
1102 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

Two-Phase Virtual Network Function Selection and
Chaining Algorithm Based on Deep Learning

in SDN/NFV-Enabled Networks
Jianing Pei , Peilin Hong , Kaiping Xue , Senior Member, IEEE, Defang Li ,

David S. L. Wei, Senior Member, IEEE, and Feng Wu, Fellow, IEEE

Abstract— With the advances of Software-Defined Networks
(SDN) and Network Function Virtualization (NFV), Service
Function Chain (SFC) has been becoming a popular paradigm to
carry and complete network services. Such new computing and
networking paradigm enables Virtual Network Functions (VNFs)
to be placed in software entities/virtual machines over a network
of physical equipments in elastic and flexible way with low
capital and operation expenses. VNFs are chained together to
steer traffic as needed. However, most of the existing traffic
steering and routing path computation algorithms for SFC
are complex, unscalable, and low time-efficiency. In this paper,
we study the VNF Selection and Chaining Problem (VNF-SCP)
in SDN/NFV-enabled networks. We formulate VNF-SCP as a
Binary Integer Programming (BIP) model in order to compute
routing path for each SFC Request (SFCR) with the minimum
end-to-end delay. Then, a novel Deep Learning-based Two-Phase
Algorithm (DL-TPA) is introduced, where VNF selection network
and VNF chaining network are designed to achieve intelligent and
efficient VNF selection and chaining for SFCRs. Performance
evaluation shows that DL-TPA can achieve high prediction
accuracy and time efficiency of routing path computation, and
the overall network performance can be improved significantly.

Index Terms— Software-defined networks, network function
virtualization, VNF selection and chaining, routing path com-
putation, deep learning.

I. INTRODUCTION

NETWORK Functions (NFs) can be ubiquitously placed
in enterprise networks to provide various services and

enhance the performance, security and manageability [1], [2].
Traditional NFs for firewall, deep package inspection, intru-
sion detection, load balance, wide area network acceleration,
and so on are mostly carried by specific physical equipments.
Due to this tight coupling, Internet Service Providers (ISPs)

Manuscript received April 15, 2019; revised December 3, 2019; accepted
January 29, 2020. Date of publication April 9, 2020; date of current version
May 21, 2020. This work was supported in part by the National Natural
Science Foundation of China under Grant 61671420 and Grant 61972371,
and in part by the Youth Innovation Promotion Association of the Chinese
Academy of Sciences (CAS) under Grant 2016394. (Corresponding author:
Kaiping Xue.)

Jianing Pei, Peilin Hong, Kaiping Xue, Defang Li, and Feng Wu are
with the Department of Electronic Engineering and Information Science,
University of Science and Technology of China, Hefei 230027, China
(e-mail: jianingp@mail.ustc.edu.cn; plhong@ustc.edu.cn; kpxue@ustc.edu.cn;
fengwu@ustc.edu.cn; ldf911@mail.ustc.edu.cn).

David S. L. Wei is with the Computer and Information Science Department,
Fordham University, Bronx, NY 10458 USA (e-mail: wei@cis.fordham.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2020.2986592

have to spend expensive Capital Expense (CAPEX) to
continuously purchase new physical equipments to satisfy
increasing performance demands of users [3]. In addition, it is
difficult for ISPs to timely configure, manage and optimize
these NFs, which usually leads to long update cycle of network
service and high Operation Expenses (OPEX) [4], [5].

Software-Defined Networks (SDN) and Network Function
Virtualization (NFV) have emerged as a promising way to
address the above mentioned limitations. SDN is a new
networking paradigm which can separate control plane from
data plane and conduct centralized management via SDN
controllers [6], [7]. Meanwhile, NFV technology can decouple
NFs from specific physical equipments based on virtualization
technology and dynamically place Virtual Network Func-
tions (VNFs) in appropriate locations of the network to provide
specific services for users [8]. VNFs are realized in software
and running on Commercial-Off-The-Shelf (COTS) devices,
which can be managed by SDN controllers. Compared with
traditional NFs carried by specific physical equipments, VNFs
have strong potential in significantly reducing OPEX/CAPEX
and enhancing service flexibility [2], [9].

Based on SDN/NFV technologies, Service Function Chain
(SFC), standardized by Internet Engineering Task Force
(IETF), defines a set of ordered or partially ordered VNFs, and
for an SFC Request (SFCR), the traffic needs to be steered
to traverse a sequence of specified VNFs in a predefined
order [10], [11]. With the optimal VNF selection and chaining
strategies, the performance and cost-effectiveness of SFC
services can be improved [12]. For example, in Fig. 1, there
are five types of VNFs in SDN/NFV-enabled networks and
each type of VNF has multiple instances placed in different
network locations. The parameters VNF1

a, VNF2
a and VNF3

a

respectively represent the first, second and third VNF instances
of VNFa. An SFCR starting from the ingress node A needs
to sequentially traverse the instances of VNFa, VNFc, VNFb,
and VNFd before reaching the egress node J. However, there
usually exist many paths (e.g., the dotted lines with different
colors in Fig. 1) that can satisfy the predefined order of VNFs
about this SFCR. Therefore, it is challenging to design optimal
VNF selection and chaining strategies to steer the traffic of
SFCRs.

Furthermore, SDN controllers conduct centralized path
management for all OpenFlow switches, so they are easy to
become a single bottleneck of performance. Therefore, based

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4180-1421
https://orcid.org/0000-0002-3027-1990
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0001-8254-552X

PEI et al.: TWO-PHASE VNF SELECTION AND CHAINING ALGORITHM BASED ON DEEP LEARNING IN SDN/NFV-ENABLED NETWORKS 1103

Fig. 1. VNF selection and chaining for SFCRs with deep learning technology
in SDN/NFV-enabled networks.

on the basic SDN architecture, the functionality enhancement
is not supposed to introduce unbearable overhead. However,
in order to get the optimal strategies to steer the traffic of
SFCRs, the existing rule-based routing algorithms developed
for SDN controllers usually realize traffic path management
based on massive iteration and computation, which incurs high
computation overhead and low time-efficiency [13]. Thus, for
SFCRs, ISPs should re-consider to introduce new routing path
computation algorithms with low computational complexity
and high time-efficiency so as to cope with tremendously
increasing traffic.

Meanwhile, witnessing the breakthrough and significant
performance gains, deep learning has obtained remarkable
achievements in various domains, such as computer vision,
natural language processing, self-driving and strategic game
playing [14], [15]. As the traffic path management is related
to network conditions, the hidden rules behind the routing
path computation should be deeply mined to speed up the
optimal path problem solving during traffic steering. Fortu-
nately, due to powerful learning capacity and performance
optimization in software and hardware [15], deep learning can
efficiently discover and characterize the structural features of
complex problems. Given large scale of training data and the
objective of fine-grained feature extraction and classification,
deep learning is more suitable than conventional machine
learning algorithms to realize routing path computation for
SFCRs [16], [17]. Additionally, based on deep learning, many
network-related factors, parameters and metrics can be con-
sidered to design a fine-grained routing path computation
strategy for SFCRs in a more intelligent and autonomous
manner. Therefore, by introducing deep learning, it is hope-
ful to integrate intelligence with the network technology to
avoid massive iteration and computation to conduct intelligent
routing path computation, which would likely outperform
traditional rule-based routing algorithms [18], [19].

As shown in Fig. 1, SDN and deep learning technologies are
integrated to realize intelligent routing path computation for
SFCRs. The network condition data can be timely collected
by SDN controller and be used to train deep models. Then,
the optimal strategies can be produced from deep models,
thereby achieving efficient network management.

In this paper, we study the VNF Selection and
Chaining Problem (VNF-SCP). As the network load in
SDN/NFV-enabled networks changes dynamically, the routing
strategies should be dynamically optimized according to real
time network load to avoid bottlenecks and enhance the QoS
of network and the QoE of users [6], [7]. By introducing deep
learning to address VNF-SCP, the key technical problem is
how to make the optimal VNF selection and chaining strategies
for SFCRs with high time efficiency and low computation
complexity. To solve VNF-SCP, we firstly formulate it as a
Binary Integer Programming (BIP) model aiming to minimize
the end-to-end delay for each SFCR. Then, we propose a
novel Deep Learning-based Two-Phase Algorithm (DL-TPA)
to solve this problem. The deep models of DL-TPA are
constructed based on Deep Belief Networks (DBNs) and can
achieve routing path computation for SFCRs in batches, which
consists of two parts, respectively named as VNF selection
network and VNF chaining network. Both supervised and
unsupervised learning algorithms are used to train these deep
models, where the training data are generated by running
an optimal algorithm. The running process has two phases:
1) select the optimal VNF instances in VNF selection network;
2) use the VNF chaining network to concatenate the selected
VNF instances and construct complete routing paths of SFCRs
to satisfy predefined orders and constraints. The contributions
of our work are listed below:

• We give a detailed analysis on VNF Selection and Chain-
ing Problem (VNF-SCP) in SDN/NFV-enabled networks
and formulate it as a BIP model aiming to minimize the
end-to-end delay for each SFCR.

• We propose a deep learning-based two-phase VNF selec-
tion and chaining algorithm, DL-TPA, to solve this
problem. In DL-TPA, based on available resources and
different SFCRs, we generate training data by solving
the BIP model with an optimal algorithm [20], [21].
We design two types of DBN networks, named as
VNF selection network and VNF chaining network,
and train them to solve VNF-SCP in two phases. Fur-
thermore, given the relationship of SFCRs and net-
work topology, we reduce the computation complexity
of output layers of VNF selection network and VNF
chaining network with the optimization of solution space
size.

• We conduct a theoretical analysis on the effectiveness of
DL-TPA and further construct a Tensorflow-based [22]
simulation environment to verify the efficiency of our
scheme.

