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Abstract—To meet the ever-increasing demand for mission-
critical applications, the deterministic service delay guarantee
from the application prospective has become an important metric
for congestion control in end-to-end communications. In this
paper, we propose a two-timescale congestion window control
(TCWC) mechanism with delay-aware priority based on TCP
Vegas. Different from the existing works only considering the
network delay, we formulate the network utility maximization
problem for congestion control by adding additional flow queuing
delay at the source node to guarantee the deterministic service
delay constraints. By designing a virtual queue, we transform the
delay constraint to the time-averaged queue stability, and solve
it in each time slot according to the Lyapunov drift-plus-penalty
method. Then we obtain the adjustment strategy of congestion
window according to Lagrangian duality theory. For further
guarantee the service delay, we apply extreme value theory (EVT)
to evaluate the priorities of different flows, which determines
the update rate of congestion window. Finally, simulation results
show that our algorithm can significantly reduce the average
service delay and achieve better delay guarantee compared to
traditional TCP Vegas.

I. INTRODUCTION

With the rapid development of the Internet of Things

(IoT) and the rise of various new applications, such as aug-

mented/virtual reality (AR/VR), autonomous vehicles, and in-

telligent manufacturing, etc., deterministic low-latency service

has become one of the most important requirements of user

equipment [1], [2].

The transmission control protocol (TCP) is a widely used

protocol in the network, which can achieve reliable end-to-

end transmission. Congestion control algorithms are the main

algorithms used in TCP to control sending rate for avoiding

congestion in the network. Based on the packet loss or

delay signal, TCP congestion control mechanism can increase

or decrease the congestion window to limit the number of

unacknowledged data segments allowed in the network. The

goal is to minimize congestion while maximizing utilization

of all flows in the network. On the contrary, user datagram

protocol (UDP) provides a simple connectionless solution

without the guarantee of reliable data transmission. UDP
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of China (No. U20A20158), National Key R&D Program of China (No.
2018YFB1801104), Ningbo S&T Major Project (No. 2019B10079), and Key
R&D Program of Zhejiang (No. 2022C03078).

does not use congestion control, so it will cause a lot of

packet loss and reduce performance when network congestion

occurs. For provide low delay and high reliability, quick UDP

internet connection (QUIC) is developed by Google [3], [4],

in which many mechanisms, including congestion control, are

inspired by TCP to provide flexible and reliable data transfer.

QUIC improves congestion control by using faster connec-

tion establishment, multiplexing, forward error correction, etc.

Especially, encrypted QUIC connections can be established

within 0 round-trip time (RTT).

Most of the existing congestion control algorithms focus on

utilizing the network capability efficiently with fairness. For

deterministic low delay services, rather than fairness, different

priorities should be provided for guaranteeing the performance

on the service delay by congestion control. For application

services, the delay is considered since the application data are

generated. Thus, the end-to-end delay from the application

layer perspective, referred to as the service delay, includes

not only the delay in the network but also the delay at source

nodes before entering the network since the data are generated

in the application layer. Different flows adjust their congestion

control strategies distributively according to their source queue

lengths and delay constraints. It is quite challenging since there

is an inherent conflict between the service delay guarantee and

the network congestion avoidance.

In this paper, to address the congestion control problem

with deterministic service delay guarantee, we propose a two-

timescale congestion window control (TCWC) mechanism

with delay-aware priority based on TCP Vegas. Specifically,

we construct the virtual queue to equivalently replace the

deterministic service delay constraint. In this way, we trans-

form the original problem to a time-averaged queue stability

optimization problem, and solve it by optimizing the drift-plus-

penalty in each time slot based on the Lyapunov framework.

Then we derive the approximate optimal solution and give

the update strategy of the congestion window according to

the Lagrangian dual method. To further guarantee the service

delay, we use the extreme value theory (EVT) to analyze the

tail distribution of the real-time service delay samples. For the

flows that violate the deterministic constraints, higher priority

is provided by increasing the step size of congestion window

adjustment.
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The remainder of the paper is structured as follows. In

Section II, we summarize related works on congestion con-

trol. The system model is presented and the network utility

maximization problem for congestion control is formulated

in Section III. In Section IV, we propose a two-timescale

congestion control mechanism with deterministic service delay

guarantee. The proposed algorithm is evaluated by simulation

in Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORKS

Due to the continuous change of Internet application re-

quirements, these are many researches have enhanced the

traditional TCP congestion control for low delay in both aca-

demic and industrial. In [5], the authors proposed a new delay-

based congestion control algorithm that supported low queuing

delay and high network utilization. It is especially useful for

traffic that mixes delay-sensitive and bandwidth-demanding

applications. An new end-to-end congestion control protocol

was introduced to achieve high throughput, low delay and

fair rate allocation in [6]. It modeled the bottleneck queue

as a Markov chains explicitly and adjusted aggressiveness to

compete fairly with loss-based protocols. At the same time,

the sending rate was determined by using the delay profile.

