible for a central server to find the dishonest behavior of
malicious users and gateways in time.

Lemma 4: Malicious users dare not generate more than one
signature using the same secret key.

Proof: As shown in Algorithm 1, every time a user gen-
erates a signature, |m/2] elements in SK will be exposed.
Suppose a user generates two signatures using the same secret
key but different random numbers 6s, the best situation is
exposing |m/2] + 1 elements and the worst situation is expos-
ing 2|m/2| elements. Because the signatures are transported
in plaintext, an attacker can generate extra CBZZJ -2~

C%Tné% |2 valid signatures to obtain IoT services. The cen-

tral server can easily find these illegtimate signatures and
make the malicious users pay for all these extra illegtimate
usages. |

Lemma 5: The gateways cannot increase the amount of
signature they authenticate by forging and reusing.

Proof: The OTS is unforgeable, which is already proved
in Lemma 3. Considering gateways reuse the collected sig-
natures, the central server will find this kind of dishonest
behaviors by checking whether there exists identical (pid, 6)
pairs. |

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

TABLE I
COMPARISON WITH OTHER ACCESS CONTROL SCHEMES

Scheme Access Privacy Offline Mobility Service
Control ~ Preservation Server Support Accountability

PABE [20] Yes No Yes No No

SPSH [21] Yes Yes Yes No No

Heracles [23] Yes No No No No

DCapBAC [25] Yes No No No No

Our Scheme Yes Yes Yes Yes Yes

E. Comparison

We compare our scheme with several existing schemes in
terms of security features. As shown in Table I, although
all of these schemes can achieve secure access control, our
scheme is the only one which can achieve access control, pri-
vacy preservation, offline server, mobility support, and service
accountability simultaneously. In particular, because PABE,
SPSH, Heracles, and DCapBAC are designed for IoT in the
traditional environment, mobility support and service account-
ability are not integrated into these systems. Due to the need of
asking the server for tokens, Heracles and DCapBAC require
the server to be online all the time. Besides, since tokens in
Heracles and DCapBAC contain user identity and attributes
in PABE are related to the user, privacy cannot be preserved
in these schemes. Overall, our scheme has the best security
features.

VI. PERFORMANCE EVALUATION

In this section, we implement a prototype system and ana-
lyze its performance using our prototype. We use Google
Nexus 5 (2.3-GHz CPU, 2-GB RAM) as the subject devices
own by users, Google Cloud with Intel Xeon 2.5-GHz CPU
as the central server, and simulate gateways and shared IoT
devices by Banana Pi R1 (1.2-GHz CPU, 1-GB RAM). In our
evaluation, subject devices/shared IoT devices connect with
gateways through WiFi and gateways communicate with the
central server through the Ethernet. To accomplish our evalua-
tion, we use the pairing-based cryptography (PBC) library and
the OpenSSL library in Google Cloud and Banana Pi, and Java
PBC (JPBC) library and AndroidOpenSSL library in Google
Nexus 5.

A. Key Management Overhead

We first test the OTS-related key management overhead.
In our scheme, the central server must generate massive OTS-
related secret keys and users also need to use the hash function
to generate all of their secret keys. As shown in Fig. 7, the key
generation only costs users several milliseconds and it costs the
central server much more time due to the exponent arithmetic
on Gi. But this operation can be executed in parallel, so the
cost is acceptable for the central server.

B. Discovery Overhead

In our system, gateways and shared IoT devices are not
fully trusted, so the mutual authentication is processed in the
discovery phase. Fig. 8(a) presents the computation overhead

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EFFICIENT, ACCOUNTABLE, AND PRIVACY-PRESERVING ACCESS CONTROL SCHEME FOR IoT

T T T T T T T
1400 + .
—#— Central Server
1200 4 —@&— User i
1000 —
2
£
< 800 :
=]
®]
2 600 - e
=
400 1
200 B
04 -
T T T T T T T
5 10 20 35 55 80 105
Key Number
Fig. 7. Key management overhead.
_ 120 T [Istep4
I:l Step 3
60 B Step 2
100
50
> 80
E40
8
L 60
g30
g
20 40
10 20
0
Gateway IoT Device User Gateway
(a) (b)
Fig. 8. Discovery and request overhead.

of gateways and IoT devices. We can see that we put heavy
operations (e.g., pairing) in gateways and it can finish com-
putation in 64 ms. The computations in IoT devices are the
lighter operations (e.g., exponent and hash), and thus the time
cost in IoT devices is only 18% of that in gateways. So it is
feasible to apply our scheme to the shared IoT devices with
weaker CPUs. We also test the authentication latency (total
computation overhead plus communication overhead) in the
real-world scenario using our prototype. The result shows that
the discovery phase can be accomplished in 91 ms, which is
acceptable considering this phase is not often executed and it
has no relation with user experience.