The rest of this paper is organized as follows: Section II
reviews the related works and introduces the technical
background of DBN. We formulate VNF-SCP in Section III,
then propose our DL-TPA algorithm in Section IV. The
effectiveness of DL-TPA is analyzed and compared with

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

1104 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

existing approaches in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORKS AND TECHNICAL BACKGROUND

A. Related Works

In recent years, traffic steering and routing path computation
problem for SFCRs has become a hot issue in academia,
and various solutions have been proposed [13], [20], [21],
[23]–[28]. Considering the resource consumptions on links and
nodes in distributed cloud environments, Mechtri et al. [13]
proposed a novel eigendecomposition based approach to
address the placement and chaining problems for SFCs.
Yu et al. [20] and Dwaraki Wolf [21], respectively, proposed
to compute routing paths by concatenating specified VNF
instances in predefined orders with graph layering approaches.
Jiao et al. [23] considered the VNF selection and traffic steer-
ing problem for SFC and formulated it as an Integer Linear
Programming (ILP) model, where the objective is to max-
imize the network throughput in SDN/NFV-enabled environ-
ment. Huang et al. [24], [25] leveraged markov approximation
technique to maximize the profit and cost-efficient utility.
Cheng et al. [26] studied service chain instantiation problem
and proposed a simulated annealing algorithm to get the
optimal solution. Pei et al. [27] proposed to construct routing
paths for SFCRs and achieved load balancing by considering
multi-resource constraints and flow features. Furthermore,
the commercial SDN controller, opendaylight, has supported
four SFC scheduling algorithms including Random, Round
Robin, Load Balance and Shortest Path [28]. However, all
these mentioned solutions are rule-based and cannot achieve
intelligent traffic steering for SFCRs, which usually incurs
complex strategy design and low time-efficiency in routing
path computation.

Faced with tremendous growth of network traffic and the
declining profits of ISPs, deep learning technology appears to
be a viable approach for efficient routing path computation
with intelligent traffic management [12]. Mao et al. [16] pro-
posed a deep learning architecture to achieve efficient routing
path computation for high-speed core network. Kato et al. [19]
presented a DBN based deep learning system and applied it to
improve heterogeneous network traffic control. In order to sim-
plify the design of routing strategies when considering expo-
nentially increased traffic, Mao et al. [29] further proposed
a tensor-based deep belief architecture to achieve fine-grained
network traffic control. In our previous work [30], we proposed
a hop-by-hop approach based on DBN to compute routing
paths for SFCRs, but the number of deep models needed to be
trained is proportional to the square of the number of switches
and routers, which leads to flexibility and scalability problem
in large-scale networks.

For the utilization of deep learning in routing path compu-
tation and traffic management, literatures [16], [19] and [29]
also encounter the flexibility and scalability problems as
that in [30]. Besides, they only consider the traffic routing
problem in SDNs or conventional IP networks, which cannot
fulfill the traffic steering and routing path computation for
SFCRs in SDN/NFV-enabled environment. Different from the

Fig. 2. Structure of DBN.

approaches mentioned above, our proposed scheme, DL-TPA,
is a two-phase VNF selection and chaining algorithm based
on deep learning technology. In DL-TPA, the VNF selection
network and VNF chaining network are designed to compute
the routing paths of SFCRs. The number of models needed
to be trained in VNF selection network is proportional to the
number of types of SFC services. And VNF chaining network
only includes one deep model. Therefore, the DL-TPA is not
sensitive to network scale, which makes DL-TPA efficiently
overcome the flexibility and scalability problems encountered
in literatures [16], [19], [29], [30]. In addition, the solution
space optimization is also considered in VNF selection net-
work and VNF chaining network to reduce the computation
complexity, making DL-TPA achieve efficient routing path
computation of SFCRs in large-scale networks.

B. Deep Belief Network (DBN)

Among all deep learning models, DBN proposed by Hinton
is regraded as the most common and effective approach to
efficiently extract and learn the features from data. DBN
consists of many layers of hidden causal variables, which is
equivalent to a stacked Restricted Boltzmann Machine (RBM)
model with a regression layer on the top [31]. Fig. 2 depicts
the structure of DBN. The training process of DBN can be
divided into two steps: 1) train RBMs with a fast greedy
layer-wise unsupervised learning algorithm; 2) use training
data to fine-tune the whole network with back-propagation
algorithm [32]. Here, the first step aims to initialize parame-
ters, which is helpful for the convergence of the fine-tuning
process, and the second step aims to further optimize the
parameters to fit training data.

An RBM can be described by a two-layer network. For an
RBM shown in the upper box of Fig. 3, it consists of a visible
layer v and a hidden layer h. We use vi and hj to represent the
ith and jth neurons of v and h, respectively. The parameter set
of an RBM is denoted as θ = (w, a, b), where wji represents
the weight between vi and hj . The biases of vi and hj are
denoted as ai and bj , respectively. In addition, a log-likelihood

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: TWO-PHASE VNF SELECTION AND CHAINING ALGORITHM BASED ON DEEP LEARNING IN SDN/NFV-ENABLED NETWORKS 1105

Fig. 3. Structure of RBM and CD Method.

function in Eq. (1) is used to model the training process of
an RBM, where x stands for the labeled input data and its
probability is represented as P (v|θ):

L(θ) =
�
x

logP (v|θ). (1)

When training RBM, the objective is to maximize the
log-likelihood function and obtain the optimal parameter θ∗

as:

θ∗ = arg max
θ

L(θ) = argmax
θ

�
x

logP (v|θ). (2)

In a binary RBM (the value of a neuron is 0 or 1), as there
are no direct connections between neurons in the same layer,
the conditional probability distributions that hj and vi are
activated can be easily computed using Eq. (3) and Eq. (4),
respectively, where sigm(·) stands for a sigmoid activation
function. The parameters Nv and Nh represent the numbers
of neurons of v and h.

P (hj = 1|v) = sigm

�
Nv�
i=1

wjivi + bj

�
, (3)

P (vi = 1|h) = sigm

⎛⎝Nh�
j=1

wjihj + ai

⎞⎠ . (4)

Once the states of visible neurons are fixed, the hidden
neurons can be computed with Eq. (3). Similarly, after fixing
the states of hidden neurons, we can compute the visible
neurons with Eq. (4) as well. Here, the Contrastive Diver-
gence (CD) method [31], [33] is used to complete these steps
which optimize the parameters of an RBM. We depict the
states of an RBM before and after reconstruction with CD
method in the lower box of Fig. 3. The parameters v0, h0

and v1, h1 represent the visible layer and hidden layer of
an RBM before and after reconstruction, respectively. In CD
method, we first get v0 by inputting training data into visible
layer, then compute hidden layer h0 based on Eq. (3). After
that, according to hidden layer h0, we can reconstruct visible
layer v1 according to Eq. (4), then reconstruct hidden layer h1

based on Eq. (3). We use v0i, h0j and v1i, h1j to indicate the
ith and jth neurons of v0, h0 and v1, h1, respectively. The
parameters of an RBM with CD method can be updated using
Eqs. (5)-(7). Here, Nx denotes the total number of training
data items. The parameter ηrbm represents the learning rate of
training RBMs. P (h0j = 1|v0) and P (h1j = 1|v1) represent
the possibilities that h0j equals 1 and h1j equals 1 according
to v0 and v1, respectively.

ai = ai +
ηrbm

Nx
(v0i − v1i), (5)

bj = bj +
ηrbm

Nx
[P (h0j = 1|v0)− P (h1j = 1|v1)], (6)

wji = wji+
ηrbm

Nx
[P (h0j =1|v0)v0i−P (h1j =1|v1)v1i]. (7)

As stated before, there are two steps to train DBN including
unsupervised learning and supervised fine-tuning processes.
In unsupervised learning process, first, we train one RBM
each time from left to right in Fig. 2 with the steps stated
above. If the training process of an RBM is finished, its hidden
layer will be used as the visible layer of next RBM. And we
repeat the training process until all the RBMs of DBN have
been trained. In the supervised fine-tuning process, we treat
the DBN as a neural network, and we input the training data
into DBN and get the output. By comparing the output of
DBN with the corresponding labels, we can get the error and
run the back-propagation algorithm to adjust the parameters
of the whole network.

III. PROBLEM FORMULATION

A. System Model

In this paper, the physical network is considered as an
undirected graph, G = (V , E). We use u, v ∈ V to represent
two physical nodes, and uv ∈ E represents a physical link.
There are a series of VNF instances placed in the network
andM stands for the set of all VNF instances. The bandwidth
capacity of link uv ∈ E is denoted as Cbw

uv . We denote Cmem
u

as the memory capacity of u ∈ V , and Ccpu
m indicates the

CPU capacity that the VNF instance m ∈ M can apply
from the corresponding node. The available resource ratios
of link uv ∈ E , node u ∈ V , and VNF instance m ∈ M
are symbolized as rbw

uv , rmem
u and rcpu

m , respectively. All the
symbols and variables of this section are listed in Table I.

As shown in Fig. 1, each SFCR consists of an ingress node,
an egress node and a sequence of VNF requests. We use a
directed service function graph, Ḡf = (V̄f , Ēf), to represent
SFCRf . In Ḡf , ū, v̄ ∈ V̄f stand for two nodes and ūv̄ ∈ Ēf
represents the link between nodes ū and v̄. We use Sf and
Tf to represent the ingress and egress nodes of SFCRf . For
SFCRs, they need to consume network resources (e.g., band-
width, memory, CPU, etc) to be served in the network [5].
We define Ψbw

f as the bandwidth consumption of SFCRf .
Ψmem

f and Ψcpu
f are used to represent the consumptions of

memory and CPU of SFCRf . When dealing with SFCRf ,
du, duv , and dm denote the delays suffered in u ∈ V , uv ∈ E
and m ∈ M, respectively. The maximum tolerable delay of
SFCRf is symbolized as Ψtd

f .

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

1106 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

TABLE I

SYMBOLS AND VARIABLES OF BIP MODEL

B. BIP Model

In this subsection, we formulate the VNF-SCP as a BIP
model in detail.

