2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS) | 978-1-7281-9866-8/20/$31.00 ©2020 IEEE | DOI: 10.1109/MASS50613.2020.00048

2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)

FSDM: Fast Recovery Saturation Attack Detection
and Mitigation Framework in SDN

Xuanbo Huang*, Kaiping Xue*8, Yitao Xing!, Dingwen Huf, Ruidong Li*, Qibin Sun*
* School of Cyber Security, University of Science and Technology of China, Hefei, Anhui 230027, China
T Department of EEIS, University of Science and Technology of China, Hefei, Anhui 230027, China
¥ National Institute of Information and Communications Technology (NICT), Tokyo 184-8795, Japan
§Corresponding author, kpxue @ustc.edu.cn

Abstract—The whole Software-Defined Networking (SDN) sys-
tem might be out of service when the control plane is overloaded
by control plane saturation attacks. In this attack, a malicious
host can manipulate massive table-miss packets to exhaust the
control plane resources. Even though many studies have focused
on this problem, systems still suffer from more influenced
switches because of centralized mitigation policies, and long
recovery delay because of the remaining attack flows. To solve
these problems, we propose FSDM, a Fast recovery Saturation
attack Detection and Mitigation framework. For detection, FSDM
extracts the distribution of Control Channel Occupation Rate
(CCOR) to detect the attack and locates the port that attackers
come from. For mitigation, with the attacker’s location and
distributed Mitigation Agents, FSDM adopts different policies
to migrate or block attack flows, which influences fewer switches
and protects the control plane from resource exhaustion. Besides,
to reduce the system recovery delay, FSDM equips a novel
functional module called Force Checking, which enables the
whole system to quickly clean up the remaining attack flows
and recovery faster. Finally, we conducted extensive experiments,
which show that, with the increasing of attack PPS (Packets Per
Second), FSDM only suffers a minor recovery delay increase.
Compared with traditional methods without cleaning up remain-
ing flows, FSDM saves more than 81% of ping RTT under attack
rate ranged from 1000 to 4000 PPS, and successfully reduced
the delay of 87% of HTTP requests time under large attack rate
ranged from 5000 to 30000 PPS.

Index Terms—Software Defined Networks, Saturation Attack,
Mitigation Mechanism, Fast Recovery

I. INTRODUCTION

Software Defined Network (SDN) has been becoming the
protagonist on the stage of next generation network. Taking ad-
vantage of decoupling the control and data planes, it’s flexible
function deployment ability and reduced operational overhead
are very attractive to data center and cloud network providers,
thereby enjoys a great popularity [1]. SDN centralized the
control logic by using an open southbound interface to allow
controllers and switches to interact. One of the most popular
southbound interface protocol is OpenFlow [2]

OpenFlow introduces the concept of flows and flow tables,
which is used to identify and manage the network traffics. Each
OpenFlow switch maintains a pipeline to deal with network
flows under the guidance of a set of flow tables, produced
by the controller. The network operation and maintenance
personnel can easily define and change the flow process
logic by writing applications to deliver the flow tables either

proactively or reactively. It is worth mentioning that when in
the reactive mode, the switches will ask for instructions from
controller for all flows that do not have a match in current
flow tables. However, while this gives SDN more elasticity and
visibility, a potential bottleneck vulnerability comes ensuing.

A notable attack that exploits the communication of con-
troller and switches to overload the control plane, are called the
control plane saturation attacks. Saturation attack is a kind of
Denial-of-Service attack and can be easily performed by a host
in or just connecting to SDN networks. From previous studies,
it is mainly implemented by SYN flood [3]-[5]. While, UDP
flood, ICMP flood, IP spoofing and their combinations also
holds a candle to the saturation attackers [6]. Recently, with
more advanced SDN reconnaissance methods [7]-[10] being
proposed, saturation attacks have been even more destructive
and stealthy [11], [12].

Therefore, how to detect and mitigate control plane satu-
ration attack is a very challenging problem. Previous studies
have proposed several methods to detect and mitigate satu-
ration attacks. In terms of detection, [13], [14] use the rate
of PACKET_IN messages to determine whether there is an
attack. [6], [15]-[17] build upon the studies of flow entropy
or self-similarity to detect the attacks. [18] adopts flow rate
and flow duration for anomaly detection. These methods can
determine that the whole network is under attack but cannot
locate the port that malicious hosts come from, thus may result
in complex mitigation policies with unnecessary filtration, and
more involved switches. If we can locate the attacker, we
can deal with the attack flows more precisely and reduce the
impact on benign traffics. And on the other hand, in terms of
mitigation. [19] introduces mechanism to reduce interaction
between controllers and switches. [6], [13], [15] introduce
extra centralized network entity and migrate attack flows to it
for further filtration. However, centralized mitigation method
based on migration may influence all the switches on the
migration path. [14] detours the attack flows to the victim’s
neighbor switches to protect their bandwidth, and filter the
attack flows in the controller, but the efficiency is related
to number of switches that involved in the detour process.
Besides, [15] suffers from high system recovery delay. From
discussion above, we summarized two challenges:

o How to accurately detect the attack while locating the

port that attackers come from?

2155-6814/20/$31.00 ©2020 IEEE 329
DOI 10.1109/MASS50613.2020.00048

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:10:34 UTC from IEEE Xplore. Restrictions apply.

o How to efficiently mitigate the attack flows, reduce the
impact switches number, while making the system recov-
er faster?

