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Abstract Software-defined networking (SDN) decouples the data and control planes. However, attackers can lead catas-

trophic results to the whole network using manipulated flooding packets, called the data-to-control-plane saturation attacks.

The existing methods, using centralized mitigation policies and ignoring the buffered attack flows, involve extra network

entities and make benign traffic suffer from long network recovery delays. For these purposes, we propose LFSDM, a satu-

ration attack detection and mitigation system, which solves these challenges by leveraging three new techniques: 1) using

linear discriminant analysis (LDA) and extracting a novel feature called control channel occupation rate (CCOR) to detect

the attacks, 2) adopting the distributed mitigation agents to reduce the number of involved network entities and, 3) cleaning

up the buffered attack flows to enable fast recovery. Experiments show that our system can detect the attacks timely and

accurately. More importantly, compared with the previous work, we save 81% of the network recovery delay under attacks

ranging from 1 000 to 4 000 packets per second (PPS) on average, and 87% of the network recovery delay under higher attack

rates with PPS ranging from 5 000 to 30 000.
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1 Introduction

Software-defined networking (SDN) has emerged as

a promising network architecture that has enjoyed great

popularity in academia and industry in the past few

years. By decoupling the control and data planes and

providing great programmability, flexible control, and

agile management, SDN has seen widespread adoption

by many companies [1].

SDN centralizes the control logic by using open

southbound interfaces to allow controllers and switches

to interact. Among all the implementations of the

southbound SDN protocols, OpenFlow is the de facto

standard [2]. OpenFlow introduces flows and flow ta-

bles to identify and manage network traffic. Switches

use the flow rules to process the packets and forward

a PACKET IN request to the controller if they receive a

table-miss new packet in the flow table. Controller ap-

plications install flow rules, which define the core func-

tions to manage the networks.

Unfortunately, the SDN design itself has serious

security problems. The data-to-control-plane satura-

tion attack is a new destructive Denial-of-Service at-

tack which overloads the control plane, the data plane,

or both [3]. The saturation attacks exploit the table-

miss mechanism in SDN by manipulating lots of table-
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miss traffic to overload the switches and the controllers.

By changing the matching fields, attackers can manipu-

late table-miss flows easily with traditional DoS floods,

like SYN flood [3–5], UDP flood, ICMP flood, and their

combinations [6]. Worse still, the SDN control channel

is subject to side-channel attacks that reconnoiter the

flow rules and the network parameters [7–10]. With the

help of these techniques, intelligent saturation attacks

can be more destructive and stealthy [11–13].

Therefore, an efficient detection and mitigation

mechanism for the saturation attack is in need. Pre-

vious studies have proposed several methods.

In terms of detection, the rate and the duration

of PACKET IN messages are widely used to detect the

attacks [14–16]. In addition, some studies also lever-

age the flow’s entropy and the flow’s self-similarity for

detection [6, 17–19]. These methods can determine that

the whole network is under attack but cannot locate

the bot simultaneously, resulting in complex mitigation

actions and unnecessary filtration. Besides, the previ-

ous study shows that using only the PACKET IN rate is

ineffective because burst traffic and abnormal flooding

traffic may have similar PACKET IN arrival rates [20].

In terms of mitigation, it is common to use a

centralized network entity and migrate attack flows

to it for further filtration [6, 14,17]. However, central-

ized mitigation methods may have a long migration

path and decrease the throughput along the path.

FloodDefender [15] detours the attack flows to the vic-

tim’s neighbor and filters the attack flows in the con-

troller. Nevertheless, the efficiency is related to the

number of switches involved in the detour process, and

the control channel is still full of suspicious flows. These

attack flows injected into the control plane occupy the

resources of benign traffic, forcing the legitimate flows

to wait long in the queue. Thus, the network needs a

long time to recover [17].

From the discussion above, we propose an LDA-

based fast recovery saturation attack detection and

mitigation system (LFSDM), which detects saturation

attacks accurately while making the network recover

faster. Our system contains three modules for different

designed objectives: an attack detector, a mitigation

manager, and distributed mitigation agents. Specifi-

cally, first, the attack detector combines the PACKET IN

rate and the control channel occupation rate (CCOR)

as inputs of LDA to detect the attacks. Second, the mit-

igation manager collects a white-list in the controller,

coordinates corresponding mitigation agents, and in-

stalls migration flow rules. Third, the mitigation agents

scrub suspicious flows with the white-list and forward

benign traffic to the controller.