To serve SFCRf , the available resources in uv ∈ E , u ∈ V
and m ∈M should be sufficient as:�

ūv̄∈Ēf

Ψbw
f zūv̄

f,uv ≤ rbw
uv Cbw

uv , ∀uv ∈ E , (8)

�
ūv̄∈Ēf

Ψmem
f zūv̄

f,u ≤ rmem
u Cmem

u , ∀u ∈ V , (9)

�
ū∈V̄f

Ψcpu
f zū

f,m ≤ rcpu
m Ccpu

m , ∀m ∈M. (10)

Here, the binary variables zūv̄
f,u and zūv̄

f,uv are used to indicate
whether ūv̄ ∈ Ēf traverses node u ∈ V and link uv ∈ E ,
respectively. The variables zūv̄

f,u and zūv̄
f,uv equal 1, if ūv̄ ∈ Ēf

traverses the node u ∈ V and link uv ∈ E , and 0 other-
wise. Also, binary variable zū

f,m is used to indicate whether
ū ∈ V̄f is served by VNF instance m ∈ M. zū

f,m equals 1,
if ū ∈ V̄f is served by VNF instance m ∈ M, and 0
otherwise.

As shown in Eq. (11), the total end-to-end delay which
consists of the delay of links, nodes and VNF instances in
a path cannot exceed the maximum tolerable delay of SFCRf :�

uv∈E

�
ūv̄∈Ēf

duvzūv̄
f,uv +

�
u∈V

�
ūv̄∈Ēf

duzūv̄
f,u

+
�

m∈M

�
ū∈V̄f

dmzū
f,m ≤ Ψtd

f . (11)

Eq. (12) ensures that we can get a consecutive path of
SFCRf by mapping the service function graph to physical
network:

�
v∈V

�
ūv̄∈Ēf

	
zūv̄

f,uv − zūv̄
f,vu

=

⎧⎪⎨⎪⎩
1, u = Sf ,

−1, u = Tf ,

0, otherwise.

(12)

In Eq. (13), if a link uv ∈ E is selected, both its end nodes
u and v must be selected as well:

zūv̄
f,uzūv̄

f,v =

�
1, zūv̄

f,uv = 1, ∀u, v∈V , ∀uv∈E , ∀ūv̄∈Ēf ,

0, otherwise.
(13)

We should ensure that each VNF instance m ∈ M can be
only placed on one node as:�

m∈M
ym

u = 1, ∀u ∈ V , (14)

where binary variable ym
u is used to indicate whether VNF

instance m ∈M is placed on node u ∈ V . And ym
u equals 1,

if m ∈M is placed on u ∈ V , and 0 otherwise.
For SFCRf , the path should traverse all the nodes that have

the selected VNF instances:

zūv̄
f,u = 1, if zū

f,mym
u = 1, ∀u ∈ V , ∀ū ∈ V̄f ,

∀ūv̄ ∈ Ēf , ∀m ∈M. (15)

Each VNF request ū of SFCRf can be only served by one
VNF instance, which can be ensured as:�

m∈M
zū

f,mym
u ≤ 1, ∀u ∈ V , ∀ū ∈ V̄f . (16)

As shown in Eq. (17), the objective of our work is to obtain
the path of SFCRf which has the minimum end-to-end delay
and can satisfy all the constraints in Eqs. (8)-(16).

Minimize
zūv̄

f,uv,zūv̄
f,u,zū

f,m

�
uv∈E

�
ūv̄∈Ēf

duvzūv̄
f,uv+

�
u∈V

�
ūv̄∈Ēf

duzūv̄
f,u

+
�

m∈M

�
ū∈V̄f

dmzū
f,m, (17)

s.t. Eqs. (8)− (16).

As we know there exist some algorithms, such as those
shown in [20], [21], proposed to solve Eq. (17). How-
ever, all these rule-based algorithms suffer from massive
iteration and computation to compute routing paths, and
have difficulty in flexibility and scalability. In this paper,
deep learning technology is used to solve this problem.
We use these rule-based algorithms to generate training
data by solving the BIP model. After model training,
we can achieve intelligent routing path computation to replace
rule-based algorithms and efficiently avoid the disadvantages
above.

IV. DEEP LEARNING-BASED TWO-PHASE ALGORITHM

FOR ROUTING PATH COMPUTATION OF SFCRS

In this section, we first give an overview of the proposed
DL-TPA, then show the structures of VNF selection network
and VNF chaining network. After that, we give a description

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: TWO-PHASE VNF SELECTION AND CHAINING ALGORITHM BASED ON DEEP LEARNING IN SDN/NFV-ENABLED NETWORKS 1107

Fig. 4. Executing processes of intelligent routing path computation for SFC with DL-TPA.

on how to route the traffic of SFCRs in two phases with
our intelligent approach. Finally, a detailed analysis on the
computation complexity of DL-TPA is presented.

A. Overview of DL-TPA

Our proposed scheme is a deep learning-based two-phase
VNF selection and chaining algorithm for SFCRs. It consists
of two parts: VNF selection network and VNF chaining
network. VNF selection network and VNF chaining network
are both constructed based on DBNs and trained with the
training data generated by running an optimal algorithm.
The optimal algorithm used to generate training data is a
rule-based algorithm based on the idea of graph layering.
However, since it faces the problem of low-efficiency using
the optimal algorithm to solve the BIP model, we propose
DL-TPA, an intelligent algorithm based on deep learning,
to achieve efficient routing path computation for SFCRs. Here,
the optimal algorithm takes charge of the generation of training
data which is used to train the VNF selection network and
VNF chaining network in DL-TPA. The running process of
DL-TPA solves VNF-SCP problem in two phases: 1) select
the optimal VNF instances for SFCRs; 2) compute the paths to
concatenate these selected VNF instances in predefined orders.

In DL-TPA, to achieve routing path computation for SFCRs,
we firstly generate training data using the optimal algorithm,
then train and run deep models, and finally check constraints.
Fig. 4 shows the executing processes of DL-TPA. Here,
the training process of DL-TPA is in lower right of the
figure and the running process is in the upper left. Moreover,
the pink part of Fig. 4 includes the training and running
processes of VNF selection network and the training and
running processes of VNF chaining network are illustrated in
the green part. In the training process of step ➀, a network
simulator is constructed according to physical network and
runs an optimal algorithm to generate training data by solving
the BIP model. In training data, the input data include the
information of SFCRs and network conditions, and the output
data include the corresponding selected VNF instances and

paths. Then, the training data are used to train the VNF
selection network and VNF chaining network. In training
process, the parameters of VNF selection network and VNF
chaining network are optimized to fit training data with both
unsupervised and supervised learning.

As for the running process of DL-TPA in Fig. 4, phase one
including steps ➂-➄ is to select the optimal VNF instances
for SFCRs. Here, step ➁ monitors the network using SDN
controller and gets the information of SFCRs and network
conditions. Next, the information gotten in step ➁ is formatted
in step ➂ and input into VNF selection network to obtain the
optimal VNF instances in steps ➃-➄.

Given predefined orders, phase two including steps ➅-➇
aims to compute the paths to concatenate these selected VNF
instances in phase one. In Fig. 4, step ➅ formats the network
conditions and the selected VNF instances output from VNF
selection network in phase one. These formatted information is
input into VNF chaining network in step ➆. Step ➇ computes
the paths in VNF chaining network by concatenating these
selected VNF instances in predefined orders.

After phase two, step ➈ checks the complete routing paths
with the constraints in Eqs. (8)-(16). If all these constraints
are satisfied, these routing strategies are output in step ➉,
otherwise other candidate routing strategies will be checked
and output. And we reject an SFCR, if there is no feasible
routing strategy obtained to serve it or the iteration times reach
a stopping threshold. Finally, the SDN controller forwards flow
tables to the devices along these complete routing paths to
steer the traffic of SFCRs in step 11�.

B. Structure of VNF Selection Network

For different SFCRs, the VNF requests and pre-defined
orders could be different. We define that all the SFCRs, with
the same type of VNF requests and predefined order, belong
to the same type of SFC service. For example, for two SFCRs
both of which VNF requests and pre-defined orders are: VNFa

→ VNFb, they belong to the same type of SFC services, and
they belong to different SFC service, if their VNF requests or

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

1108 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

TABLE II

SYMBOLS AND VARIABLES OF DL-TPA

pre-defined orders are different. Then, in order to make the
training process convenient and enhance the maintainability,
we build a DBN for each type of SFC service in VNF selection
network. Supposing that there are K types of SFC services
provided to users, DBN k (k = 1, · · · , K) is used to serve
SFC service type k. In this section, we list all the symbols
and variables in Table II.