To solve these challenges, in this paper, we propose FSDM,
a Fast recovery Saturation attack Detection and Mitigation
framework, which is light-weight and scalable. FSDM con-
tains an Attack Detector, a Mitigation Manager, and a novel
functional module Force_Checking for different designed ob-
jectives. Specifically, Attack Detector is designed to tackle the
first challenge while Mitigation Manager and Force_Checking
aim at the second one. Attack Detector deploys a novel,
light-weight detection scheme that extracts the distribution
of Control Channel Occupation Rate to detect the attack,
while locating the attackers from the distributions. Mitigation
Manager contains a Mitigation Server in the controller, and
distributed Mitigation Agents in each edge gateway. Once the
attack is detected, Mitigation Server migrates attack flows to
the nearest Mitigation Agents or blocks attack flows directly
depending on the attacker’s location. Thus, it can reduce the
influenced switches and protect control plane. In the meantime,
to reduce the system recovery delay, FSDM deploys a novel
functional module Force_Checking in the Event Dispatcher
module of controller platforms. The Force_Checking function
quickly cleans up buffered attack flows and enables the system
to recover in a short time. FSDM is easy to be implemented in
physical networks and there is no need for changing OpenFlow
protocol. Besides, we have evaluated our framework in SDN
simulation environment with Mininet [20] and RyuController
[21]. The experimental results show that FSDM can timely
detect the attack, and enable the system to recover in a short
time. The main contributions of our work can be summarized
as follows:

1) We propose FSDM, a Fast recovery Saturation attack
Detection and Mitigation framework. By adopting novel
detection mechanism that can locate attackers, and in-
troducing distributed Mitigation Agents, FSDM reduces
the influenced switches and avoid unnecessary filtration,
while protecting the control plane from resource exhaus-
tion.

We make analysis of the system recovery model, and
proof that, some attack flows that still remained in the
system after mitigation are the culprits of long system
recovery delay. To solve this problem, we propose a novel
functional module Force_Checking, which can quickly
clean up remained attack flows and enable the system to
recover in a short time.

We conduct extensive experiments in a simulation SDN
platform implemented a prototype system of FSDM. The
results show that FSDM can timely detect the attack and
saves more than 81% of the ping RTT (Round Trip Time)
compared with traditional method without cleaning up
buffered packets, and reduces averagely 87% of the HTTP
requests time under large number of attacks.

2)

3)

The rest of this paper is structured as follows: Section
II-A elaborates some necessary background knowledge on

330

SDN, OpenFlow, and control plane saturation attacks. Section
II-B discuss the related work and the difference from ours.
In Section III-A we will illustrate the threat model, and a
theoretical analysis on system recovery delay in Section I1I-B.
Then, our detection and mitigation mechanism framework
design is depicted in Section IV, and is evaluated in Section
V. We draw our conclusion in Section VI.

II. BACKGROUND AND RELATEDWORK

A. SDN and OpenFlow

Processing Chain
Processing Chain
Processing Chain

Table
(2) Table]

Tablel | ~*| Table2

Switch Pipeline

3)
PACKET_IN
—_—

(1) Flows
_—
[

5)
PACKET OUT
FLOW_MOD

[
(4)

&P

Controller Processing Chain

Fig. 1: Flow processing in reactive method

SDN separates the control plane and the data plane of the
network, making the data plane more generic. The network’s
control logic is managed by centralized controller applications.
Taking advantages of programmability, efficiency, and flexibil-
ity, SDN plays a role in more and more scenarios.

In SDN networks, the interface between the control plane
and the data plane is called the southbound interface. The
SDN southbound interface is the core embodiment of the
programmability of the entire network, so an open, unified,
and more programmable interface is required. In 2008, Nick
McKeown et al. proposed the OpenFlow [2]. Currently, Open-
Flow is the most popular SDN southbound interface protocol.
According to the version of OpenFlowl.5 [22], firstly, con-
troller and switches will establish an OpenFlow channel over
TCP or TLS. The controller installs flow rules to the switches
to instruct them to handle different network traffics. Each flow
rule contains a match field, an action field, a timeout field,
etc. Flow rules can be installed proactively (preinstalled) or
reactively. OpenFlow switches maintain a pipeline with a set
of flow tables contains of flow rules to deal with network
traffics. In the reactive method shown in Fig. 1, the lifecycle of
a flow can be divided into several steps. At Step (1), a certain
flow arrives at a switch. Then in Step (2), the switch checks
whether there is a matching flow rule in flow tables. If there is
a match, it will execute Step (2°) to follow the corresponding
flow rule’s action, such as forward to a certain port, set some
fields, or go to other tables. If no flow rule matches the current
incoming flow, switch executes Step (3), encapsulating the first
packet of the flow as a PACKET_IN message to the controller.
Controller applications are responsible for Step (4), in which
they extract the header and process their functions. In addition,
a forwarding application or link discovery module may execute
Step (5), to generate PACKET_OUT messages send it back
with a set of actions, or generate a FLOW_MOD message to
instruct the switch to process the same kind of flows.

In the controller platforms, different applications make up
multiple processing chains waiting for dealing with events.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:10:34 UTC from IEEE Xplore. Restrictions apply.

When controller receives a message, for example, a PACK-
ET_IN message, the Event Dispatcher module transforms it
to a PACKET_IN event, and dispatches the event to corre-
sponding applications that subscribed the PACKET_IN event
(e.g., a forwarding application). Each the of applications have
an event queue, to temporarily store the events haven’t been
processed.

For attackers connected to SDN networks, they can manip-
ulate large number of no match flows to trigger PACKET_IN
floods and PACKET_OUT floods to occupy the control chan-
nel and controller’s resources, and trigger FLOW_MOD floods
to exhaust the memories of switches. This kind of attacks are
called the control plane saturation attacks.

B. Detection and Mitigation of Saturation Attack

Shin et al. [23]firstly introduced the concept of SDN
saturation attacks, which trigger new flow rules to exhaust the
switches’ memory. To mitigate the attack, AVANT-GUARD
[3] and LineSwitch [24] extend the data plane, making the
switches act as SYN proxy to reduce interaction in controller
and switches. They are applicable to TCP-based attacks only.
However, saturation attacks can be launched with a various
methods [6] as long as the malicious host can manipulate
considerable table miss flows to trigger PACKET_IN floods.