In the mitigation manager, we propose a novel mod-

ule called Force Checking (FC) to enable the fast recov-

ery of networks. The key idea of FC is cleaning up at-

tack flows that are buffered in the control plane, which

is always ignored by previous work [15, 17].

We evaluate our system in an SDN simulation en-

vironment with Mininet 1○ and RyuController 2○. The

experimental results show that LFSDM can timely and

accurately detect the attack while enabling the network

to recover in a short time.

The main contributions of our work can be summa-

rized as follows.

1) We put forward a detection scheme that combines

the PACKET IN rate and the distribution of the control

channel occupation rate (CCOR) and leverages linear

discriminant analysis (LDA) to identify saturation at-

tacks. By adopting these methods together, the accu-

racy of attack detection is improved. Besides, we in-

troduce decentralized mitigation policies based on dis-

tributed mitigation agents and white-list, reducing the

unnecessary filtration and the number of involved net-

work entities.

2) We make analysis of the network recovery delay

under saturation attacks in SDN and point out that

the attack flows buffered in the control plane result in

a long network recovery delay during the attacks. We

propose a novel module Force Checking (FC), to solve

this problem, enabling the network to recover quickly

by cleaning up these buffered packets.

3) We implement a prototype system of LFSDM,

which contains the detection scheme and the mitigation

functions, and conduct extensive experiments in a sim-

ulation SDN platform. The results show that LFSDM

can detect the attack timely and accurately while sav-

ing more than 81% of the ping round trip time (RTT)

compared with the traditional methods without clean-

ing up buffered packets and reducing 87% of the HTTP

request time averagely compared with previous work

FADM [17].

This paper is an extended version of our conference

paper [21]. They differ in the following aspects. 1) In

this paper, we utilize the linear discriminant analysis

for replacing the original detection method with fixed

thresholds in FSDM [21], improving the detection rate.

1○http://mininet.org/, April 2020.
2○https://osrg.github.io/ryu/, April 2020.
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2) We add a noise reduction process in the detection

scheme to improve the accuracy. We find that in our

conference paper, the entropy of CCOR is easily influ-

enced by high volumes of background traffic. In this

paper, we add a noise reduction process, which signifi-

cantly improves performance when working in high vol-

umes of background traffic. 3) We conduct more real-

istic experiments with the real-world traffic captured

from the gateway of our laboratory, containing about

40 active hosts and several public servers, and compare

the detection efficiency of the scheme proposed in this

paper with that in our conference paper. The experi-

ments and results are shown in Subsection 7.3.4.

The remainder of this paper is structured as follows.

Section 2 elaborates some necessary background know-

ledge. Section 3 presents some related work. We dis-

cuss the adversary model in Section 4, illustrating what

kinds of attackers are considered in this paper. Then,

we analyze the network recovery delay in Section 5. We

elaborate on our LFSDM system in Section 6. Perfor-

mance evaluation is presented in Section 7. Finally, we

draw our conclusions in Section 8.

2 Background

2.1 Software-Defined Networking

In 2008, McKeown et al. proposed OpenFlow [2],

which is the de facto standard among all the imple-

mentations of southbound SDN protocol. According to

OpenFlow 1.5 3○, the controller installs flow rules, dis-

tributes test packets, and collects global information

of the networks. Each flow rule, according to which

switches process network traffic under the instruction

of flow rules in a match and action manner, contains

a match field and an action field. Generally, controller

applications install rules reactively. As shown in Fig.1,

a flow will go through several steps in the reactive

mode. Each time when the switch receives a flow, it

searches the matching rules in the flow tables. If there

is a match, the switch will execute the actions in the

rule. If no flow rule matches the current incoming flow

(called the table-miss flow), the switch encapsulates a

PACKET IN message containing the first flow packet

to the controller. After that, the controller applications

install new rules for this flow. In detail, different appli-

cations make up multiple processing chains waiting for

dealing with flow events. When the controller receives

a message, the event dispatcher module dispatches it

to the subscriber applications. Each application main-

tains an event queue to store the events that have not

been processed temporarily.