C. Request and Execution Overhead

1) Overhead Analysis: Next, we test the performance of
request, execution, and termination, which are directly related
to user experience. In the request phase, subject devices are
required to conduct OTS generation, IBS verification, and Enc
process each one time, and object devices need to conduct OTS
verification, IBS generation, and Dec for one time correspond-
ingly. Table II shows the computation cost for these processes.
We set security parameters in OTS as m = 19,1/, = 32, and

n = 16. Because the OTS generation only needs m times

6643
TABLE 11
COMPUTATION COST FOR CRYPTOGRAPHIC PROCESSES

Device Processes Operations Time (ms)
OTS Generation m lookup 0.8
Subject Devices IBS Verification 2 M+2 E+2 H+1 DH 84.9
DH Key Exchange 1E 40.5

Enc AES-256 0.06/KB

e 'm lookup+m comparison

OTS Verification +18 A+2 E+1 M 7.6
Object Devices pq Generation 1 A+IM+1E 34
DH Key Exchange 1E 33

Dec AES-256 0.036/KB

* A, M and E represent the addition, multiplication and exponentiation operation on
group G'1. We denote H, DH as hash and DH key exchange operation respectively.

lookup operation, subject devices can generate an OTS in
0.8 ms, which is very fast. It is also efficient for object devices
to verify OTSs and generate IBSs. Because the JPBC library
is not very efficient for computation on group Gj, the time
cost for subject devices to verify IBS is a little high.

Fig. 8(b) shows the detailed time cost of users and gateways.
In step 1, users only generate a random number, whose time
cost is negligible, so it is not shown in the figure. However,
step 3 costs about 126 ms with proportions of each operation
as 0.6% in the OTS generation, 67.3% in the IBS verification,
and 32.1% in the DH key exchange. The computation overhead
in the gateway is lower and the proportions of its time cost
are 53.1% in OTS verification, 23.8% in IBS generation, and
23.1% in DH key exchange. The symmetric encryption is very
fast in both subject devices and object devices with speed
of 0.036 and 0.06 ms/kB, respectively, which is negligible
to other operations. The time cost ratio of IBS and DH key
exchange operations is very large, so we can find better IBS
and secret key negotiation algorithm to improve our scheme
in the future.

In the execution phase, gateways and shared IoT devices
only conduct symmetric encryption which is very fast and
can be overlooked. Similarly, we utilize our prototype system
to measure the execution latency (the time cost from users
sending the first message in the request phase to shared IoT
devices executing the commands). The execution latency is
about 159 ms, which means that users can hardly sense the
execution latency.

2) Comparison: In order to show the advantages of our
scheme, we also compare our scheme with PABE, SPSH,
Heracles, and DCapBAC in terms of operations and over-
head in request and execution phases. Note that the number
of punctured attributes and the security parameter d in the
PABE is set as 0 and 5, respectively. We consider that there
is only one set of five attributes can satisfy the correspond-
ing access policy in SPSH. We use an elliptic curve with a
160-b group order to implement our scheme. We implement a
1024-b RSA in Heracles and 192-b ECDSA in DCapBAC,
which have the approximate security level of our scheme.
Besides, instead of utilizing a security model where gateways
cannot be fully trusted, these compared schemes either have
no gateways or have fully trusted gateways. Therefore, for