Then, FloodGuard [13], FADM [15], and FloodDefender
[14] introduced the protocol-independent methods to deal
with the various attack flows. Designed as an application,
FloodGuard consists of two new functional modules: flow rule
analyzer module, and packets migration module. The flow rule
analyzer dynamically collect the flow rules in the network,
and install all of them when the attack is detected to reduce
the PACKET_IN messages. Migration module combines the
real time PACKET_IN rate and the CPU utilization of the
controller to detect the attack. When the attack is detected,
FloodGuard installs a flow rule with the lowest priority to
migrate table-miss flows to a middle layer cache and limits the
PACKET_IN rate of the flows, using a round-robin scheduler
to send packets to controller. However, this kind of mitigation
policies may cause high packet loss rate in some cases [14].
FADM consists of two modules: DDoS detection module
and DDoS mitigation module. The detection module employs
SVM (Support Vector Machine) [25] to detect the attack,
and the mitigation module installs a wildcard rule with high
priority to migrate similar attack flows with same protocol and
IP destination to the Mitigation Agent for further filtration. The
high priority migration rule results in all benign flows need
to trigger a new PACKET_IN events, intensifying the control
plane’s pressure. Besides, FADM does not clean up buffered
attack flows, thus suffers from long system recovery delay
under large number of attacks. FloodDefender lied between
controller platforms and applications as a middleware to better
filter the flows. Different from the works mentioned above,
FloodDefender doesn’t introduce a cache to store temporary
attack flows, but installs a flow rule to detour attack flows
to the victim’s neighbor switches when the attack occurs. In
this method, there is no need for extra network entity and no

need to change OpenFlow protocol. However, FloodDefender’s
mitigation efficiency is relevant to the number of switches
that involved in the detour process, which means it might not
be efficient when a numerous attack occurs in a small-scale
network that contains only several switches. Resources might
still be exhausted in the detour process. In the meantime, as
the controller affords most of the filtration work, the control
channel will still be occupied by attack flows.

By contrast, deploy a Mitigation Agent as an entity is more
stable and practice. The main idea of the Mitigation Agent
is to take the place of control plane’s work to deal with
attack flows. However, traditional centralized mitigation agent
may suffer from more influenced switches. For example, if
the agent is far from the victim switch, the attack flows will
influence all the switches on the migration path. To solve
this problem, we deploy distributed Mitigation Agents in each
edge gateway as virtual functionality module to deal with
the attack flows. Compared with the centralized Mitigation
Agent, the distributed method is more scalable and robust. In
the meantime, the attack flows coming outside the network
will be migrated with no more than one hop, thus reduce the
influenced switches.

III. THREAT MODEL AND SYSTEM RECOVERY MODEL
A. Threat Model

Control plane saturation attack is a kind of resource ex-
haustion attack that can be launched in a malicious host
inside or outside the layer two SDN network, to paralyze the
control plane, data plane, or both. With the technology of time-
based reconnaissance [26] and flow rule reconstruction [7] of
flow rules in SDN, the malicious host can know most of the
matching fields in the flow tables, thus easily manipulates new
flows to trigger PACKET_IN flood to deplete the resources.
In this paper, we assume that the attacker can reconnaissance
some matching fields of flow rules to manipulate new flows.
Also, he can launch attacks from botnet outside the network,
or compromise a single host inside the network, which can be
easily achieved (e.g., to rent a virtual machine in SDN based
cloud network).

B. System Recovery Model

Generally, in the reactive SDN environment, packets that
cannot match a flow rule will experience higher delay as
it will be sent to controller as a PACKET_IN message. In
the controller, there are multiple applications waiting to deal
with these flows, (e.g., ARP Proxy, ACL, Load Balancer,
etc.) The packets need time to queue and experience all
the applications pipeline. When a saturation attack happens,
numerous malicious packets will be injected into control plane.
Before the attack is detected and mitigated, all the attack flows
injected into controller will be buffered, queued, and processed
normally in the controller’s application pipeline. Traditional
mitigation policies [13]-[15] were generally installing a flow
rule to block or migrate the attack flows in the switches,
while ignoring the buffered attack flows. However, the buffered
attack flows are also in a large number, though the attack is

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:10:34 UTC from IEEE Xplore. Restrictions apply.

Attack Detection
DeEect . Cycle .
e
Attack . Time
Controller Blocked .
Deal with -
Victim attack flows =
Switch Attack . System
Launched = Recover
‘\Q 1 .
! . Time
Recovery -
Delay

Fig. 2: Recovery time model without cleaning up remaining
attack flows

timely blocked, other applications in the network still regard
these flows as benign traffics, thus process them normally. That
is because these applications do not have a secure attribute to
distinguish and drop attack flows. These buffered attack flows
can occupy the system resources for a long time, force the
system to deal with useless flows. Thus, benign traffics can
not be timely forwarded until the attack flows being dealt,
that is to say, the system need a long time to recover.

Then, we estimate the time period that control plane might
be influenced under an attack. We assume that the attacker
launches an attack at time t, with the rate K, and average
size of b, byte, and the detector need a period of time ¢,, (i.e., a
detection cycle) to collect information and determine whether
there is an attack. Additionally, B.s denotes the bandwidth
between switches and controller.