2.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) [22] is a classical

statistical approach for dimensionality reduction, whose

goal is to find an optimal transformation by minimizing

the within-class distance and maximizing the between-

class distance simultaneously. In this case, we find that

LDA is a simple and efficient method for attack detec-

tion.

2.3 Data-to-Control-Plane Saturation Attack

The data-to-control-plane saturation attack is a

more destructive DoS attack than the traditional one.

It destroys the data plane and the control plane at the

same time. In such attacks, the attacker manipulates

numerous table-miss flows to trigger PACKET IN floods

to occupy the control channel, exhaust the controller’s

resources, trigger FLOW MOD floods to exhaust the mem-

ories of switches, and destroy the data plane target at

the same time.

Switch Pipeline Controller Processing Chain

App 1 App 2 App 3 App 4

(1) Flows (2)

(3)

PACKET_IN (4)

Table 1 Table 2

(5)

PACKET_OUT

FLOW_MOD

Processing Chain

Processing Chain

Processing Chain

Table 1

Table 2

(2') Match and
Forward

Fig.1. Flow processing example in the reactive mode.

3○https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf, April 2020.
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3 Related Work

The data-to-control-plane saturation attack was

firstly introduced by Shin and Gu [23] by triggering flow

rules to exhaust the switches’ memory and the control

plane resources. Then, Shin et al. [3] proposed a switch-

level SYN proxy to reduce attack flows. Ambrosin et

al. [24] improved the SYN proxy to enable malicious

traffic identification. These methods are not protocol-

independent because they can defend only TCP-based

attacks. However, saturation attacks may also result

from other types of attacks, such as IP spoofing, ICMP

flooding, UDP flooding, and so on [6].

Then, protocol-independent methods are proposed

to deal with various attack flows. FloodGuard [14] and

FADM [17] deploy the centralized middle layer cache be-

tween the control plane and the data plane. They mi-

grate the attack flows to the middle layer cache and

further filter the benign traffic. However, FloodGuard

suffers a high packet loss rate in some cases [15]. FADM

has a long network recovery delay under attacks. Unlike

the work mentioned above, FloodDefender [15] installs a

flow rule to detour attack flows to the victim’s neighbor

switches. However, the detour process influences lots of

switches in the network. In the meantime, the control

channels are not protected well because FloodDefender

filters the network flows in the controller.

From our perspective, deploying distributed mitiga-

tion agents is a more sound approach. The main idea of

the mitigation agent is to deal with attack flows before

they are forwarded to the control planes. We deploy

a distributed mitigation agent in each edge gateway as

a virtual functionality module to reduce the number

of the influenced network switches, compared with the

centralized filtration center.

4 Adversary Model

An adversary model is a description of an at-

tacker in a computer or networked system, which is

an integral concept in cyber defense. In this paper,

we consider a more powerful adversary than that in

the traditional SDN data-to-control-plane saturation

attacks [23], where an attacker can reconnoiter some

matching fields of flow rules in SDN and then leverage

the information to launch more intelligent attacks [7, 25].

We also assume that an attacker can compromise bots

with flexible locations, even inside an SDN-based cloud

network. These assumptions make the detection and

mitigation of the saturation attack a challenging prob-

lem. Meanwhile, we assume that the controllers and the

switches are secure entities in the network [3], which at-

tackers cannot compromise; thus, defenders deploy se-

curity applications in these places.

5 Network Recovery Delay

In this section, we analyze the network recovery de-

lay under attacks. First, we show why and where the

network delay comes under attack. The key reason

is that the control plane contains many applications

to process flows (e.g., ARP Proxy, ACL, Load Bal-

ancer), and these applications cannot distinguish attack

flows. An event dispatcher receives the packets from the

switch and enqueues each packet to the corresponding

subscribers’ buffer. When a saturation attack happens,

the event dispatcher puts lots of attack flows into the

event buffer, but the applications still fetch events as

usual. Traditional mitigation policies [14, 15,17] generally

install a flow rule to block or migrate the attack flows in

the switches while ignoring the buffered attack flows in

the controller. Though the security application timely

blocks the attack, other applications need a long time

to clean up the attack flows. Thus, benign traffic can-

not be timely forwarded until the attack flows dequeue.

The buffered attack flows result in a long network re-

covery delay.