In DL-TPA, it is important to characterize the input and
output of DBNs in VNF selection network. As the avail-
able resources have influence on choosing the optimal VNF
instances of SFCRs, the available resource ratios of nodes
and links should be considered in the input of VNF selection
network. Moreover, the available resources of VNF instances
also have influence on routing path computation. As each kind
of VNF has multiple instances placed in different network
locations, we use Ω(k) ⊆ M to denote the set of all the
candidates of VNF instances that can probably be used by

SFC service type k, and the available resource ratios of VNF
instances m ∈ Ω(k) are included in the input of VNF selection
network. In addition, users can set up SFCRs anywhere,
and the resource consumption can be different. Therefore,
the ingress and egress nodes and the resource consumptions
of these SFCRs should be included in the input as well. The
output of VNF selection network represents a set of groups of
VNF instances. The output is defined as an one-hot vector,
and each dimension represents a group of VNF instances
that can serve this type of SFC service. Here, we define the
group of VNF instances as VNF instance group. For example,
both {VNF1

a, VNF1
c , VNF1

b , VNF1
d} and {VNF2

a, VNF2
c , VNF2

b ,
VNF2

d} are the VNF instance groups of the SFC service shown
in Fig. 1. In the output, there is only one element that equals 1,
which indicates that this VNF instance group is selected to
serve the SFCR. All the information about the input and output
data are generated by solving the BIP model using the optimal
algorithm. According to the description above, for SFCRf ,
the input and output are defined in Eqs. (18)-(19), where the
vectors of xs,k and �ys,k represent the input and output of the
kth DBN of VNF selection network, respectively (∀uv ∈ E ,
∀u ∈ V , ∀m ∈ Ω(k)).

xs,k = (ging
f , gegr

f , Ψbw∗
f , Ψmem∗

f , Ψcpu∗
f , rbw

uv , . . . ,
(18)

rmem
u , . . . , rcpu

m , . . .)T ,�ys,k = (0, 0, 1, 0, . . . , 0)T . (19)

Noting that the values of the neurons of DBN are in the
range of [0, 1], we encode u ∈ V based on binary coding. The
binary codes of the ingress and egress nodes of SFCRf are
denoted as ging

f and gegr
f . The length of the binary code q

satisfies 2q−1 ≤ |V| < 2q. For example, in Fig. 1, the ingress
node A and egress node J of SFCRf can be encoded as
ging

f = (0, 0, 0, 1) and gegr
f = (1, 0, 1, 0). The parameters

Ψbw∗
f , Ψmem∗

f , Ψcpu∗
f represent the normalization of resource

consumptions of SFCRf in links, nodes and VNF instances,
respectively. Thus, the dimension of the input xs,k equals
|V|+ |E|+ |Ω(k)|+2q +3. The dimension of �ys,k is obtained
according to the training data. If the number of VNF instance
group that can be used to serve SFC service type k is Ms,k,
the dimension of �ys,k equals Ms,k

Since the normalization of resource consumptions Ψbw∗
f ,

Ψmem∗
f , Ψcpu∗

f and available resource ratios rbw
uv , rmem

u , rcpu
m

are all continuous values, we replace the binary RBM1 pre-
sented in Fig. 2 by real-valued neurons. Here, the Gaussian
distribution is used to model the RBM1 that consists of the
input layer and the first hidden layer of a DBN. Then, for
RBM1, the conditional probability distribution in Eq. (4) is
revised as:

P (vi = 1|h) = N

⎛⎝ai + σi

Nh�
j=1

wjihj , σ
2
i

⎞⎠ , (20)

where σi is the standard deviation of vi, and N(μ, σ2) is
Gaussian distribution.

Fig. 5 shows the structure of VNF selection network. The
data formation layer aims to produce the input data xs,k based
on raw data. A softmax layer, which is always used to map

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: TWO-PHASE VNF SELECTION AND CHAINING ALGORITHM BASED ON DEEP LEARNING IN SDN/NFV-ENABLED NETWORKS 1109

Fig. 5. Structure of VNF selection network.

the values of neurons to a probability distribution, is set as the
top layer of each DBN so as to perform supervised fine-tuning
process on the whole deep model. To obtain the selected VNF
instance group in VNF selection network, first, we get the
output of the Lth layer of DBN k, βL

s,k, which represents
the probability distributions of all the VNF instance groups
with input data xs,k. Then, �ys,k can be obtained by setting
the element with the maximum probability in βL

s,k as 1. After
that, the VNF instance group whose corresponding value is 1
is output as the optimal solution to serve this SFCR.

C. Structure of VNF Chaining Network

After the process of VNF selection network, the VNF
instance group of SFCRf can be selected. In this paper,
we use a tuple {s1, s2, . . .} to represent the ingress node,
egress node and all the nodes that hold the selected VNF
instances. The number of elements in the tuple equals |V̄f |.
In the tuple, all the elements are arranged as the specified order
of SFCRf . For example, in Fig. 1, there are six elements in
the tuple of SFCRf . s1 and s6 represent the ingress node A
and egress node J , respectively. Assuming that VNF selection
network chooses the VNF instance group {VNF1

a, VNF1
c ,

VNF1
b , VNF1

d} to serve SFCRf , the parameters s2, s3, s4, and
s5, respectively, represent the nodes B, D, D, F where these
four VNF instances are placed.

The input of VNF chaining network includes the starting
and ending points of a path, the bandwidth and memory
consumptions and available resource ratios of links and nodes.
As for SFCRf in Fig. 1, five paths are needed to be produced
to chain the ingress and egress nodes and the selected VNF
instances in predefined order. Supposing that the optimal VNF
instance group output from VNF selection network is {VNF1

a,
VNF1

c , VNF1
b , VNF1

d} (green dotted lines in Fig. 1) which
are placed on nodes B, D, D, F , respectively, the starting and
ending points of these five paths are (A, B), (B, D), (D, D),
(D, F) and (F, J). If the optimal paths with these five pairs
of starting and ending points can be obtained, SFCRf can be
served in the network.

The output of VNF chaining network represents a path set.
It is also a one-hot vector where each element represents a path
and there is only one element that equals 1. The path of which
value in the output is 1 is chosen to chain the corresponding

Fig. 6. Structure of VNF chaining network.

starting and ending points. For example, in Fig. 1, D → F and
D → E → G → F represent two paths connecting (D, F),
and they are included in the path set. In the output of VNF
chaining network, if the value of the former path equals 1,
the path D → F will be selected to steer the traffic of this
SFCR. In Eq. (21) and Eq. (22), we denote the input and output
of VNF chaining network as vectors xc and �yc, respectively
(p = 1, 2, . . . , |Ēf |, ∀uv ∈ E , ∀u ∈ V):

xc =
�
g

sp

f , g
sp+1
f , Ψbw∗

f , Ψmem∗
f , rbw

uv , . . . , rmem
u , . . .

�T

, (21)

�yc = (0, 1, 0, 0, . . . , 0)T , (22)

where g
sp

f and g
sp+1
f represent the binary codes of the starting

and ending points (sp, sp+1) of SFCRf , p = 1, 2, . . . |Ēf |. The
dimension of xc equals |V|+|E|+2q+2. The dimension of �yc

is obtained from the training data. If there are Mc paths used
to chain the ingress nodes, egress nodes and selected VNF
instances of SFCRs, the dimension of �yc is Mc.

VNF chaining network is a DBN with a softmax layer
on the top. As the normalization of resource consumptions
Ψbw∗

f and Ψmem∗
f and available resource ratios rbw

uv and rmem
u

are continuous values, the RBM1 that consists of the input
layer and first hidden layer of VNF chaining network is
modeled with Gaussian distribution. Its conditional probability
distribution is the same as Eq. (20).

Fig. 6 shows the structure of VNF chaining network. The
data extraction layer takes charge of collecting the input
data in xs,k and �ys,k, and produces input data xc. The
output of softmax layer is denoted as βL

c and it indicates
the probability distribution of the path set based on xc.
The parameter �yc indicates the path chosen to chain the
starting and ending points (gsp

f , g
sp+1
f) in xc, which is

obtained by setting the element with the maximum probability
in βL

c as 1.

D. Training Algorithm

In the training process of VNF selection network, we train a
DBN for each type of SFC service. For VNF chaining network,
we train a DBN model to achieve the path prediction. The
training algorithm for a DBN is separated into two steps:
firstly, we pre-train one RBM of a DBN each time with
fast greedy layer-wise unsupervised learning algorithm. In this

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

1110 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

step, the hidden neurons of a well trained RBM are used as
the input of the next RBM. Secondly, the back-propagation
algorithm is used to fine-tune the whole network.

The graph layering approach [20], [21] is used to generate
the optimal paths of SFCRs. Then, the VNF instance group set
can be obtained as the training data of VNF selection network,
and we can also get the path set as the training data of VNF
chaining network.

The supervised fine-tuning process aims to minimize the
difference between the prediction and the labeled output. For
each DBN of VNF selection network and VNF chaining
network, the cross-entropy cost function with regularization
penalty, as shown in Eq. (23), where the DBN model is
denoted as θdbn, is used to describe the difference and avoid
overfitting. The parameter βL represents the output of softmax
layer (in kth DBN of VNF selection network, βL = βL

s,k; in
the DBN of VNF chaining network, βL = βL

c), and wl
ji

indicates the weight between neuron j in layer l and neuron i
in layer l − 1. Nl denotes the number of neurons in layer l.
x and y represent labeled input and output data. Nx indicates
the total number of training data items and λ is a weighted
parameter to control the two parts.

J
�
θdbn

�
= − 1

Nx

�
x

ylogβL+
λ

2

L�
l=2

Nl�
j=1

Nl−1�
i=1

	
wl

ji

2
. (23)

In fine-tuning process, we use ϕl
j to represent the weighted

input of neuron j in layer l:

ϕl
j =

Nl−1�
i=1

wl
jiβ

l−1
i + γl

j , l = 2, . . . , L. (24)

where γl
j stands for the bias of neuron j of layer l and βl−1

i

denotes the value of ith neuron of βl−1.
Then, we use δl

j to define the error of neuron j in layer l

which can be used to optimize θdbn in back-propagation
algorithm. Eq. (25) shows the computation of δl

j , where
sigm�(·) indicates the first derivative of sigmoid activation
function and yj means the value of jth dimension of y.

δl
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Nx

�
x

	
βL

j − yj

, l = L,

Nl�
i=1

wl+1
ji δl+1

i sigm� 	ϕl
j

, otherwise.

(25)

Given Eqs. (24)-(25), we can update the parameters
of θdbn with the partial derivatives ∂J

�
θdbn

�
/∂wl

ji and

∂J
�
θdbn

�
/∂γl

j based on Eq. (26) and Eq. (27), respectively.