Fig. 2 shows the recovery time model in traditional methods
without cleaning up buffered packets. In the worst case, the
attack is launched exactly at the beginning of a new detection
cycle, or slightly before a cycle start, that is to say the detector
needs at least one t¢,, or more to detect the attack. We use ¢4 to
depict the time period that controller need to detect the attack.
During the period of ¢4 there are t4- K, packets will be sent
to switch before the attack being detected. If the bandwidth
between controller and switches is sufficient, all the packets
will be forwarded to controller. If the bandwidth is limited, the
packets that are sent to controller can be calculated as ;- B;CS .
Thus, the numbers of packets that injected to control plane ﬂ/'a
is about:

cs

N, = min{ty - b

; td . Kpps}~ (])

Generally, in a traditional method, once the attack is de-
tected, the controller installs a defensive flow rule to switch
to block or migrate the attack flows. However, at that time the
controller’s send queue may be filled with triggered PACK-
ET_OUT and FLOW_MOD messages thus the installation of
defensive rule need to wait for a while. Once the defensive
rule is installed, the switches stop injecting attack flows to
control plane. Notice that though the attack flows are blocked
from switches, the injected N, flows have not been processed

332

completely. Some of them are still remaining in the control
plane, buffered in the event handler, controller modules or
applications event queues. Then, when a normal flow needs
to be forwarded, it has to wait for a long time to queue. To
measure the time, we firstly assume that applications need
time . to deal with each flow. Then the number of remaining
packets NV,. can be calculated as:

t
N, =N, — 2.
Le
Then the time period that controller needs to completely
process all these attack flows from when the attack is detected

can be denoted as

(@)

tm = tc - Ny 3)

We define the whole system recovery time as ¢,, and we have

tr =tqg+t, = tqg+t. N,

B, 4
:td-(l—&—tc-maw{b—cs,Km,s}). @

a

In a system, the process time ¢, depends on its resources and
hardware, and the attack rate K, depends on the attacker’s
ability. Thus, from the Equation 4, system recovery time
t, is mainly relevant to the buffered packets number N,
and the detection time ¢4. To reduce the system recovery
time, intuitively we should reduce the ¢4 or N,. However,
reducing t4 is not a generic way as it is relevant to the
detection algorithm and the time window length ¢,,, which
is important on information collection. The longer t,, it is,
the more information can be gained by the detector to make
the decision more precisely. Thus, we cannot reduce the ¢, to
make the system recover faster as it may influence the accuracy
of detection module. By contrast, using a method to reduce N,
is more generic and stable. To solve the problem, we proposed
novel module Force_Checking to effectively reduce the N,.
We will verify the correctness of our analysis in practice in
Section V, and show the efficiency of Force Checking on
reducing the system recovery delay.

IV. FSDM FRAMEWORK OVERVIEW

In this section we introduce our Detection and Mitigation
framework: FSDM. Fig. 3 illustrates the system overview
and the basic working process. FSDM contains an Attack
Detector, Mitigation Manager and the novel functional module
Force_Checking. Mitigation Manager contains of a Mitiga-
tion Server in controller and distributed Mitigation Agents
deployed in each gateway. When network is established,
Attack Detector calculates the detection threshold and starts
monitoring the control channel for anomaly detection. And the
Mitigation Server starts collecting white-list in each detection
cycle and sending them to the Mitigation Agents. Once the
attack is detected, Mitigation Server stops white-list collection
and uses the location information to block or migrate flows
that come from the same port as attack flows. Migration
happens when attack flows are mixed with benign traffics,
and is implemented by installing a flow rule with the lowest
priority to migrate these flows to the nearest Mitigation Agent

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:10:34 UTC from IEEE Xplore. Restrictions apply.

for filtration. Benign traffics in white-list will be forwarded to
Mitigation Server, which will generate a PACKET_IN event to
other applications, making the protection process transparent.

l App2

PN
o I
Filter
Packet_in Event proxy
o Benign Packet_in
Wi Mltlgatlon Server
Agent Send White list
\nfurm Attack
FSDM
cdge System Attack Detector
Gateway ")
‘ ‘ -M te BI k.
AN 1 e ol I I = |
—_— +> Controller [Checkvng
Platform

Attack Flows

Fig. 3: System overview and working process for FSDM

A. Attack Detector

1) Attack Detection: To detect the attack, we extract the
difference between the benign traffics and the attack flows of
the Control Channel Occupation Rate (CCOR). The main idea
is that, on the one hand, in each time window, the number of
benign table-miss flows are different from the malicious one,
which always comes in a large number. And on the other hand,
the attack flows will change the distribution of CCOR of each
port. Intuitively, when we observe a new flow from a certain
port, we can observe the corresponding pair flow from another
one. However, when numerous attack flows come, their pair
flows can hardly be observed as they exceed the number that
system can afford, and the benign flows from other port will
also be congested and queued for a while. That is to say,
in a short time the monitored CCOR of each port would be
much more uneven, which cause a very low entropy value.
For example, the CCOR of benign traffics for a certain port
can hardly exceed 50%, if all the flows from that port are in
pair. If the occupation rate exceeds 70%, that means there are
at least 40% flows have no pair flows, they might be queued
or just dropped. It is a signal that there are too many new
flows for the system to afford, thus is determined as an attack.
From the discussion above, we take the total number of packets
and the entropy of CCOR of each port to detect the attack.
For the total number of packets, we define threshold S7. And
for the distribution of CCOR, we define threshold E7. Both
of the threshold are calculated from the network parameters
itself automatically after network is established. When the
network PACKET_IN messages exceed the threshold S and
the CCOR entropy lower than threshold E7, we determine
there is an attack.

2) Setup: To monitor the CCOR for the whole network,
Attack Detector firstly call the link discovery module to find
all the active ports that connected to active ‘hosts’ (real hosts
or legacy routers). We do not monitor on the ports that between
two switches, as the PACKET_IN messages from that port is
not the newest (the last hop have sent it to the controller).
For these ports, their (dpid, port_no) are used as the unique
identifications, which can not be forged by attackers unless

333

they compromise a switch. Considering there are n such ports
exist in the data plane, we establish a monitor vector as:
M, = (h1,hy---hy), where t represents the time window,
and the initial value of My = (1,1---1) for the sake of
entropy calculation. Assume in a time window, there comes k
PACKET_IN messages from host /;. Then the corresponding
elements in monitor vector will be set as h; = k. In each time
window, we calculate the sum of My as Sum; = Y ;. hi.
And the CCOR in this time window can be calculated as:

M,
M} = . 5
t Sumy ©)
Next, we use entropy to measure the distribution:
==k -log,(h}) ©)
i=1

In each time window, if the Sum; exceeds threshold St
and the H(M,") less than threshold E7, the Attack Detector
determines that there is an attack.