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

6644 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020
TABLE III
REQUEST AND EXECUTION OPERATION COMPARISON
Scheme Request Execution
User Gateway Server User Gateway IoT Device
PABE [20] - - - Pt-CP-ABE - -
SPSH [21] - - - PH-CP-ABE - -
Heracles [23] RSA,RSA - RSA,RSA RSA,RSA - RSA,RSA
DCapBAC [25] ECDSA - ECDSA - - ECDSA®
Our Scheme IBS,0TS,Enc IBS,Dec,0T'S - - Enc,Dec Dec,Enc
“RSA/RS A, ECDSA/ECDSA, IBS/IBS and OTS/OT'S represents corresponding algorithm signing/verifying
process respectively. ECDSA? means corresponding algorithm are conducted 2 times. Pt-CP-ABE and PH-
CP-ABE are improved CP-ABE algorithms used in literatures [20] and [21], respectively.
TABLE IV 350 T T T T T
REQUEST AND EXECUTION OVERHEAD COMPARISON
[without batch verification
300 7 E with batch verification]
Computation Overhead Execution
Scheme Latenc B .]
User Server Gateway IoT Device y é 250
PABE [20] 13875 - - - 1439.5 E’
SPSH [21] 1339.0 . . . 1391.2 £ 200 g
Heracles [23] 210.0 0.6 12.7 285.3 -
DCapBAC [25] 3.0 0.9 37.3 103.2 5 150 4 i
Our Scheme-WHG 0.8 - 7.6 <0.1 18.4 g
Our Scheme 125.4 - 13.7 <0.1 159.1 § 100 4
[
50
fairness consideration, we also compare these schemes with

Our Scheme-WHG, where the gateways are fully trusted and
thus IBS related operations are exempted.

Tables III and IV show the operations needed and overhead
cost in the different schemes, respectively. We can see that
although PABE and SPSH only need a user to conduct one
CP-ABE operation, CP-ABE is too heavy for users’ subject
devices and it costs more than 1300 ms to finish this operation.
So, the PABE and SPSH have the most execution latency in all
six schemes. In Heracles, users are required to execute twice
RSA verification and generation, and the server and IoT device
are only required to execute once. The time cost in the user
side is 210 ms, which takes up 73.6% of the execution latency
and is much larger than our scheme. In DCapBAC, the IoT
device needs to verify the ECDSA signatures generated by
the user and the server. The DCapBAC performs better than
other these schemes and also has lower execution latency than
our scheme. But with the same security model, the execution
latency of Our Scheme-WHG is only 18.4 ms, which is more
than five times faster than the DCapBAC. Therefore, we can
draw the conclusion that our scheme has the highest efficiency
among these schemes in a sharing economy environment.

D. Termination Overhead

The computation overhead in the termination phase is
related to that in the discovery and request phase, so we do not
analyze it here. Fig. 6 gives the termination latency (the time
cost from users sending the first message in the termination
phase to users receiving a success feedback message) of type
A devices. Note that users need to send num OTSs to gate-
ways and termination latency increases from 155 to 307 ms
with num growing from 2 to 20 when gateways verify OTSs

2 4 8 14 20
Signature Number

Fig. 9. Termination latency.

individually. So, when the signature number is too big, our
system will lose efficiency, which is the situation that we do
not expect. So, the OTS in our scheme can also support batch
verification using the small exponents tests proposed in [45]
and we conduct the batch verification in our system where the
length of random exponents is set as 30. As shown in Fig. 9,
the terminal latency can be decreased by 4.8%, 13.1%, 25.5%,
38.1%, and 46.6% when the num is set as 2, 4, 8, 14, and 20,
respectively. We can see that the batch verification can largely
improve the efficiency of our system when the num is very big.
For type B devices, because they are terminated automatically
when they finish the services, the termination latency is 0.

E. Accounting Overhead

To make it easy for the central server for accounting, gate-
ways aggregate the OTSs collected regularly and the central
server only needs to verify the aggregated signatures. Here,
we measure the accounting overhead from signature aggre-
gation and aggregated signature verification. As shown in
Fig. 10, when the number of signatures increases from 10 000
to 100000, the time cost of signature aggregation and aggre-
gated signature verification varies from 55.3 to 612.3 ms and
278.7 to 2860.5 ms, respectively. It indicates that the account-
ing phase is very fast and it only brings a little to both
gateways and a central server.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: EFFICIENT, ACCOUNTABLE, AND PRIVACY-PRESERVING ACCESS CONTROL SCHEME FOR IoT

3500 T T T T T T T

—#— Aggregated Signature

3000 1 Verification: Central Server 7

—— Signature Aggregation:Gateway

2500

Time Cost(ms)
I S
> >
< =]
1 1

T T T T T
10 15 25 40 60 80
The Number of Signatures(K)

T
100
Fig. 10. Accounting overhead.