∂J
�
θdbn

�
∂wl

ji

= βl−1
i δl

j + λwl
ji, (26)

∂J
�
θdbn

�
∂γl

j

= δl
j . (27)

The pseudo-code of training algorithms of DL-TPA is given
in Algorithms 1-4. In Algorithm 1, firstly, training data
are generated for VNF selection network and VNF chaining

Algorithm 1 Training Algorithm of DL-TPA

Input: Learning rates: ηrbm, ηbp.
Output: VNF selection network: {θdbn

s,k |k = 1, . . . , K};
VNF chaining network: θdbn

c .
1: (Xs,k,Ys,k), (Xc,Yc) ← Generate training data with an

optimal algorithm;
2: for k = 1, . . . , K do
3: θdbn

s,k ← TrainDBN((Xs,k,Ys,k), θdbn
s,k , ηrbm, ηbp);

4: end for
5: θdbn

c ← TrainDBN((Xc,Yc), θdbn
c , ηrbm, ηbp);

6: return {θdbn
s,k |k = 1, . . . , K}, θdbn

c ;

Algorithm 2 TrainDBN
Input: Training data: (X ,Y);

Learning rates: ηrbm, ηbp.
Output: DBN: θdbn.
1: L ← Get the number of layers of DBN;
2: for l = 1, . . . , L− 2 do
3: Nv, Nh ← Get the number of neurons of the lth and

(l + 1)th layers, respectively;
4: θdbn ← PreTrainRBM(X , Nv, Nh, ηrbm);
5: end for
6: θdbn ← FineTuneDBN((X ,Y), θdbn, ηbp);
7: return θdbn;

network in line 1, and recorded in (Xs,k,Ys,k) and (Xc,Yc),
respectively. Then, we train a DBN model for each type of
SFC service in VNF selection network in lines 2-4 of Algo-
rithm 1. Next, VNF chaining network is trained in line 5 of
Algorithm 1. In the training process of DBN in Algorithm 2,
lines 1-5 pre-train one RBM of a DBN each time. During
the pre-training of RBM, first, we initialize related parameters
in lines 1-3 of Algorithm 3. Then, fast greedy layer-wise
unsupervised learning algorithm is used to train this RBM
in lines 4-18 of Algorithm 3, where x(n) stands for the
nth item of labeled input data. After that, back-propagation
algorithm is executed to fine-tune the whole DBN in line 6 of
Algorithm 2, and ηbp denotes its learning rate. Algorithm 4
presents fine-tuning process. After the initialization of related
parameters in lines 1-3 of Algorithm 4, the feedforward is
performed in lines 4-20, where x

(n)
j denotes the jth dimension

of x(n). Then, the backpropagation is applied to optimize the
parameters of DBN in lines 21-29 of Algorithm 4.

E. Running Algorithm

In the running process, we first obtain the optimal VNF
instance group from VNF selection network in the first phase,
then get the paths to chain ingress node, egress node and those
selected VNF instances using the VNF chaining network in
the second phase.

The pseudo-code of the running process of DL-TPA is
presented in Algorithm 5. Lines 1-5 of Algorithm 5 initialize
related parameters and get the optimal VNF instance group.
Then, in lines 6-10 of Algorithm 5, we compute the optimal
paths between the adjacent nodes in {s1, s2, . . .} in VNF

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: TWO-PHASE VNF SELECTION AND CHAINING ALGORITHM BASED ON DEEP LEARNING IN SDN/NFV-ENABLED NETWORKS 1111

Algorithm 3 PreTrainRBM
Input: Training Data: X ;

The number of neurons of v and h: Nv, Nh;
Learning rate: ηrbm.

Output: w= {wji|i = 1, . . . , Nv, j = 1, . . . , Nh};
a= {ai|i = 1, . . . , Nv};
b= {bj|j = 1, . . . , Nh}.

1: for i = 1, . . . , Nv, j = 1, . . . , Nh do
2: Initialize ai, bj , wji with small values randomly;
3: end for
4: repeat
5: Select training batch from X ;
6: for n = 1, . . . , Nx do
7: v0 ← x(n);
8: Sample h0j ∼ P (hj |v0) for j = 1, . . . , Nh;
9: Sample v1i ∼ P (vi|h0) for i = 1, . . . , Nv;

10: Sample h1j ∼ P (hj |v1) for j = 1, . . . , Nh;
11: for i = 1, . . . , Nv, j = 1, . . . , Nh do

12: ai ← ai +
ηrbm

Nx
(v0i − v1i);

13: bj ← bj +
ηrbm

Nx
[P (h0j = 1|v0)− P (h1j = 1|v1)];

14: wji←wji+
ηrbm

Nx
[P (h0j=1|v0)v0i−P (h1j=1|v1)v1i];

15: end for
16: end for
17: until Convergency;
18: return w, a, b;

chaining network. After that, in lines 11-18 of Algorithm 5,
we obtain the complete routing path Φ, and if Φ satisfies all
the constraints in Eqs. (8)-(16), it is output to steer the traffic
of SFCRf . Otherwise, in line 15 of Algorithm 5, we iterate
and check other routing paths to recompute Φ. We stop the
running process of DL-TPA until there is no feasible routing
path or the iteration times reach a stopping threshold.

F. Solution Space Optimization

In VNF selection network and VNF chaining network,
output layers can be custom-made based on the information of
SFCRs to optimize solution space sizes. With solution space
optimization, it is helpful to enhance the predication accuracy
and reduce the computation complexity.

In NFV environment, there exist many VNF instance groups
that satisfy the predefined order of an SFCR. For example,
in Fig. 1, there are respectively three VNF instances of VNFa,
VNFc and VNFd and four VNF instances of VNFb. Therefore,
there are 3 × 3 × 4 × 3 = 108 VNF instance groups that
can serve the SFCR in Fig. 1. Nevertheless, only some of
these VNF instance groups can serve as the optimal solutions.
Moreover, during the training process, a series of discrete net-
work conditions are sampled to train VNF selection network.
Discrete training data cannot cover all the network conditions,
which may lead to unreasonable solutions and the reduction
of prediction accuracy. In order to solve these problems,
we define a feasible VNF instance group set Ss,k for xs,k,
and each VNF instance group in Ss,k represents the optimal

Algorithm 4 FineTuneDBN

Input: Training data: (X ,Y);
Learning rate: ηbp.

Output: w = {wl
ji|i=1, . . . , Nl−1, j=1, . . . , Nl, l=2, . . . , L};

γ = {γl
j|j = 1, . . . , Nl, l = 2, . . . , L}.

1: for i = 1, . . . , Nl−1, j = 1, . . . , Nl, l = 2, . . . , L do
2: Initialize wl

ji, γ
l
j with small values randomly;

3: end for
4: repeat
5: Select training batch from (X ,Y);
6: for n = 1, . . . , Nx do
7: for j = 1, . . . , N1 do
8: β1

j ← x
(n)
j ;

9: end for
10: for l = 2, . . . , L do
11: for j = 1, . . . , Nl do
12: ϕl

j ←
�Nl−1

i=1 wl
jiβ

l−1
i + γl

j ;
13: if l ≤ L− 1 then
14: βl

j ← sigm
	
ϕl

j

;

15: else
16: βl

j ← softmax
	
ϕl

j

;

17: end if
18: end for
19: end for
20: end for
21: for l = L, . . . , 2 do
22: for j = 1, . . . , Nl do

23: γl
j ← γl

j −
ηbp

Nx
δl
j ;

24: for i = 1, . . . , Nl−1 do

25: wl
ji ← wl

ji −
ηbp

Nx

	
βl−1

i δl
j + λwl

ji

;

26: end for
27: end for
28: end for
29: until Convergency
30: return w, γ;

solution of xs,k in some network condition. If the information
of SFCRf is input as xs,k, we can get the corresponding Ss,k

by counting all the optimal VNF instance groups based on
ging

f and gegr
f from the training data.

Additionally, feasible path set is defined in VNF chaining
network to avoid infeasible routing paths and reduce solution
space size. In VNF chaining network, the pairs of starting
and ending points determines the feasible paths of an SFCR.
For example, if a pair of starting and ending points (A, B)
is waiting to be chained, only the paths with starting point
A and ending point B are feasible for this request. Then,
we define the feasible path set Sc to include the paths
with the same starting and ending points of xc, and it can
be counted according to the training data as well. For the
SFCR in Fig. 1, if VNF1

a and VNF1
c placed in B and D,

respectively, are selected to be traversed by VNF selection
network, Sc represents the paths with the same pair of starting
and ending points (B, D).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

1112 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

Algorithm 5 Running Algorithm of DL-TPA

Input: VNF selection network: {θdbn
s,k |k = 1, . . . , K};

VNF chaining network: θdbn
c ;

Available resource ratios: rbw
uv , rmem

u , rcpu
m ;

Service function graph: Ḡf =
	V̄f , Ēf

;

Parameters of SFCRf : Ψbw∗
f , Ψmem∗

f , Ψcpu∗
f , Ψtd

f .
Output: Complete routing path of SFCRf : Φ.
1: Initialize routing path Φ← ∅, maximum iteration times Π

and current iteration times π ← 1;
2: k ← Get the type of SFCRf ;
3: xs,k ←Produce xs,k based on rbw

uv , rmem
u , rcpu

m , Ψbw∗
f ,

Ψmem∗
f , Ψcpu∗

f , Ḡf ;
4: �ys,k ← Input xs,k into θdbn

s,k ;
5: Obtain {s1, s2,} of SFCRf ;
6: for p = 1, . . . , |Ēf | do
7: xc ← Produce xc based on rbw

uv , rmem
u , Ψbw∗

f , Ψmem∗
f ,

sp, sp+1;
8: �yc ← Input xc into θdbn

c ;
9: Φ[p] ← Obtain the optimal path between sp and sp+1

from �yc;
10: end for
11: repeat
12: if Φ satisfies all the constraints then
13: return Φ;
14: else
15: Φ ← Iterate and recompute Φ;
16: π ← π + 1;
17: end if
18: until π > Π;
19: return Rejected;

Let Ns and Nc represent the number of hidden neurons
per hidden layer of a DBN in VNF selection network and
VNF chaining network, respectively. Given the description
above, assuming that SFCRf belongs to the kth type of SFC
service and there exist Ms,k � |Ss,k| and Mc � |Sc|,
then the computation complexity of the forward pass between
the last hidden layer and the output layer can be reduced
from O(NsMs,k + Nc|Ēf |Mc) to O(Ns|Ss,k| + Nc|Ēf ||Sc|).
Therefore, given the definition of feasible VNF instance group
set and feasible path set, we can optimize the solution space
size of VNF selection network and VNF chaining network
based on the information of SFCRs, and make the training
and running processes more effectively.