3) Threshold Calculation: The first threshold S7 should be
set depend on the bottleneck feature in the SDN environment,
thus when exceeded, we know there might be an attack.
The bottleneck might be the MAX size of flow entries in
switches, bandwidth, memory size, etc. In the simulated SDN
environment, the switch flow entries and memory are sufficient
compared with the computational resources of controller.
Besides, the switch features can not be timely updated under
attacks as the channel might be broken. Thus, we use the
MAX number of packets that controller can handle per second
(denoted as ng) to measure the capacity of the whole control
plane, which is used to calculate threshold S7. To estimate
the value of ng, Attack Detector calculates average packets
process time t. in the first several time windows (assume
there are no attack). The process time is calculated from when
the event is dispatched to the certain application, to the time
that being processed totally. And we have ngy . Note
that, as the Attack Detector doesn’t need to send PACK-
ET_OUT or FLOW_MOD, the process time t. is less than
other applications, thus the estimated ng4 is relatively larger.
Besides, when under attacks, the computational resources will
be distributed to all the applications, then the number of
packets that Attack Detector monitored would be much less.
Thus, the ny should be multiplied by a correction parameter
[to properly represents the ‘bottleneck’ value. Then we got
St = B -ngq.(0 < B < 1)After that, the question is how to
find the proper value of 3 to accurately detect the attack. In-
tuitively, 3 is relevant to the PACKET_IN message subscriber
applications number. Assume that there are large numbers
of PACKET_IN floods inject to control plane, and there are
multiple of applications asking for resources to process these
flows. In a round-robin operating system, time resource are
distributed evenly for each application. Assume there are m
PACKET_IN subscriber applications in the network, we define
B = L. The S; now represents the ‘max ability’ that the
system can handle in a time window. When the packets number

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:10:34 UTC from IEEE Xplore. Restrictions apply.

exceeds the value Sp, we further extract the distribution
character to determine whether there is an attack.

The second threshold Ep is calculated from the network
scale. We define the malicious single port occupation rate as
a (50% < a < 100%), and calculate the entropy of a monitor
vector with malicious occupation port in Algorithm 1 as Er.
In our experiments, we set o = 70%.

Algorithm 1: Calculate Threshold Er

Input: Number of hosts n, Occupation Rate o
Output: Threshold Ep
T = Q;
e1 = —x1 - logy(x1) ;
for i € range(2,n) do
i = 5
e; = ei—1 — x; - logy ()
end
return Er = ¢,

4) Locate the attackers: In order to efficiently deal with
the attack flows, reducing the overhead in mitigation process,
merely detect the attack is not enough. Thus, we propose a
novel method to locate the port that attackers come from. As
is discussed above, we monitor on each port of switches in
each time window. In ¢ time windows, if the network state
is normal, Attack Detector collects a series of monitor vector
as < My, My --- M; >. When the Attack Detector determines
that there is an attack, it checks if there exists a single port that
has the malicious occupation rate of control channels. If so,
return the port index as the attacker’s port. If not, it calculates
Mt — Mgt to find the port that have the highest growth
as the attacker’s port.

B. Mitigation Manager

Mitigation Manager consists of Mitigation Server deployed
in controller and distributed Mitigation Agents deployed in
edge gateways, and they communicate with each other through
TCP or TLS. As shown in Fig. 3, when the network is
in normal state, the Mitigation Server collects white-list for
benign traffics periodically and sends them to each Mitigation
Agent. We adopt the collecting policy for white-list that
discussed in [15], Mitigation Server updates white-list each
benign time window according to the following rules:

o The flow is in pair;

o In a period of time, the number of flows with the same

source IP exceeds a threshold value.

In each time windows, the source IP addresses that matched
these requirements are added into white-list. We store white-
list in a Bloom filter [27] data structure for each Mitigation
Agents and the Mitigation Server to reduce the overhead in
communication, and save the memories of each entity. Notice
that even though the Bloom filter has a misjudgment for false
negative samples, it would not influence the system as we
only need to filter most of the attack flows. For example,
for a Bloom filter with false rate 0.1%, it is possible that

334

the Mitigation Agents forward 10 attack flows in each 10000
attack flows. However, few attack flows can hardly cause
obvious impact on the whole system. Once the Attack Detector
determines an attack takes place, Mitigation Server processes
the attack flows in three steps:

o First, Mitigation Server installs a flow rule with the
lowest priority on victim switch to migrate or block all
the table-miss flows from attacker’s port depending on
the attacker’s location. For attacks from single-host port
inside the network, Mitigation Server installs a flow rule
to block the abnormal traffics directly. For attacks from
multiple-hosts port (e.g., the edge gateway’s port), as the
traffics are hybrid with benign traffics, Mitigation Server
migrates these flows to the nearest Mitigation Agent for
further filtration.

o If migration happens, Mitigation Server activates the
corresponding Mitigation Agent, which uses pypcap to
capture all the packets pass through. When activated, the
agent extracts all the packets headers, and checks if the
source IP address is in the white-list. If so, agent sends
the data to the Mitigation Server.

« When Mitigation Server receives a packet from Mitiga-
tion Agent, it encapsulates the packet as a PACKET_IN
event and sends it to all the PACKET_IN message sub-
scriber applications. With all the OpenFlow fields set a
proper value. For example, the dpid, in_port fields are set
the same as corresponding victim switch, which is not
hard to get. With this step, the whole protection process
is transparent to other controller applications.