Then, we estimate how long the network needs to

recover from an attack, even though the attack is timely

blocked. We assume that the attacker launches an at-

tack at time ta with the rate of Kpps and an average

size of ba bytes, and the detector needs a period tw (i.e.,

a detection cycle) to collect information and determine

the attack. Additionally, Bcs denotes the control chan-

nel bandwidth.

Fig.2 shows an example of the network recovery de-

lay under the worst attack case. We call it “the worst”

because the attack happens slightly before a detection

cycle starts, meaning that the defenders need more than

one detection cycle (the longest detection time), to de-

tect the attack. We depict the longest detection period

as td. During td, there are about td ×Kpps attack pac-

kets in the control plane. The number of attack packets

Na is:

Na = min

{
td ×

Bcs

ba
, td ×Kpps

}
.

When the number of attack packets exceeds the band-

width, there are td×Bcs

ba
attack packets as other packets

will overflow the switch buffer, thus being dropped.
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Attack Flows in Control Plane

Time

Detection Cycle = 

0

Attack Start 

Attack Detection

Network Recover

Recovery Delay

Na

td

tr

tw

ta

Fig.2. Example of the network recovery delay without cleaning
up remaining attack flows under the worst attack case, where the
defenders need the longest time to discover the attack.

When the system detects an attack, traditional

methods install a defensive flow rule immediately. How-

ever, it is not enough. Because there are Na buffered

packets in the control channel, the defensive rules need

time for queuing. Once the controller installs the de-

fensive rules, the switches stop injecting attack flows to

the control plane. Notice that though these rules block

attack flows in the data plane, there are still Na attack

flows buffered in the control plane. Then, when a nor-

mal flow comes, it still has to wait for a long time. We

assume that applications need time tc to deal with each

flow. Then the number of remaining packets Nr can be

calculated as:

Nr = Na −
td
tc
.

Then the time for the controller to process all these

attack flows is denoted as

tm = tc ×Nr.

We define the whole network recovery delay as tr, and

we have

tr = td + tm = td + tc ×Nr

= td ×
(

1 + tc ×max

{
Bcs

ba
,Kpps

})
. (1)

From (1), the number of buffered packets Nr and the

detection time td are the core parameters of the network

recovery delay. To reduce the network recovery delay,

intuitively, we should decrease td or Nr. However, re-

ducing td is not generic as it is relevant to the detection

algorithm, influencing the decision precision. Thus, we

cannot reduce td. Instead, reducing Nr is more generic.

For this purpose, we propose a novel module FC to re-

duce Nr effectively.

6 LFSDM System

In this section, we introduce our detection and miti-

gation system: LFSDM. As Fig.3 shows, there are three

Mitigation Server

Attack Detector

Controller

Platform

FSDM

System

Mitigation

Agent

Inform Attack

Attack Flows

App 1

App 2

Edge

Gateway

PACKET_IN Event ProxyBenign

PACKET_IN

Send White List

Filter

Migrate or Block 

Attack
Activate

Force_Checking

Fig.3. System overview and working process of LFSDM.
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modules. In detail, the attack detector collects the

CCOR distribution and uses the trained LDA model to

measure whether the network is under attack. More-

over, the mitigation server collects a white-list and

sends it to each mitigation agent. Once the system de-

tects an attack, the mitigation server stops the white-

list collection and blocks or migrates suspicious flows

depending on whether the attack flows are mixed with

benign flows. If so, we forward suspicious flows to the

nearest mitigation agent. Then, the mitigation agent

scrubs the attack traffic based on the white-list and

forwards the benign traffic to the mitigation server us-

ing TCP. Finally, the mitigation server encapsulates the

benign packets to a PACKET IN event and sends it to the

event dispatcher.

6.1 Attack Detector

6.1.1 Attack Detection Overview

We combine the PACKET IN rate and the control

channel occupation rate (CCOR) distribution for at-

tack detection. The PACKET IN rate is a good but not

perfect parameter in the detection scheme as it might

regard burst traffic as attacks, which increases the false-

positive rate. Using the CCOR distribution combined

with PACKET IN rate, we decrease the false-positive rate

while maintaining a high true-positive rate. The in-

tuition of using CCOR is that a benign network flow

from a specific interface is generally in a pair; thus,

we can observe its pair flow from another interface. It

makes the CCOR distribution look like a uniform dis-

tribution. However, when numerous attack flows come,

their pair flows can hardly be observed as they exceed

the capability the system can afford, and the benign

flows from other interfaces will also be congested and

queued. That is to say, the monitored CCOR of the

specific victim switch interface will be high, which re-

sults in a meager entropy value of the whole CCOR

distribution. Thus, we use the total PACKET IN rate (de-

picted as Sum) and the entropy of CCOR distribution

(depicted as H) as the input and leverage the machine

learning method LDA [22] to solve a binary classification

problem.