G. Complexity Analysis

The training process of DL-TPA runs off-line, and its
computation complexity is proportional to the size of training
data and training period. After off-line training, we can achieve
intelligently routing path computation of SFCRs with trained
models instead of running rule-based algorithms to solve the
BIP model with massive iterations and computations. And we
can make DL-TPA adapt to the changes of network topology
(e.g., add a node or remove a link) by generating new training
data to update the VNF selection network and VNF chaining
network.

In the feedforward of the running process of DL-TPA,
the computation complexity is mainly related to the size of
DBN models. We assume that the structure of the input and
hidden layers are the same in all the DBNs of VNF selection
network, and the DBN of VNF chaining network is also the
same. Here, we use Ls and Lc to represent the numbers of
hidden layers of the DBN in VNF selection network and VNF
chaining network, respectively. In VNF selection network,
computing the optimal VNF instance group of an SFCR runs
in O(Ns(|V|+ |E|+ |Ω(k)|+ 2q + LsNs + |Ss,k|)). In VNF
chaining network, the computation complexity of chaining
these selected VNF instances is O(Nc|Ēf |(|V| + |E| + 2q +
LcNc + |Sc|)). Since checking constraints runs in O(1) and q
is a small value that equals �log2|V|
, in the running process
of DL-TPA, the total computation complexity of routing path
computation for an SFCR is O(Ns(|V|+|E|+|Ω(k)|+LsNs+
|Ss,k|) + Nc|Ēf |(|V|+ |E|+ LcNc + |Sc|)).

V. PERFORMANCE EVALUATION

This section depicts the performance evaluation of DL-TPA
in SDN/NFV-enabled networks. Both the VNF selection
network and VNF chaining network are trained with
Tensorflow-gpu 1.4 version [22]. We evaluated our approach
on a computer with an Intel(R) Core(TM) i7-4790 CPU
3.60 @ GHz and a Nvidia GeForce GTX 1080Ti GPU.

A. Simulation Settings

In the simulation, the network topology that we use is a US
carrier network [34], which consists of 60 nodes and 77 links.
In the network, 10 nodes are selected as function nodes to
place VNF instances and the other nodes are served as access
nodes. There are 5 types of VNFs, and each function node
is placed with 3-5 types of VNF instances. There are 5 types
of SFC services, and SFCRs are randomly produced in access
nodes. The bandwidth of each link is 3.5 Gbps. The memory
capacities and CPU capacities of each node and VNF instance
are 5 GB and 2000 MIPS, respectively [5]. For each SFCR,
the traffic needs to traverse 3 types of VNFs before reaching
the egress node. The resource consumptions of each SFCR in
links, nodes and VNF instances are set as numbers randomly
between (0, 10]. The maximum tolerable delay is set randomly
from 50-100 ms [27]. The delays in links, nodes and VNF
instances (denoted as duv, du and dm) are computed according
to Eqs. (28)-(30) [21], respectively.

duv = dprop
uv + dtx

uv +
1− rbw

uv

rbw
uv

dtx
uv, ∀uv ∈ E , (28)

du =
1− rmem

u

rmem
u

tproc
u , ∀u ∈ V , (29)

dm =
1− rcpu

m

rcpu
m

tproc
m , ∀m ∈M. (30)

In Eq. (28), the first part dprop
uv indicates the propagation

delay of link uv ∈ E which is computed by the ratio of
the length of link uv to the propagation speed of signals
in that medium. The second and third parts represent the
transmission delay and queuing delay. The transmission delay
dtx

uv is computed by dividing the bandwidth capacity of link

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: TWO-PHASE VNF SELECTION AND CHAINING ALGORITHM BASED ON DEEP LEARNING IN SDN/NFV-ENABLED NETWORKS 1113

uv with the packet size. The queening delay is related to
the load conditions and transmission delay. Eqs. (29)-(30)
mean the processing delay in node u ∈ V and VNF instance
m ∈M. The parameters tproc

u and tproc
m are set as 10 μs and

1000 μs [35], which denote the per-packet processing time in
node u ∈ V and VNF instance m ∈ M, respectively.

Note that, in the ideal case, the deep models should be
trained based on published training data collected in a practical
SDN/NFV-enabled environment. However, since SFC is a new
service paradigm in the network, there are no such published
training data currently available for us. Thus, we generate
the training data referring to existing literatures [4], [27].
In the simulation, we construct a network simulator to generate
training data and a SDN/NFV-enabled environment to evaluate
the performance of DL-TPA. They are constructed indepen-
dently, but their parameter settings are the same according to
this subsection. As for the training data, first, we generate
a set of SFCRs with the parameter settings above and get
the optimal solution of each SFCR one by one by running an
optimal algorithm named as graph layering algorithm until the
available resources of network simulator is exhausted. Then,
we remove all the SFCRs of previous set in the network
simulator and repeat the previous steps until we collect enough
training data. In the network simulator, a training data set
consisting of about 2 × 107 items is generated to train each
DBN in VNF selection network and VNF chaining network,
respectively. And we also generate a testing data set including
about 105 items to evaluate the performance of DL-TPA in
the SDN/NFV-enabled environment. Moreover, for each DBN
of VNF selection network, there are three hidden layers and
each hidden layer has forty hidden neurons. For the DBN of
VNF chaining network, it includes two hidden layers and each
hidden layer has eighty hidden neurons.

Since the training data are generated with an optimal
algorithm, the more likely the prediction results of DL-TPA
and the optimal solution are, the shorter the end-to-end delays
of SFCRs in Eq. (17) are obtained. Therefore, the accuracy is
used as a performance indicator of DL-TPA. In VNF selection
network and VNF chaining network, the accuracy of a DBN
model is defined as follows:

ACC =
1

Nx

�
x

I(y = �y), (31)

where �y denotes the prediction result based on input x, and
y indicates the labeled output. Nx stands for the total number
of items of training data. I(·) is an indicator function. If the
condition of I(·) is satisfied, it equals 1, and 0 otherwise.
In addition, the epoch for the training of DBN is set as 2000,
and each simulation is repeated for 10 times. λ in Eq. (23) is
set as 10−4. All other parameters in the training process that
we set are according to [36].

B. Introduction of Compared Algorithms

In the simulation, we compare DL-TPA with graph layering
algorithm [20], [21] and Eigendecomposition [13]. Graph
layering algorithm is used as the optimal algorithm to gen-
erate training data. Eigendecomposition is a typical heuris-
tic algorithm. And we aim to prove that DL-TPA can get

near-optimal performance and perform more efficiently than
typical heuristic algorithm. Before the introduction of the
simulation, we give a brief description to these compared
algorithms:

• Optimal: Delay is considered as the weight of each
link. First, the optimal algorithm generates a layered
graph that consists of serval copies of original network
topologies, and the adjacent copies of layered graph are
connected to satisfy the predefined order of an SFCR.
Then the Dijkstra algorithm is executed in layered graph
to compute the path with the minimum end-to-end delay
for each SFCR.

• Eigendecomposition: The Umeyama’s eigendecomposi-
tion approach is adopted and extended to achieve the
optimal matching of an SFCR in network topology. First,
Eigendecomposition generates an adjacent matrix for net-
work topology using the widest-shortest path to calculate
the weight of each element. An adjacent matrix is also
generated for each SFCR according to its demand of
resource consumption. Next, Eigendecomposition extends
the adjacent matrix of SFCR to be with the same size
of the network’s. Then, the eigenvector matrixes of
the two adjacent matrixes are computed. Afterwards,
Eigendecomposition computes the conjugate matrixes for
both eigenvector matrixes, respectively, and multiplies
them together. Finally, Eigendecomposition constructs the
routing path for an SFCR by choosing the locations with
the maximum value in each row of the product.

C. Simulation Results

1) Prediction Accuracy: Fig. 7(a) shows the prediction
accuracy of VNF selection network and VNF chaining net-
work. In the figure, the average prediction accuracy of VNF
selection network is about 82.8%, and is about 98.7% for VNF
chaining network. As there are five different types of SFC ser-
vices, the VNF selection network consists of five DBNs. The
prediction accuracy of DBNs in the VNF selection network are
82.5%, 84.6%, 83.2%, 82.7%, and 81.1%, respectively. The
reason why the prediction accuracy of VNF selection network
is lower than that of the VNF chaining network is because
the resource consumption in the VNF instances leads to more
increment of delay [35]. Thus, VNF selection network needs
to do more complex decisions to make the optimal selection
of VNF instances in multi-instance environment.

2) Comparison of Time Efficiency: Fig. 7(b) presents the
execution time of three algorithms with 1000 SFCRs. Accord-
ing to the shown results, the optimal algorithm leads to the
longest time consumption, which is about 3200 ms. Eigende-
composition costs about 1600 ms. DL-TPA performs the best,
which leads to about 8× speed-up than Eigendecomposition
and about 16× speed-up than the optimal algorithm (VNF
selection network spends about 80 ms, and VNF chaining
network accounts for about 140 ms).

Fig. 7(c) illustrates the response time under different SFCR
arrival rates, and we count the response delay of SFCRs
within 1000 ms period. The response delay indicates the time
between the arrival of an SFCR and its routing path being
obtained. So, the lower the response delay is, the higher time

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

1114 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

Fig. 7. Prediction accuracy of DL-TPA and the comparison of time efficiency (with 95% confidence intervals).