By using these methods, we can timely protect the control

plane from resources exhaustion while ensuring the commu-
nication between legitimate users are not affected.

C. Force_Checking Module

After the corresponding policy is implemented by the Mit-
igation Server, there will be no more attack flows injected
into control plane. However, there are still lots of buffered
attack flows remaining in the control plane. From the discus-
sion in Section III-B, we propose novel functional module
Force_Checking to clean up all the buffered attack packets
immediately after the attack is detected. However, this is
hard to achieve. For one thing, the attack flows might be
mixed with benign flows, the module must have the ability
to distinguish attack flows from all the flows. For another
thing, there are multiple places for these flows to hide, which
makes it hard to clean up them all. To solve these problems,
the Force_Checking module uses white-list to distinguish
attack flows, and cleans up most of buffered packets in the
Event Dispatcher module of controller platforms. The basic
working process of Force_Checking is: It does nothing when
the network state is normal thus will not bring overhead to
systems. But when the attack is detected, the Force_Checking
module is evoked. It extracts the packets headers and checks
whether the source IP addresses are in the white-list every time
controller’s Event Dispatcher wants to generate a PACKET_IN
event. If not, drop that event to avoid adding them to the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:10:34 UTC from IEEE Xplore. Restrictions apply.

subscriber applications event queue. In that way, the buffered
attack flows can be efficiently reduced, thus enabling the
system to release resources for benign traffics.

Controller

M

Vswitch

“/Ialicious Host
‘ Test Hosts

i S
Openszitch_," Open! "-_ODnszitch

Mitigation
Agent

Mitigation
Agent

/(a I.’I\

§@@@a@§§§w

Fig. 4: Experimental topology with prototype system FSDM

Gateway

HttpServer

V. EVALUATION
A. Implementation

We implemented a prototype FSDM system in simulation
SDN platform. The Attack Detector and Mitigation Server are
implemented as an application in the Ryu controller, deployed
in a computer with i5-9400 CPU and 6 GB memory. In the
meantime, we use Mininet [20] to create virtual hosts and
OpenVswitch [28]. From the iperf test, the whole bandwidth
in our system is 25.6Gbps. As is simulated, all the links share
the same bandwidth resources and it is much more sufficient
for experiments. The experimental topology is shown in Fig.
4. There are three switches, two legacy routers as gateways
deployed mitigation agents, and several hosts in the system.
Besides, there are several Test Hosts in our topology, these
hosts are used to send ping messages and record RTT, or
download a certain page periodically from the web server and
log the request time.

To simulate the realistic background traffics, we set that
all the hosts will communication with random target in a
random time, using TCP or UDP. In the Ryu controller, we
implemented other two applications. They are ArpHub and
EasyACL, both of them are written by ourselves and tested
functional well. The ArpHub takes responsibility for all the
arp reply to avoid flood and installs 12 forwarding rules,
EasyACL provides a basic access control for some internal
hosts on UDP and TCP messages based on IP address. In
addition, we set that all IP address can access the web server.
These two applications’ working process can be regarded as
a 13 forwarding function with access control, based on field
ip_src && ip_dst. The whole network’s flow tables are set as
follows: In table 0, the traffics having access in ACL will be
set goto=table 2, and the no-match flows are set goto=table
I. In table 1, the no-match arp, tcp, and udp messages are
forwarded to controller. In table 2, 12 forwarding rules are
installed and forward the traffics to certain port.

As mentioned above, we assume that the attacker have the
ability to reconnaissance the flow rules in our system, which
means the attacker knows that all the traffics with random

335

value of ip_src and ip_dst = Web Server will not be dropped
and can trigger PACKET_IN floods. The malicious hosts may
outside the network or inside the network, and use hping3 to
create attack flows with different fields and protocols.

B. Setup

First, to verify the correctness of the system recovery model
in practice, we measured the buffered attack flows number
N, under different attack rate and evaluated the influence on
applications. We measured the maximum buffered packets to
evaluate the worst case that the attacker can cause, and the
average buffered packets to reflect more generic situations.
The maximum buffered packets is obtained with the longest
detection time ¢4 (to attack slightly before a detection cycle
starts), and the average one is obtained from random detection
time. In our system, the ArpHub and EasyACL start counting
attack flow’s number once the attack is detected and blocked.
The attack rate ranged from 500 to 2500 PPS.

Second, we measured the system recovery delay. We define
the system recovery delay as the time period that a new flow
need to be forwarded as soon as the attack start, as mentioned
above. To measure that, we use Test Hosts in our topology
to send ping messages slightly behind the attack start (to
make sure the attack flows are injecting). The ping messages
and attack flows will both trigger PACKET_IN messages, and
mixed with each other to be processed by the controller. The
RTT is mainly relevant to the time that controller needs to
reply for benign traffics under attacks, thus can be used to
measure the system recovery delay. We conduct experiments
with traditional methods and with Force_Checking function,
and the attack rate increasing from 500 to 4000 PPS.

Third, we made a comparison between our work and the
FADM [15] system. FADM defined the system recovery delay
as the first HTTP request time under attacks. In their system,
several hosts download pages from web server every 3 seconds
and record the time, and the first recorded time under attacks is
used to measure the recovery delay. The system recovery delay
measured in this method is slightly lower than the method
using ping RTT, as the ping messages are always sent almost
simultaneously with attack flows. But both of them can reflect
the time period that the system need to recover. Thus, we use
the same method with them for evaluation and the same attack
rate ranged from 5000 to 30000 PPS.

Fourth, we evaluated the detection efficiency under attack
rate ranged from 500 to 5000 PPS.

C. Evaluation

1) Correctness of recovery model: Fig. 5a shows the
buffered packets number in traditional mitigation cases that
ignored buffered attack flows. As we can see, with the attack
rate increasing, the buffered packets number increases quickly.
Besides, we measured the queue delay of each packet for each
application in TABLE I. When under attacks, the queue delay
increases because of the resource exhaustion. Obviously, if
we do nothing about these buffered attack flows, these two
applications need a large amount of time to process them all.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:10:34 UTC from IEEE Xplore. Restrictions apply.