VII. CONCLUSION

In this article, we designed an efficient and secure access
control scheme for IoT in the sharing economy environment.
Our design effectively supports service accountability, privacy
preservation, and information feedback. By adopting OTSs,
anonymous authentication can be achieved and OTSs are con-
sidered as trusted credentials used in service accounting. The
computation overhead in service accounting can be largely
reduced by making gateways aggregate collected signatures.
Our proposed protocols are able to deal with the mobility
problem of shared IoT devices and let IoT providers collect
some feedback information without disclosing users’ privacy.
Our security analysis shows that our scheme can successfully
defend against potential attacks, and the experimental results
conducted in the implemented prototype system demonstrate
that our scheme also ensures good efficiency.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
for their invaluable suggestions that have led to the present
improved version of this article.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of Things for smart cities,” IEEE Internet Things J., vol. 1, no. 1,
pp. 22-32, Feb. 2014.

[2] J. Dizdarevié, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of
communication protocols for Internet of Things and related challenges
of fog and cloud computing integration,” ACM Comput. Surveys, vol. 51,
no. 6, p. 116, 2019.

[3] I. Yaqoob, I. A. T. Hashem, A. Ahmed, S. A. Kazmi, and C. S. Hong,
“Internet of Things forensics: Recent advances, taxonomy, require-
ments, and open challenges,” Future Gener. Comput. Syst., vol. 92,
pp. 265-275, Mar. 2019.

[4] Y.-W. Kuo, C.-L. Li, J.-H. Jhang, and S. Lin, “Design of a wire-
less sensor network-based IoT platform for wide area and heteroge-
neous applications,” IEEE Sensors J., vol. 18, no. 12, pp. 5187-5197,
Jun. 2018.

[5] M. T. Lazarescu, “Design of a WSN platform for long-term environmen-
tal monitoring for IoT applications,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 3, no. 1, pp. 45-54, Mar. 2013.

[6] K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin, “The security of
autonomous driving: Threats, defences, and future directions,” Proc.
IEEE, vol. 108, no. 2, pp. 357-372, Feb. 2020.

[7]1 X. Shen, R. Fantacci, and S. Chen, “Internet of Vehicles,” Proc. IEEE,
vol. 108, no. 2, pp. 242-245, 2020.

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]
(31]

[32]

6645

S. Li, K. Xue, Q. Yang, and P. Hong, “PPMA: Privacy-preserving multi-
subset data aggregation in smart grid,” IEEE Trans. Ind. Informat.,
vol. 14, no. 2, pp. 462-471, Feb. 2018.

K. Xue, B. Zhu, Q. Yang, D. S. L. Wei, and M. Guizani, “An
efficient and robust data aggregation scheme without a trusted
authority for smart grid,” IEEE Internet Things J., early access,
doi: 10.1109/J10T.2019.2961966.

S. Li, K. Xue, D. S. L. Wei, H. Yue, N. Yu, and P. Hong, “SecGrid:
A secure and efficient SGX-enabled smart grid system with rich
functionalities,” [EEE Trans. Inf. Forensics Security, early access,
doi: 10.1109/TIFS.2019.2938875.

S. Li, X. Zhang, K. Xue, L. Zhou, and H. Yue, “Privacy-preserving
prepayment based power request and trading in smart grid,” China
Commun., vol. 15, no. 4, pp. 14-27, 2018.

(2017). The Sharing Economy: Understanding the Opportunities for
Growth. [Online]. Available: https://newsroom.mastercard.com/eu/files/
2017/06/Mastercard_Sharing-Economy_v7.compressed2.pdf
Bird Cruiser. Accessed: Feb. 13, 2020. [Online].
https://www.bird.co/

A. B. T. Sherif, K. Rabieh, M. M. E. A. Mahmoud, and X. Liang,
“Privacy-preserving ride sharing scheme for autonomous vehicles in big
data era,” IEEE Internet Things J., vol. 4, no. 2, pp. 611-618, Apr. 2017.
Y. Benazzouz, C. Munilla, O. Gunalp, M. Gallissot, and L. Gurgen,
“Sharing user IoT devices in the cloud,” in Proc. IEEE World Forum
Internet Things (WF-1oT), 2014, pp. 373-374.

S. Cherrier, Z. Movahedi, and Y. M. Ghamri-Doudane, ‘“Multi-tenancy
in decentralised 10T,” in Proc. IEEE World Forum Internet Things
(WF-I0T), 2015, pp. 256-261.