6.1.2 Setup

The SDN controller offers the link discovery mod-

ule to find the active switches and their interfaces.

We use tuple (dpid, in port) to identify each device

and its interfaces. Though a flow can trigger multiple

PACKET IN messages from different switches, we only

monitor the first one as it is enough for attack detec-

tion. Considering there are n such interfaces existing

in the data plane, we establish a monitor vector as:

Mt = (h1, h2, · · · , hn), where t represents the time win-

dow. We set the initial value of M0 = (1, 1, · · · , 1) for

the sake of entropy calculation.

Assuming in a time window, there come k

PACKET IN messages from host hi. Then we set hi = k.

In each time window, we calculate Sumt =
∑n

i=1 hi.

And the CCOR in this time window can be calculated

as:

M∗
t =

Mt

Sumt
.

The entropy of CCOR can be calculated as:

H(M∗
t ) = −

n∑
i=1

h∗
i × log2(h∗

i ). (2)

However, such a simple calculation cannot reach a good

classification result. That is because the background

traffic could become the noise in the entropy calcula-

tion and influence the distribution of CCOR, especially

in a relatively high throughput environment. To reduce

the noise, also to keep the extracted attack features, we

update H in several steps:

1) find the maximum value in Mt, denoted as max;

2) pop it out and calculate the average of others,

denoted as mean;

3) update the value of each hi from hi = hi−mean;

4) push the maximum value back, and use (2) to

update the entropy H(M∗
t );

5) map H with an exponential function, which is

H∗(M∗
t ) =

√
103

H(M∗
t )
,

because of the range of function S � H.

Now, the (H∗(M∗
t ), Sumt) pair can be used as in-

put in the LDA model. The idea for these steps is

that steps 2 and 3 reduce the noise of the CCOR from

other interfaces, and steps 1 and 4 promise that the

most likely victim interface will hold the attack fea-

tures. Also, these four steps make the whole CCOR

distribution much more uneven under attacks, result-

ing in easier attack detection.

To sum up, our detection scheme uses tuple

(Sum,H∗) in each time window for detection. To il-

lustrate our idea, there are two easy examples shown

in Fig.4. In Fig.4(a), attackers use large-scale botnets

outside the network to launch attacks, which can be

detected with a low H∗ value. While, in Fig.4(b), the
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External
Networks

(H↼M↽↪ Sum)
(H↼M↽↪ Sum)

eth 0

eth 1 eth 3

eth 4

(a) (b)

Fig.4. Two attack examples. (a) Attacks with large-scale botnets outside the network. (b) Attacks with several internal hosts. eth
represents the “Ethernet Interface” of the device.

attacker launches attacks from multiple network inter-

faces. In that way, H∗ may not be low enough, but

Sum can promise that the attack is detected precisely.

6.1.3 Training LDA Model

LDA is a supervised machine learning algorithm

that must be trained before use. The training data

is made by ourselves, containing realistic benign traffic

captured from the gateway of our laboratory and diffe-

rent types and scales of saturation attacks launched by

us. The benign traffic has an average rate of 10 Mbps

with about 40 active hosts. We use the Tcprewrite 4○

tool to remap the realistic address to the simulation en-

vironment address while maintaining relationships be-

tween client and server. Then, we use the Tcpreplay

tool to replay the packets on each VM. We collect about

191 normal samples and about 192 attack samples. The

LDA training result is shown in Fig.5. We can see that

the malicious traffic always comes with a huge Sum

value and a meager H∗ value.

LDA's Decision Boundary

Benign Traffic Samples

Malicious Traffic Samples

250

250

200

150

100

50

0

500 750 1 000 1 250

Sum↼Mt↽

H
⇀
↼M

t↽

1 500 1 750

Fig.5. LDA predict result with training data.