For example, under the worst case with attack rate 2500PPS,
there are more than 5628 packets injected into EasyACL
and 5380 packets injected into ArpHub. The average queue
time for each packet is 30.03ms in ArpHub, and 33.23ms in
EasyACL. These packets will be regarded as normal traffics
by these two applications to process. We can roughly evaluate
the time that a benign traffic need to wait at this time. For
EasyACL, it needs roughly 187s, and for ArpHub, it needs
about 162s. Worse still, these buffered packets will trigger
lots of PACKET_OUT and FLOW_MOD messages. And the
physical OpenFlow switches have limited flow entries, which
can be exhausted by these buffered packets easily. In an SDN
environment with multiple applications, things could be even
worse.

Then we measured the buffered packets number with our
novel functional module Force_Checking. As shown in Fig.
5b, Force_Checking effectively reduce the buffered packets
under attacks. With the attack rate increasing, buffered packets
number remains a low value and does not increase. Under the
worst cases with attack rate 2500 PPS, there are only 128
buffered packets in EasyACL, and only 20 in ArpHub. Aver-
agely, Force_Checking reduces 98.43% of buffered packets for
ArpHub. And 89.16% of buffered packets for EasyACL. Less
buffered packets means that the Force_Checking function has
effectively released system memory resources and the compu-
tational resources under attacks, thus make a big contribution
to reduce the system recovery delay.

Buffered Packets number
Buffered Packets number

1000 2000 2500

500

1000 1500

Attack PPS

2000 2500 500 1500

Attack PPS

(a) Without Force_Checking
Fig. 5: Buffered Packets Number Under Attacks

(b) With Force_Checking

TABLE I: Average queue time for each application

Average Queue Time ArpHub ~ EasyACL
No attack 4.13 ms 7.26 ms
Under attacks 30.03 ms 33.23 ms

2) System recovery delay: We measured the system re-
covery delay in the traditional method without cleaning up
buffered flows and our Force_Checking function with ping
RTT. Fig. 6 shows the average ping RTT under different attack
rates. Without the Force_Checking module, the recovery time
increases fast, especially in the attack rates from 2000 to 2500
PPS. Under larger attack rates, the system needs more than 40
seconds to recovery. That is because the whole network needs
a time to release the computational resources and memory that

336

occupied by the attack flows. But with the Force_Checking
module, the system can quickly clean up buffered attack
flows to release computational and memory resources, thus
quickly responds and deal with the benign flows. Under attack
rate within 3000 PPS, Force_Checking enables the system to
recover in less than 5 seconds. Under larger attack rate 3000
to 4000 PPS, system recovery time is no more than 8 seconds.
Compared with the traditional mitigation policies that ignore
the remaining traffics, we successfully reduced more than 81%
of the system recovery delay with attack rate 2500 to 4000
PPS.

50

~C Ping RTT With Traditional Methods
Ping RTT With Force_Checking

Ping Msg RTT (s)

500 1000 1500 2000 2500 3000 3500 4000

Attack PPS

Fig. 6: System Recovery Delay with ping RTT

3) Comparison with FADM: We made a comparison with
FADM system under larger attack rates. To keep consistency,
we used the same method defined in FADM to measure the
recovery delay, and we launched the same TCP-based attacks.
Fig. 7 shows the first HTTP request time between two systems,
under attack rate ranged from 5000 to 30000 PPS. After
attack rate exceeds 5000 PPS, FADM system needs more
than 30 seconds to recover from those large number attack
flows. While, in our system, the HTTP requests time is less
than 6 seconds. Averagely, we reduced 87.17% of the HTTP
requests time under large number of attacks, which indicates
that FSDM is robust and practice.

w
&

w
s

N
&

=}~ FADM System
Our System

Http Request Time (s)

«

1000 5000 10000 15000

Attack PPS

20000 25000 30000

Fig. 7: Recovery Time compared with FADM system

4) Detection efficiency: We use Detection Rate (DR) to
measure the performance of the Attack Detector, which is
defined as:

TP

~ TP+FN’

where TP represents the sample quantity that attack state being
detected in time (no more than two time windows), and FN
denotes the quantity of attack state that regarded as normal.
We conducted 139 experiments under attack rate ranged from

DR

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:10:34 UTC from IEEE Xplore. Restrictions apply.

500 to 5000 PPS, and the average Detection Rate is 84.93%.
Some attacks cannot be timely detected mainly because that,
in the first detection cycle, the injected attack flows do not
exceed the threshold Sp. But in the second detection cycle,
the system resources are too limited for Attack Detector to
monitor all the attack flows. Thus, the attack is determined as
a normal state. And on the other hand, in all the TP samples,
Attack Detector located the malicious host accurately, which
indicates that our method is effective on the malicious host
tracking.

VI. CONCLUSION

In this paper, we proposed FSDM, a Fast recovery Sat-
uration attack Detection and Mitigation framework. First,
FSDM deploys a novel method that extracts the distribution
characteristic of Control Channel Occupation Rate to timely
detect the attack while locating the port that attackers come
from. Second, FSDM introduces distributed Mitigation Agents
and different mitigation policies depending on the locations of
attackers to reduce the influenced switches, while increasing
the robustness and promising benign communication. Third,
we made a systematical analysis on the system recovery mod-
el, and proofed that the remaining attack flows are the culprit
of long system recovery delay. To reduce the system recovery
delay, we proposed a novel functional module Force_Cheking,
which can quickly clean up the buffered attack flows and re-
lease controller resources, thus enabling the system to recover
in a short time. The experimental results show that FSDM
shortens ping RTT by 81% compared with traditional methods
without cleaning buffered packets under attacks, and reduces
87% of the average HTTP requests time under large number
of attacks.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China under Grant No. 61972371 and
No. U19B2023, Youth Innovation Promotion Association of
the Chinese Academy of Sciences (CAS) under Grant No.
2016394, and JSPS KAKENHI under Grant No. JP19H04105.