Fig. 8. Comparison of average SFCR acceptance ratio, throughput and CDF of end-to-end delay (with 95% confidence intervals).

efficiency the routing algorithm is. In the figure, with the
increment of SFCR arrival rates, the response delay of the
optimal algorithm grows much faster than that of Eigende-
composition and DL-TPA. The response delay of Eigende-
composition grows sharply, when the arrival rate is bigger
than 600 SFCRs/s. Compared with the optimal and Eigen-
decomposition algorithms, the response delay of DL-TPA is
very low, which is only about 0.47 ms. Also, the response
delay of DL-TPA changes slow with the increment of arrival
rate from 200 SFCRs/s to 800 SFCRs/s. When the arrival
rate is 800 SFCRs/s, the response delay of DL-TPA is about
1600× and 200× lower than that of the optimal algorithm and
Eigendecomposition, respectively.

3) Comparison of Average SFCR Acceptance Ratio,
Throughput and CDF of End-to-End Delay: Fig. 8(a)
illustrates the average SFCR acceptance ratios of three algo-
rithms. Average SFCR acceptance ratio reflects the SFCRs
successfully served in the network accounting for the total
ones. Due to effective feature extraction and learning, DL-TPA
yields near optimal performance. When about 3200 SFCRs are
served in the network, the average SFCR acceptance ratios
of the optimal algorithm and DL-TPA start to decline, while
the performance of Eigendecomposition declines after serving
about 2300 SFCRs. The average SFCR acceptance ratio of
Eigendecomposition is about 20% lower than that of the
optimal algorithm and DL-TPA. This is because Eigendecom-
position could not ensure to get the optimal VNF instances

and routing paths for SFCRs. Moreover, the widest-shortest
routing algorithm is used in Eigendecomposition to avoid
bottleneck, which leads to longer routing paths and more
resource consumption during the routing path computation.

Fig. 8(b) shows the average throughput of these three
algorithms. Throughput indicates the total bandwidth con-
sumption of SFCRs successfully served in the network. In this
simulation, the optimal algorithm and DL-TPA get the highest
performance, where the throughput of Eigendecomposition is
about 5 Gbps lower than that of the other two algorithms.

The CDF of end-to-end delay is presented in Fig. 8(c).
The end-to-end delay reflects the total delay of the routing
paths of SFCRs. In this simulation, the optimal algorithm gets
the highest performance. Due to efficient VNF selection and
chaining, DL-TPA can provide near optimal result. The delay
distributions between 0-20 ms are about 75% for the optimal
algorithm and DL-TPA, which is only about 60% for Eigen-
decomposition. As stated before, Eigendecomposition cannot
ensure to obtain the optimal solutions and the widest-shortest
routing algorithm is used to avoid network bottleneck. Thus,
longer routing paths of SFCRs will be produced, which incurs
longer end-to-end delay. Furthermore, given simulated results,
we can get that DL-TPA can serve SFCRs with low-delay
demands.

4) Comparison of Average Utilizations in Nodes, Links
and VNF Instances: We show average resource utilizations
in Fig. 9. The optimal algorithm obtains the best performance.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: TWO-PHASE VNF SELECTION AND CHAINING ALGORITHM BASED ON DEEP LEARNING IN SDN/NFV-ENABLED NETWORKS 1115

Fig. 9. Comparison of average utilizations in nodes, links and VNF instances (with 95% confidence intervals).

Fig. 10. Comparison of average SFCR acceptance ratio, CDF of end-to-end delay and execution time vs batch size of SFCR (with 95% confidence intervals).

DL-TPA gets approximate performance of the optimal results,
and the performance of Eigendecomposition is the worst.
In Fig. 9(a)-9(b), due to longer routing paths and more
resource consumption, Eigendecomposition needs to consume
more resources than the optimal and DL-TPA, when receiving
an equal number of SFCRs. So, with the number of arrival
SFCRs between 0 and 3000, the resource utilizations of
Eigendecompositionin in Fig. 9(a)-9(b) are higher than other
two algorithms’. In Fig. 9(a)-9(c), compared with Eigende-
composition, the optimal and DL-TPA get about 5% higher
performance in average resource utilizations of links and
nodes, however the performance enhancement of them is about
18% in VNF utilization ratio, when the number of arrival
SFCRs is more than 4000. Given this phenomenon, we can get
that it is because the resource exhaustion in nodes and links
that leads to the performance decline of Eigendecomposition.

5) Comparison of Average SFCR Acceptance Ratio, CDF
of End-to-End Delay and Execution Time Under Different
SFCR Batch Sizes: In the simulations above, the network
conditions are collected in real time to make DL-TPA output
the optimal strategies. However, collecting the network con-
ditions in real time leads to frequent signaling interactions
between control plane and data plane, which burdens the
SDN controller with more load. Moreover, in deep learning,
it is available to process samples in batches due to software
performance optimization and GPU acceleration. So, routing
SFCR one at each time reduces the execution efficiency

of deep learning network, and it is not effective to deal
with tremendous growth of network traffic. Then, in Fig. 10,
we collect the network conditions periodically, and evaluate
the performance of DL-TPA under different SFCR batch sizes
in the simulations below.

Fig. 10(a) shows the average SFCR acceptance ratio of
DL-TPA under different SFCR batch sizes. With the incre-
ment of SFCR batch size, the average acceptance ratio
with 2000-4500 arrival SFCRs declines fast. This is because
increasing the SFCR batch size leads to bigger changes
in network conditions. Therefore, the network congestion
is aggravated, because of imprecise evaluation of network
conditions.

Fig. 10(b) describes the CDF of end-to-end delay under
different SFCR batches. In the figure, the larger the SFCR
batch size is, the longer end-to-end delay the paths of SFCRs
have. For example, when the SFCR batch size is 200, the pro-
portion of SFCRs with end-to-end delay being shorter than
20 ms is about 77%, and this proportion declines to 75%, when
the SFCR batch size is 1000. As stated in Fig. 10(a), large
SFCR batch size results in imprecise evaluation of network
conditions. The imprecise evaluation of network conditions
aggravates network congestion which leads to lengthening the
end-to-end delay of SFCRs.

The average execution time is evaluated with 1000 SFCRs
under different SFCR batch sizes. In this simulation, when
dealing with SFCR one at each time (batch size equals 1),

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

1116 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 6, JUNE 2020

the execution time is about 220 ms (VNF selection net-
work accounts for about 80 ms and VNF chaining network
spends about 140 ms). When the SFCR batch size is 200,
the execution time of DL-TPA is about 12 ms (VNF selection
network accounts for about 5 ms and VNF chaining network
accounts for about 7 ms). When the SFCR batch size becomes
1000, the execution time with 1000 SFCRs declines to about
4 ms (VNF selection network accounts for about 1 ms and
VNF chaining network spends about 3 ms). Combined with
Fig. 10(a) and Fig. 10(b), we can get a good tradeoff between
the network performance (e.g., average SFCR acceptance ratio
and end-to-end delay) and the execution time of DL-TPA with
SFCR batch size of no larger than 200.

VI. CONCLUSION

In this paper, to achieve efficient routing path computation
of SFCRs, we studied VNF-SCP in SDN/NFV-enabled net-
works. This problem was formulated as a BIP model aiming to
minimize the end-to-end delay for each SFCR. Then, a novel
two-phase VNF selection and chaining algorithm based on
deep learning technology, DL-TPA, was proposed to solve
VNF-SCP. In DL-TPA, VNF selection network and VNF
chaining network were designed to achieve the optimal selec-
tion and chaining of VNF instances. In addition, feasible VNF
instance group set and path set were defined to reduce solution
space sizes of VNF selection network and VNF chaining
network, respectively. Performance evaluation showed that
DL-TPA can get high prediction accuracy of optimal paths
for SFCRs and high network performance in terms of SFCR
acceptance ratio, throughput, end-to-end delay and resource
utilization. Also, DL-TPA can significantly enhance the time
efficiency of routing path computation for SFCR compared
with existing rule-based algorithms.

In the future work, we intend to extend our work in a
number of ways. We plan to implement the DL-TPA in a real
SDN/NFV-enabled network and conduct more comprehensive
performance evaluation. We plan to further improve the scal-
ability and feasibility of DL-TPA to make it adaptable to
different types of network topologies simultaneously. We also
plan to study the resource allocation in SDN/NFV-enabled
networks with deep learning technology in the future.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 13–24, Sep. 2012.

[2] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016.

[3] J. Gil Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Trans. Netw. Service Manage., vol. 13,
no. 3, pp. 518–532, Sep. 2016.

[4] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and
O. C. M. B. Duarte, “Orchestrating virtualized network functions,”
IEEE Trans. Netw. Service Manage., vol. 13, no. 4, pp. 725–739,
Dec. 2016.

[5] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in geo-
distributed cloud system,” IEEE Trans. Parallel Distrib. Syst., vol. 30,
no. 10, pp. 2179–2192, Oct. 2019.

[6] M. Karakus and A. Durresi, “Quality of Service (QoS) in software
defined networking (SDN): A survey,” J. Netw. Comput. Appl., vol. 80,
pp. 200–218, Feb. 2017.

[7] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “Research
challenges for traffic engineering in software defined networks,” IEEE
Netw., vol. 30, no. 3, pp. 52–58, May 2016.

[8] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 2, pp. 1409–1434, 2nd Quart., 2019.

[9] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function placement
considering resource optimization and SFC requests in cloud datacenter,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 7, pp. 1664–1677,
Jul. 2018.

[10] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic steering
for service function chaining,” IEEE Commun. Surveys Tuts., vol. 21,
no. 1, pp. 487–507, 1st Quart., 2019.

[11] D. Li, P. Hong, K. Xue, and J. Pei, “Virtual network function place-
ment and resource optimization in NFV and edge computing enabled
networks,” Comput. Netw., vol. 152, pp. 12–24, Apr. 2019.

[12] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” J. Netw. Comput. Appl., vol. 75, pp. 138–155,
Nov. 2016.