6.1.4 Bot Detection

From the CCOR distribution, we find a suspicious

interface connected to the bots. In t time windows, if

the network state is normal, the attack detector col-

lects a series of monitor vectors as (M1,M2, · · · ,Mt).

When the attack detector determines that there is an

attack during the atk time cycle (denoted as Matk),

firstly, it checks if there exists an interface that has the

malicious CCOR (e.g., larger than 50%). If so, it re-

turns the interface index as the attacker’s interface. If

not, it then calculates Matk −Matk−1 to find the sus-

picious interfaces that have the highest growth rate of

the number of PACKET IN messages. This step can find

only one malicious interface in one iteration. If there

are multiple attackers, we need several iterations to find

them one by one.

6.2 Mitigation Manager

The mitigation manager has a server in the con-

troller and distributed agents deployed in edge gate-

ways. The server and agents synchronize the white-list

through TCP. As shown in Fig.3, when the network

is in the normal state, the mitigation server collects a

white-list for benign traffic periodically and sends it to

each mitigation agent. We adopt the collecting policy

for the white-list that is discussed in FADM [17]. The

mitigation server updates the white-list in each benign

time window according to the following rules.

• The flow is in a pair.

• In a period, the number of flows with the same

source IP exceeds a threshold value.

We add the source IP addresses that match these

requirements to the white-list in each time window.

However, each mitigation agent needs to synchronize

the white-list with the mitigation server in our system,

which may continuously bring a high cost of bandwidth

and memory. Thus, we use a Bloom filter [26] to store

the white-list for each mitigation agent and the miti-

4○https://tcpreplay.appneta.com/, April 2021.
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gation server. Notice that even though the Bloom fil-

ter misjudges false-negative samples, it would not influ-

ence the system as most attack flows are scrubbed. For

example, for a Bloom filter with a false rate of 0.1%,

the mitigation agents may forward 10 attack flows in

each 10 000 attack flows. However, few attack flows

can hardly cause an evident impact on the whole sys-

tem. Thus, we save a large amount of bandwidth and

memory. Once the attack detector determines an attack

takes place, the mitigation server processes the attack

flows in three steps.

1) The mitigation server installs a defensive rule on

the victim switch. The mitigation server installs a block

rule for attacks from the single-host interface. For at-

tacks from the multiple-hosts interface (e.g., the edge

gateway’s interface), as the traffic is hybrid with be-

nign traffic, the mitigation server installs a migration

rule for these flows to the nearest mitigation agent for

further filtration.

2) If migration happens, mitigation server acti-

vates the corresponding mitigation agent, which uses

pypcap 5○ to capture all the packets delivered by this

agent. When activated, the agent extracts all the

packet headers and checks if the source IP address is

in the white-list. If so, the agent sends the packets to

the mitigation server.

3) The mitigation server acts as an event dispatcher

under attacks. When receiving a packet from the mit-

igation agent, the mitigation server uses the victim’s

(dpid, in port) value and encapsulates the packet as

a PACKET IN event. The whole protection process is

transparent to other network functions with this step.

Then, the forwarding application installs the flow rule

and avoids table-miss again.

These methods mentioned above ensure timely pro-

tection of the control plane. However, we find that the

network still needs a long time to process the buffered

attack flows (Section 5). We propose the FC Module

to solve this problem, which will be discussed in the

following part.

6.3 Force Checking Module

From the discussion in Section 5, ignoring the influ-

ence of the buffered attack flows results in a prolonged

network recovery delay. We propose the FC module

to solve this problem, which achieves this goal in two

steps. First, we use a white-list to distinguish benign

traffic. This step could be changed to other traffic clas-

sification methods. Second, we check each packet in

the controller event queue before distributing it to each

application. The FC module does nothing when the

network state is normal; thus, it will not bring over-

head to our system and the network. When the system

detects an attack, the FC module checks each packet

header in the event queue of the controller. If the event

is not in the Bloom filter, the FC module drops it to

avoid adding it to the subscribers’ event queues. In

this way, the buffered attack flows can be efficiently re-

duced, thus enabling the system to release resources for

benign traffic.

7 Evaluation

7.1 Implementation

We implement a prototype of LFSDM system in

the simulation SDN platform, with an i5-9400 CPU

and 6 GB memory Ubuntu 16.04 virtual machine.