REFERENCES

[1] D. Kreutz, F. Ramos, P. Verssimo et al., “Software-defined networking:
A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14-76, 2015.

N. McKeown, T. Anderson, H. Balakrishnan et al., “Openflow: Enabling
innovation in campus networks,” in ACM SIGCOMM Computer Com-
munication Review, vol. 38, 2008, p. 6974.

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in Proceedings of the 2013 ACM Conference on Computer
and Communications Security (CCS). ACM, 2013, pp. 413-424.

S. Fichera, L. Galluccio, S. Grancagnolo et al., “OPERETTA: An
openflow-based remedy to mitigate TCP SYNFLOOD attacks against
web servers,” Computer Networks, vol. 92, no. 9, pp. 89-100, 2015.
R. Mohammadi, R. Javidan, and M. Conti, “SLICOTS: An SDN-
based lightweight countermeasure for tcp syn flooding attacks,” IEEE
Transactions on Network and Service Management, vol. 14, no. 2, pp.
487-497, 2017.

Z. Li, W. Xing, S. Khamaiseh, and D. Xu, “Detecting saturation attacks
based on self-similarity of openflow traffic,” IEEE Transactions on
Network and Service Management, vol. 17, no. 1, pp. 607-621, 2020.

(2]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[25]

[26]

[27]

[28]

S. Achleitner, T. L. Porta, T. Jaeger, and P. McDaniel, “Adversarial
network forensics in software defined networking,” in Proceedings of
2017 Symposium on SDN Research (SOSR). ACM, 2017, p. 820.

S. Liu, M. K. Reiter, and V. Sekar, “Flow reconnaissance via timing
attacks on SDN switches,” in Proceedings of the 2017 International
Conference on Distributed Computing Systems (ICDCS). 1EEE, 2017,
pp. 196-206.

J. Cao, Q. Li, R. Xie et al., “The crosspath attack: Disrupting the SDN
control channel via shared links,” in Proceedings of the 28th USENIX
Security Symposium (USENIX Security). USENIX Association, 2019,
pp. 19-36.

A. Patwardhan, D. Jayarama, N. Limaye et al., “SDN Security: Informa-
tion disclosure and flow table overflow attacks,” in Proceedings of the
2019 IEEE Global Communications Conference (GLOBECOM). 1EEE,
2019, pp. 1-6.

M. Zhang, G. Li, L. Xu et al, “Control plane reflection attacks
in SDNs: New attacks and countermeasures,” in Proceedings of the
21st International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID). Springer, 2018, pp. 161-183.

J. Cao, M. Xu, Q. Li et al., “Disrupting sdn via the data plane: A low-
rate flow table overflow attack,” in Proceedings of the 2018 Security and
Privacy in Communication Networks (Securecomm). Springer, 2018,
pp. 356-376.

H. Wang, L. Xu, and G. Gu, “FloodGuard: A dos attack prevention
extension in software-defined networks,” in Proceedings of the 45th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 1EEE, 2015, pp. 239-250.

G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “FloodDefender:
Protecting data and control plane resources under SDN-aimed DoS
attacks,” in Proceedings of the 36th IEEE International Conference on
Computer Communications (INFOCOM), 2017, pp. 1-9.

D. Hu, P. Hong, and Y. Chen, “FADM: DDoS flooding attack detection
and mitigation system in software-defined networking,” in Proceedings
of the 2017 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2017, pp. 1-7.

K. Giotis, C. Argyropoulos, G. Androulidakis et al., “Combining
OpenFlow and sFlow for an effective and scalable anomaly detection
and mitigation mechanism on sdn environments,” Computer Networks,
vol. 62, p. 122136, 2014.

A. Silva, J. Wickboldt, L. Granville, and A. Schaeffer-Filho, “AT-
LANTIC: A framework for anomaly traffic detection, classification, and
mitigation in SDN,” in Proceedings of the 2016 IEEE/IFIP Conference
on Network Operations and Management Symposium (NOMS), 2016,
pp. 27-35.

C. Buragohain and N. Medhi, “FlowTrApp: An SDN based architecture
for DDoS attack detection and mitigation in data centers,” in Proceedings
of the 2016 3rd International Conference on Signal Processing and
Integrated Networks (SPIN). 1EEE, 2016, pp. 519-524.

D. Kotani and Y. Okabe, “A packet-in message filtering mechanism for
protection of control plane in openflow networks,” in Proceedings of
the 2014 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2014, pp. 29-40.

“Mininet,” [Online], 2020, available: http://mininet.org/.

“Ryu controller,” [Online], 2020, available:https://osrg.github.io/ryu/.
“Openflow vl.5 specification,” [Online], 2020,
available:https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in Proceedings of the 2nd ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking. ACM, 2013, p. 165166.
M. Ambrosin, M. Conti, F. De Gaspari, and R. Poovendran, “Lineswitch:
Tackling control plane saturation attacks in software-defined network-
ing,” IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 1-14,
2016.

C. Cortes, “Support-vector networks,” Machine Learning, vol. 20, no. 3,
p. 273297, 1995.

J. Sonchack, A. Dubey, A. J. Aviv et al., “Timing-based reconnaissance
and defense in software-defined networks,” in Proceedings of the 32nd
Annual Conference on Computer Security Applications (ACSAC). ACM,
2016, p. 89100.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Ipsj Magazine, vol. 12, no. 7, pp. 422-426, 1970.
“Openvswitch,” [Online], 2020, available:https://www.openvswitch.org/.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 01,2021 at 00:10:34 UTC from IEEE Xplore. Restrictions apply.