D. He, J. Bu, S. Zhu, S. Chan, and C. Chen, “Distributed access control
with privacy support in wireless sensor networks,” IEEE Trans. Wireless
Commun., vol. 10, no. 10, pp. 3472-3481, Oct. 2011.

B. Panja, S. K. Madria, and B. K. Bhargava, “A role-based access in a
hierarchical sensor network architecture to provide multilevel security,”
Comput. Commun., vol. 31, no. 4, pp. 793-806, 2008.

S. Misra and A. Vaish, “Reputation-based role assignment for role-based
access control in wireless sensor networks,” Comput. Commun., vol. 34,
no. 3, pp. 281-294, 2011.

T. V. X. Phuong, R. Ning, C. Xin, and H. Wu, “Puncturable attribute-
based encryption for secure data delivery in Internet of Things,” in Proc.
IEEE Int. Conf. Comput. Commun. (INFOCOM), 2018, pp. 1511-1519.
Y. Zhang, D. Zheng, and R. H. Deng, “Security and privacy in smart
health: Efficient policy-hiding attribute-based access control,” [EEE
Internet Things J., vol. 5, no. 3, pp. 2130-2145, Jun. 2018.

X. Wang, J. Zhang, E. M. Schooler, and M. Ion, “Performance evaluation
of attribute-based encryption: Toward data privacy in the IoT,” in Proc.
IEEE Int. Conf. Commun. (ICC), 2014, pp. 725-730.

Q. Zhou, M. Elbadry, F. Ye, and Y. Yang, “Heracles: Scalable, fine-
grained access control for Internet-of-Things in enterprise environ-
ments,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), 2018,
pp. 1772-1780.

P. N. Mahalle, B. Anggorojati, N. R. Prasad, and R. Prasad, “Identity
authentication and capability based access control (IACAC) for the
Internet of Things,” J. Cyber Security Mobility, vol. 1, no. 4,
pp- 309-348, 2013.

J. L. Hernandez-Ramos, A. J. Jara, L. Marin, and A. F. S. Gémez,
“DCapBAC: Embedding authorization logic into smart things through
ECC optimizations,” Int. J. Comput. Math., vol. 93, no. 2, pp. 345-366,
2016.

L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security tech-
niques based on machine learning: How do IoT devices use Al to
enhance security?” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 41-49,
Sep. 2018.

P. Kumar, A. Braeken, A. Gurtov, J. linatti, and P. H. Ha, “Anonymous
secure framework in connected smart home environments,” IEEE Trans.
Inf. Forensics Security, vol. 12, no. 4, pp. 968-979, Apr. 2017.

N. Z. Aitzhan and D. Svetinovic, “Security and privacy in decentral-
ized energy trading through multi-signatures, blockchain and anonymous
messaging streams,” [EEE Trans. Depend. Secure Comput., vol. 15,
no. 5, pp. 840-852, Sep./Oct. 2018.

T. Song, R. Li, B. Mei, J. Yu, X. Xing, and X. Cheng, “A pri-
vacy preserving communication protocol for IoT applications in smart
homes,” IEEE Internet Things J., vol. 4, no. 6, pp. 1844-1852,
May 2017.

G. M. Zaverucha and D. R. Stinson, “Short one-time signatures,” Adv.
Math. Commun., vol. 5, no. 3, pp. 473-488, 2011.

W. Li, K. Xue, Y. Xue, and J. Hong, “TMACS: A robust and verifiable
threshold multi-authority access control system in public cloud stor-
age,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 5, pp. 1484—1496,
Oct. 2016.

K. Xue, J. Hong, Y. Ma, D. S. Wei, P. H. Hong, and N. Yu, “Fog-
aided verifiable privacy preserving access control for latency-sensitive
data sharing in vehicular cloud computing,” IEEE Netw., vol. 32, no. 3,
pp. 7-13, Jun. 2018.

Available:

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JIOT.2019.2961966
http://dx.doi.org/10.1109/TIFS.2019.2938875

6646

[33] J. Hong et al., “TAFC: Time and attribute factors combined access
control for time-sensitive data in public cloud,” IEEE Trans. Services
Comput., vol. 13, no. 1, pp. 158-171, Jan./Feb. 2020.