Our environment uses the Ryu, the Mininet, and the

OpenVswitch 6○ to create the controller, the hosts, and

the OpenFlow switches respectively. Fig.6 shows our

topology with three switches, two legacy routers as

gateways, a web-server, and several hosts in the net-

work. In detail, the test hosts send ping messages and

record RTT or download a certain page periodically

from the web-server and log the request time. More-

over, all the hosts replay the real-world background

traffic. We create the attack samples manually with

different protocol types and random source addresses.

In the Ryu controller, we implement the other two ap-

plications. They are ArpHub and EasyACL; both of

them are written by ourselves and tested to be function-

ally well. The former responds to all the ARP requests,

and the latter provides essential access control for in-

ternal hosts based on IP addresses. These two applica-

tions work like a layer-3 forwarding function with access

control. The network’s control logic is: in table 0, the

traffic having access in ACL will be set goto=table 2,

and the table-miss flows will go to table 1. In table 1,

the table-miss ARP, TCP, and UDP messages are for-

warded to the controller. In table 2, the layer-2 for-

warding rules forward the traffic to a certain interface.

As mentioned above, we assume that the attacker

has the ability to reconnoiter the flow rules in our sys-

tem, which means the attacker knows that all the traffic

5○https://pypi.org/project/pypcap/, April 2021.
6○https://www.openvswitch.org/, April 2020.
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Fig.6. Experimental topology with the prototype system of LFSDM.

with random values of ip src and ip dst=web-server

will not be dropped and can trigger PACKET IN floods.

The malicious hosts may be outside or inside the net-

work and use the hping3 7○ to create attack flows with

different fields and protocols.

7.2 Experiments

We conduct four experiments to evaluate our sys-

tem. First, we measure the buffered attack flows to

verify the correctness of the network recovery model

in practice. The maximum buffered packets show the

worst case in the longest detection time, while the ave-

rage buffered packets reflect generic situations in the

random detection time. The ArpHub and the Easy-

ACL count the buffered attack flows with the attack

rate ranging from 500 to 2 500 PPS.

Second, we evaluate the network recovery delay. We

define the network recovery delay as the first round trip

time (RTT) of a new flow under an attack. RTT con-

tains a queue delay in the controller, which indicates

how long the controller needs to empty the attack flows.

To measure that, test hosts send ping messages under

attacks. To get a more convincing value, we send the

ping messages slightly after the attacks, making them

mixed with the attack flows. The ping messages and

the attack flows both trigger PACKET IN messages, and

they are mixed in the same queue waiting for process-

ing. We conduct experiments with traditional methods

and the FC function, with the attack rate increasing

from 500 to 4 000 PPS.

Third, we make a comparison between our work and

the FADM [17] system. FADM defines the network re-

covery delay as the first HTTP request time under an

attack. In FADM, hosts download pages from the web

server every three seconds, and they use the first record

time under attacks to measure the network recovery de-

lay. The FADM definition of network recovery delay

and ours reflect the period that the network needs to

recover. In this experiment, we use the definition of

FADM for evaluation.

Fourth, we evaluate the detection efficiency with at-

tack rates PPS ranging from 1 000 to 5 000, compared

with our conference paper FSDM [21].

7.3 Evaluation

7.3.1 Buffered Attack Packets

This subsection evaluates the influence of buffered

attack packets on the network recovery delay. Fig. 7

shows the number of buffered packets of each applica-

tion in two methods, with and without the module FC.

Besides, we measure the average queue delay of each

packet for each application in Table 1. Benign traf-

fic has a very long delay under attacks. For example,

under 2 500 PPS attacks, more than 5 628 packets are

buffered in the EasyACL and 5 380 packets in the Ar-

pHub. On average, the queue delay for each packet

7○http://www.hping.org/, April 2021.
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Fig.7. Number of buffered packets under attacks. (a) Buffered attack packets without the FC module. (b) Buffered attack packets
with the FC module.

is 30.03 ms in ArpHub and 33.23 ms in EasyACL. Un-

der rough evaluation, the benign traffic queue delays for

these two applications are about 162 s and 187 s, respec-

tively. Worse still, these buffered packets will trigger

lots of PACKET OUT and FLOW MOD messages, exhaust-

ing the limited flow entries of commercial OpenFlow

switches. This experiment indicates the importance of

emptying the buffered packets.