[13] M. Mechtri, C. Ghribi, and D. Zeghlache, “A scalable algorithm for
the placement of service function chains,” IEEE Trans. Netw. Service
Manage., vol. 13, no. 3, pp. 533–546, Sep. 2016.

[14] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[15] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Med. Image Anal., vol. 42, pp. 60–88, Dec. 2017.

[16] B. Mao et al., “Routing or computing? The paradigm shift towards intel-
ligent computer network packet transmission based on deep learning,”
IEEE Trans. Comput., vol. 66, no. 11, pp. 1946–1960, Nov. 2017.

[17] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal VNF placement
via deep reinforcement learning in SDN/NFV-enabled networks,” IEEE
J. Sel. Areas Commun., vol. 38, no. 2, pp. 263–278, Feb. 2020, doi:
10.1109/JSAC.2019.2959181.

[18] Z. Fadlullah et al., “State-of-the-art deep learning: Evolving machine
intelligence toward tomorrow’s intelligent network traffic control sys-
tems,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2432–2455,
4th Quart., 2017.

[19] N. Kato et al., “The deep learning vision for heterogeneous
network traffic control: Proposal, challenges, and future perspec-
tive,” IEEE Wireless Commun., vol. 24, no. 3, pp. 146–153,
Jun. 2017.

[20] R. Yu, G. Xue, and X. Zhang, “QoS-aware and reliable traffic steering
for service function chaining in mobile networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2522–2531, Nov. 2017.

[21] A. Dwaraki and T. Wolf, “Adaptive service-chain routing for virtual
network functions in software-defined networks,” in Proc. Workshop
Hot Topics Middleboxes Netw. Function Virtualization (HotMIddlebox),
2016, pp. 32–37.

[22] Tensorflow. Accessed: Nov. 25, 2019. [Online]. Available: https://www.
tensorflow.org/

[23] S. Jiao, X. Zhang, S. Yu, X. Song, and Z. Xu, “Joint virtual network
function selection and traffic steering in telecom networks,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1–7.

[24] H. Huang, S. Guo, J. Wu, and J. Li, “Service chaining for hybrid network
function,” IEEE Trans. Cloud Comput., vol. 7, no. 4, pp. 1082–1094,
Oct. 2019.

[25] H. Huang, P. Li, S. Guo, W. Liang, and K. Wang, “Near-optimal
deployment of service chains by exploiting correlations between network
functions,” IEEE Trans. Cloud Comput., early access, Dec. 6, 62017,
doi: 10.1109/TCC.2017.2780165.

[26] G. Cheng, H. Chen, H. Hu, Z. Wang, and J. Lan, “Enabling network
function combination via service chain instantiation,” Comput. Netw.,
vol. 92, pp. 396–407, Dec. 2015.

[27] J. Pei, P. Hong, K. Xue, and D. Li, “Resource aware rout-
ing for service function chains in SDN and NFV-enabled net-
work,” IEEE Trans. Services Comput., early access, Jun. 22, 2019,
doi: 10.1109/TSC.2018.2849712.

[28] Opendaylight. Accessed: Nov. 25, 2019. [Online]. Available:
https://media.readthedocs.org/pdf/opendaylight/latest/opendaylight.pdf

[29] B. Mao et al., “A tensor based deep learning technique for intelligent
packet routing,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2017, pp. 1–6.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JSAC.2019.2959181
http://dx.doi.org/10.1109/TCC.2017.2780165
http://dx.doi.org/10.1109/TSC.2018.2849712

PEI et al.: TWO-PHASE VNF SELECTION AND CHAINING ALGORITHM BASED ON DEEP LEARNING IN SDN/NFV-ENABLED NETWORKS 1117

[30] J. Pei, P. Hong, and D. Li, “Virtual network function selection and
chaining based on deep learning in SDN and NFV-enabled networks,” in
Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), May 2018,
pp. 1–6.

[31] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[32] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
Jul. 2006.

[33] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., vol. 14, no. 8, pp. 1771–1800, Aug. 2002.

[34] Optical Network Design and Planning. Accessed: Nov. 25, 2019.
[Online]. Available: http://www.monarchna.com/topology.html

[35] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing network
processing delay,” in Proc. IEEE Global Telecommun. Conf. (GLOBE-
COM), Nov./Dec. 2004, pp. 1629–1634.

[36] G. E. Hinton, “A practical guide to training restricted Boltzmann
machines,” in Neural Networks: Tricks of the Trade, G. Montavon,
G. Orr, and K.-R. Müller, Eds. Berlin, Germany: Springer, pp. 599–619.

Jianing Pei received the B.S. degree from the
Department of Information and Electrical Engi-
neering (IEE), China University of Mining and
Technology (CUMT), in 2015. He is pursuing
the Ph.D. degree with the University of Science
and Technology of China (USTC), with his advi-
sor Peilin Hong. His research interests include
software-defined networks, network function virtu-
alization, network resource orchestration and man-
agement, and machine learning algorithms.

Peilin Hong received the B.S. and M.S. degrees
from the Department of Electronic Engineering and
Information Science (EEIS), University of Science
and Technology of China (USTC), in 1983 and 1986,
respectively. She is currently a Professor and an
Advisor of the Ph.D. candidates with the Depart-
ment of EEIS, USTC. She has published two books
and over 100 academic articles in several journals
and conference proceedings. Her research inter-
ests include next-generation Internet, policy control,
IP QoS, and information security.

Kaiping Xue (Senior Member, IEEE) received the
bachelor’s degree from the Department of Informa-
tion Security, University of Science and Technology
of China (USTC), in 2003, and the Ph.D. degree
from the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007. From
May 2012 to May 2013, he was a Post-Doctoral
Researcher with the Department of Electrical and
Computer Engineering, University of Florida. He is
currently an Associate Professor with the Depart-
ment of EEIS and the School of Cyber Security,

USTC. He has authored and coauthored more than 80 technical articles in the
areas of communication networks and network security. His research interests
include next-generation Internet, distributed networks, and network security.
He is an IET Fellow. His work won best paper awards in the IEEE MSN 2017,
the IEEE HotICN 2019, and Best Paper Runner-Up Award in the IEEE MASS
2018. He serves on the Editorial Board of several journals, including the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC), the IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT (TNSM), Ad
Hoc Networks, IEEE ACCESS and China Communications. He has also served
as a Guest Editor of the IEEE JOURNAL ON SELECTED AREAS IN COMMU-
NICATIONS (JSAC) and a Lead Guest Editor of the IEEE Communications
Magazine. He is serving as the Program Co-Chair for the IEEE IWCMC
2020 and SIGSAC@TURC 2020.

Defang Li was born in 1991. He received the B.S.
and Ph.D. degrees from the Department of Electronic
Engineering and Information Science (EEIS), Uni-
versity of Science and Technology of China (USTC),
in 2014 and 2019, respectively. His research interests
include SDN, NFV, network resource orchestration
and management, and cloud computing.

David S. L. Wei (Senior Member, IEEE) received
the Ph.D. degree in computer and information sci-
ence from the University of Pennsylvania in 1991.
From May 1993 to August 1997, he was on the
Faculty of Computer Science and Engineering, Uni-
versity of Aizu, Japan, as an Associate Professor and
then a Full Professor. He is currently a Full Pro-
fessor with the Computer and Information Science
Department, Fordham University. He has authored
and coauthored more than 120 technical articles
in the areas of distributed and parallel processing,

wireless networks and mobile computing, optical networks, peer-to-peer
communications, cognitive radio networks, big data, cloud computing, and
the IoT in various archival journals and conference proceedings. He served
on the program committee. He was a session chair for several reputed
international conferences. He was a Lead Guest Editor of the IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS for the special issue on Mobile
Computing and Networking and the IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS for the special issue on Networking Challenges in
Cloud Computing Systems and Applications, and a Guest Editor of the
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS for the special
issue on Peer-to-Peer Communications and Applications, a Lead Guest Editor
of IEEE Transactions on Cloud Computing for the special issue on Cloud
Security, the IEEE TRANSACTIONS ON BIG DATA for the special issue on
Trustworthiness in Big Data and Cloud Computing Systems, and the IEEE
TRANSACTIONS ON BIG DATA for the special issue on Edge Analytics
in the Internet of Things. He also served as an Associate Editor of the
IEEE TRANSACTIONS ON CLOUD COMPUTING from 2014 to 2018 and
JOURNAL OF CIRCUITS, SYSTEMS AND COMPUTERS from 2013 to 2018.
He is presently an Editor of IEEE JOURNAL ON SELECTED AREAS in
Communications for the Series on Network Softwarization & Enablers and
a Lead Guest Editor of the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS for the special issue on Leveraging Machine Learning
in SDN/NFV-based Networks. His current research interests include cloud
and edge computing, the IoT, big data, machine learning, and cognitive radio
networks.

Feng Wu (Fellow, IEEE) received the B.S. degree
in electrical engineering from Xidian University
in 1992, and the M.S. and Ph.D. degrees in computer
science from the Harbin Institute of Technology,
in 1996 and 1999, respectively. He is currently a
Professor with the University of Science and Tech-
nology of China (USTC). Before that, he was a
Principle Researcher and Research Manager with
Microsoft Research Asia. His research interests
include computational photography, image and video
compression, media communication, and media

analysis and synthesis. He has authored or coauthored over 200 high quality
articles. As a coauthor, he received the Best Paper Award from the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
2009, PCM 2008, and SPIE VCIP 2007. His research interests include multi-
media communications, image and video processing, and artificial intelligence.
He serves as an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEM FOR VIDEO TECHNOLOGY, the IEEE TRANSACTIONS ON

MULTIMEDIA, and several other International journals. He received the IEEE
Circuits and Systems Society 2012 Best Associate Editor Award. He also
served as the TPC Chair for MMSP 2011, VCIP 2010 and PCM 2009, and
the Special Sessions Chair for ICME 2010 and ISCAS 2013

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 24,2020 at 15:36:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