[34] Y. Xue, K. Xue, N. Gai, J. Hong, D. S. Wei, and P. Hong, “An attribute-
based controlled collaborative access control scheme for public cloud
storage,” IEEE Trans. Services Comput., vol. 14, no. 11, pp. 2927-2942,
Apr. 2019.

[35] W. Zhou et al., “Discovering and understanding the security hazards
in the interactions between IoT devices, mobile apps, and clouds on
smart home platforms,” in Proc. 28th USENIX Security Symp. (USENIX
Security), 2019, pp. 1133-1150.

[36] E. Luo, M. Z. A. Bhuiyan, G. Wang, M. A. Rahman, J. Wu, and
M. Atiquzzaman, “PrivacyProtector: Privacy-protected patient data col-
lection in IoT-based healthcare systems,” IEEE Commun. Mag., vol. 56,
no. 2, pp. 163-168, Feb. 2018.

[37] Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren, “Real-time and
spatio-temporal crowd-sourced social network data publishing with dif-
ferential privacy,” IEEE Trans. Depend. Secure Comput., vol. 15, no. 4,
pp. 591-606, Jul./Aug. 2018.

[38] J. Liu, C. Zhang, and Y. Fang, “EPIC: A differential privacy framework
to defend smart homes against Internet traffic analysis,” IEEE Internet
Things J., vol. 5, no. 2, pp. 1206-1217, Apr. 2018.

[39] S.Hu, L. Y. Zhang, Q. Wang, Z. Qin, and C. Wang, “Towards private and
scalable cross-media retrieval,” IEEE Trans. Depend. Secure Comput.,
early access, doi: 10.1109/TDSC.2019.2926968.

[40] V. Costan and S. Devadas, “Intel SGX explained,” in Proc. IACR
Cryptol. ePrint Archive, vol. 2016, no. 086, 2016, pp. 1-118.

[41] P. Kumar, A. Gurtov, J. Tinatti, M. Ylianttila, and M. Sain, “Lightweight
and secure session-key establishment scheme in smart home environ-
ments,” IEEE Sensors J., vol. 16, no. 1, pp. 254-264, Jan. 2016.

[42] F. Bao, R. H. Deng, and H. Zhu, “Variations of Diffie-Hellman
problem,” in Proc. Int. Conf. Inf. Commun. Security (ICICS), 2003,
pp. 301-312.

[43] P. Barreto, B. Libert, N. McCullagh, and J.-J. Quisquater, “Efficient and
provably-secure identity-based signatures and signcryption from bilinear
maps,” in Proc. Adv. Cryptol. ASIACRYPT, 2005, pp. 515-532.

[44] M. Bellare, C. Namprempre, and G. Neven, “Security proofs for identity-
based identification and signature schemes,” J. Cryptol., vol. 22, no. 1,
pp. 1-61, 2009.

[45] M. Bellare, J. A. Garay, and T. Rabin, “Fast batch verification for
modular exponentiation and digital signatures,” in Proc. Adv. Cryptol.
EUROCRYPT, 1998, pp. 236-250.

Yu Liu received the B.S. degree from the
Department of Management, Anhui University,
Hefei, China, in 2003, and the M.S. degree from
the School of Management, Hefei University of
Technology, Hefei, in 2006.

She is currently an Associate Professor with
the School of Economics and Management, Hefei
University, Hefei. Her research interests include
modern logistics technology, E-commerce security,
and network security.

Kaiping Xue (Senior Member, IEEE) received
the bachelor’s degree from the Department of
Information Security, University of Science and
Technology of China (USTC), Hefei, China, in
2003, and the Ph.D. degree from the Department
of Electronic Engineering and Information Science
(EEIS), USTC in 2007.

From May 2012 to May 2013, he was a
Postdoctoral Researcher with the Department of
Electrical and Computer Engineering, University of
Florida, Gainesville, FL, USA. He is currently an
Associate Professor with the School of Cyber Security and the Department of
EEIS, USTC. He has authored and coauthored more than 80 technical papers
in the areas of communication networks and network security. His research
interests include next-generation Internet, distributed networks, and network
security.

Dr. Xue’s won Best Paper Awards at IEEE MSN 2017 and IEEE HotICN
2019, and the Best Paper Runner-Up Award at IEEE MASS 2018. He has also
served as a Guest Editor for the IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS and a Lead Guest Editor for the IEEE Communications
Magazine. He serves on the editorial board of several journals, including
the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, the IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, Ad Hoc
Networks, IEEE ACCESS, and China Communications. He is serving as the
Program Co-Chair for IEEE IWCMC 2020 and SIGSAC@TURC 2020. He
is an IET Fellow.

IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 7, JULY 2020

Peixuan He received the B.S. degree from the
Department of Information Security, University of
Science and Technology of China, Hefei, China, in
2017, where he is currently pursuing the graduation
degree in information security with the Department
of Electronic Engineering and Information Science.

His research interest includes network security
protocol design and analysis.

David S. L. Wei (Senior Member, IEEE) received
the Ph.D. degree in computer and information
science from the University of Pennsylvania,
Philadelphia, PA, USA, in 1991.

He is currently a Full Professor with the Computer
and Information Science Department, Fordham
University, New York, NY, USA. From May 1993
to August 1997, he was on the faculty of computer
science and engineering with the University of Aizu,
Aizuwakamatsu, Japan (as an Associate Professor
and then a Full Professor). He has authored and
coauthored more than 120 technical papers in the areas of distributed and par-
allel processing, wireless networks and mobile computing, optical networks,
peer-to-peer communications, cognitive radio networks, big data, cloud com-
puting, and IoT in various archival journals and conference proceedings. He
currently focuses his research efforts on cloud and edge computing, IoT, big
data, machine learning, and cognitive radio networks.

Prof. Wei was a Lead Guest Editor of the IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS for the Special Issue on Mobile
Computing and Networking, the IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS for the Special Issue on Networking Challenges in
Cloud Computing Systems and Applications, the IEEE TRANSACTIONS ON
CLouD COMPUTING for the Special Issue on Cloud Security, the IEEE
TRANSACTIONS ON BIG DATA for the Special Issue on Edge Analytics in
the Internet of Things, and the IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS for the Special Issue on Leveraging Machine Learning
in SDN/NFV-Based Networks, and a Guest Editor of the IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS for the Special Issue on Peer-to-
Peer Communications and Applications and the IEEE TRANSACTIONS ON
BIG DATA for the Special Issue on Trustworthiness in Big Data and Cloud
Computing Systems. He also served as an Associate Editor for the IEEE
TRANSACTIONS ON CLOUD COMPUTING from 2014 to 2018 and the Journal
of Circuits, Systems and Computers from 2013 to 2018. He is currently an
Editor of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
for the Series on Network Softwarization and Enablers. He served on the pro-
gram committee and was the session chair for several reputed international
conferences.

Mohsen Guizani (Fellow, IEEE) received the
B.S. (with Distinction) and M.S. degrees in elec-
trical engineering and the M.S. and Ph.D. degrees
in computer engineering from Syracuse University,
Syracuse, NY, USA, in 1984, 1986, 1987, and 1990,
respectively.

He is currently a Professor with the CSE
Department, Qatar University, Doha, Qatar. He
served in different academic and administrative posi-
tions with the University of Idaho, Moscow, ID,
USA; Western Michigan University, Kalamazoo, MI,
USA; the University of West Florida, Pensacola, FL, USA; the University of
Missouri—Kansas City, Kansas City, MO, USA; the University of Colorado—
Boulder, Boulder, CO, USA; and Syracuse University. He has authored nine
books and more than 500 publications in refereed journals and conferences.
His research interests include wireless communications and mobile comput-
ing, computer networks, mobile cloud computing, security, and smart grid.

Prof. Guizani received three teaching awards and four research awards.
He also received the 2017 IEEE Communications Society WTC Recognition
Award as well as the 2018 Ad Hoc Technical Committee Recognition Award
for his contribution to outstanding research in Wireless Communications and
Ad-Hoc Sensor Networks. He is currently the Editor-in-Chief of the /[EEE
Network Magazine. He serves on the editorial boards of several interna-
tional technical journals and the Founder and the Editor-in-Chief of Wireless
Communications and Mobile Computing (Wiley). He guest edited a num-
ber of special issues in IEEE journals and magazines. He also served as a
member, the chair, and the general chair of a number of international con-
ferences. He was the Chair of the IEEE Communications Society Wireless
Technical Committee and the TAOS Technical Committee. He served as the
IEEE Computer Society Distinguished Speaker. He is currently the IEEE
ComSoc Distinguished Lecturer. He is a Senior Member of ACM.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 21,2020 at 11:54:33 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2019.2926968

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