Table 1. Average Queue Time (ms) for Each Application

Situation ArpHub EasyACL

No attack 4.13 7.26

Under attacks 30.03 33.23

The FC module decreases the buffered packets a lot,

as shown in Fig.1. With the attack rate increasing, the

number of buffered packets does not increase and re-

mains at a low value. Even in the worst case with an

attack rate of 2 500 PPS, there are only 128 buffered

packets in EasyACL and only 20 in ArpHub. Averagely,

FC reduces 98.43% of buffered packets for ArpHub and

89.16% packets for EasyACL.

7.3.2 Network Recovery Delay

Then, we compare the network recovery delay of

two approaches, with and without the FC module. In

this subsection, the network recovery delay is defined

as the ping RTT. Fig.8 shows the average ping RTT

under different attack rates. RTT suffers an imme-

diate increase without the FC module. The network

needs even more than 40 seconds to recover in worse

cases. However, with the FC module, the network can

empty buffered attack flows to release computational

and memory resources, thus responding and dealing

with benign flows in a short time. Even under attacks

ranging from 3 000 PPS to 4 000 PPS, the network re-

covery delay is no more than eight seconds. Compared

with the traditional mitigation policies that ignore the

remaining traffic, we successfully reduce more than 81%

of the network recovery delay.
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Fig.8. Network recovery delay with ping RTT.

7.3.3 Comparison with FADM

In this part, we compare our work with the FADM

system under higher attack rates. We use attack range

and the definition of network recovery delay in FADM

to keep consistency. Fig. 9 shows the HTTP request

time under attack. When the attack rate exceeds 5 000

PPS, the FADM system needs more than 30 seconds to

recover from those large attack flows. While, in our sys-

tem, the HTTP request time is less than 6 seconds. Av-

eragely, we reduce 87.17% of the HTTP requests time

under many attacks, indicating that LFSDM is robust

and practical.
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7.3.4 Detection Efficiency

In this subsection we compare our detection effi-

ciency with that of our conference paper [21]. We use

detection rate (DR) to measure the performance, which

is defined as:

DR =
TP

TP + FN
,

where TP represents the number of the sample that

attacks are detected in time (no more than two-time

windows). FN denotes the number of attacks that are

regarded as normal. We conduct two different experi-

ments under background traffic of 1 Mbps and 10 Mbps

and evaluate our work with our conference edition [21]

under attack rates of 1 000 to 5 000 PPS.

From Fig.10, we see that the improved method, us-

ing LDA and noise reduction, explicitly improves the

detection rate compared with our previous work using

the fixed threshold. LDA learns from the traffic to find

an optimal boundary, while noise reduction decreases

the influence of background traffic. In detail, Fig.10(a)

shows that with the background traffic of 1 Mbps, the

fixed threshold method achieves an average detection

rate of 84% while LDA detects all the attacks. Be-

sides, with the background traffic of 10 Mbps, as the

previous method does not use noise reduction, the de-

tection rate only exceeds 50%. The high background

noise makes the CCOR distribution look uniform and

the entropy calculation inaccurate. In this paper, the

noise reduction process solves this problem, keeping a

high detection rate under high background traffic.

8 Conclusions

SDN-based saturation attack defenses have been ex-

tensively studied in the past few years. However, the

long network recovery delay is a challenging problem

that harms previous work’s feasibility. This paper’s

main contribution is that we performed an in-depth

analysis and pointed out that the remaining attack

flows and the event dispatching mechanism in SDN are

the culprit of the long network recovery delay. To re-

duce it, we proposed a novel module FC, which enables

the event dispatching module to clean up the buffered

attack flows and release controller resources, thus al-

lowing the network to recover in a short time. The ex-

perimental results showed that LFSDM can accurately

detect the attack while reducing 81%–87% of the net-

work recovery delay compared with the previous work.

FC also works well in other mainstream controllers and

does not harm the throughput when there are no at-

tacks, and thus it is efficient and practical. We also in-

creased the attack detection rate by leveraging the LDA

and the CCOR distribution. We will further study the
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Fig.10. Detection rate under different background traffic. (a) DR under 1 Mbps traffic. (b) DR under 10 Mbps traffic.
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quality of service problems of benign traffic under DDoS

attacks, such as the network recovery delay, the strong

end-to-end communication availability, and so on.
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