In [7], another delay-based congestion control scheme was

presented and designed to work with multi-packet segments

offloading for high performance. Instead of building the queue

to a fixed RTT threshold, it adjusted the congestion window

through using the gradient of the RTT to predict the onset of

congestion.

Besides, there are a few deadline-aware congestion control

algorithms in recent years. In [8], a deadline-award data

center TCP was proposed for bandwidth allocation based on a

distributed and reactive approach. It controlled the delay and

improve user experience under soft real-time constraints. A

software defined network based explicit deadline-aware TCP

was proposed for cloud data center networks in [9]. The non-

deadline flows were assigned with a base rate, while the dead-

line flows were allocated spare bandwidth as much as possible.

The packet-loss timeout problem was solved by introducing

a retransmission-enhanced algorithm. In [10], the authors

proposed a deadline-awareness congestion control mechanism

by parameterizing the traditional TCP New Reno congestion

control strategy. The modulation of the congestion window

was dynamically adjusted to minimize deadline-missing flows

according to delivery requirements.

Recently, the Lyapunov optimization theory has been widely

used in congestion control analysis, mainly in the network

stability analysis. In [11], the authors addressed the redesign-

ing of congestion control for TCP applications on networks

with coupled wireless links. Based on the Lyapunov method,

they rigorously established the global stability of the proposed

QUIC-TCP to achieve optimal equilibrium in the network fluid

model. A novel stochastic optimal scheduler was proposed for

multipath TCP in software defined wireless network [12]. The

control decisions can be made through Lyapunov optimization

technique to maximize the throughput while minimizing the

cost for users. In [13], a model that trades off energy effi-

ciency and throughput was established by using the Lyapunov

method. The split ratio of each link was obtained to directly

control the change of the congestion window and queue

stability ensured that all data left the buffer in a finite time.

In addition, the delay sensitivity of applications has also

been extensively studied in ultra-reliable low-latency commu-

nication (URLLC). In [14], a two-timescale task offloading and

resource allocation mechanism was proposed in a mobile edge

computing (MEC) network. The deterministic and statistical

constraints can be equivalently solved by introducing virtual

queue and extreme value theory. In [15], [16], the multi-

destination MEC was studied to fulfill the delay constraint and

minimize the energy consumption. In [17], a jointly content

caching and cooperative transmission algorithm was designed

to minimize the average delay, where the problem is decom-

posed into a short time-scale transmission and a long time-

scale caching. The random access problem for massive devices

with heterogeneous capabilities was studied in [18], where

a two-dimensional Markov decision process was adopted to

obtain an optimal policy to minimize the delay. In [19], a

joint power and resource allocation problem for URLLC was

studied by estimating and characterize the tail distribution of

the queue lengths using extreme value theory (EVT).

In summary, all the above existing works considered only

the average-based delay constraints and ignored flows queuing

delay at source nodes in the congestion control design. Dif-

ferent to existing works, for deterministic low delay services,

we consider additional deterministic constraints of the service

delay to gradually adjust the congestion window. In addition,

the Lyapunov method is adopted to guarantee not only the

network queuing stability but also the deterministic service

delay.

III. SYSTEM MODEL

We consider a wireless network with a set N of N flows

sharing a set L of L communication links with finite capacities

c = (cl, l ∈ L) in packets per second, where flow i consists of

a source node si and a destination node di, i.e., the node pair

(si, di), i ∈ N . Each flow i transmits data from the source

node to the connected destination node and uses a set Li ⊆ L
of links. An L×N routing matrix is defined with entries as

Rli =

{
1, l ∈ Li

0, otherwise.
(1)

For simplicity, the timeline is divided into time slots in seconds

and indexed by t ∈ N. Each flow maintains a data queue buffer

at the source node where tasks can wait before sending. For the

queue buffer of flow i at source node si, i ∈ N , we denote the

queue length in time slot t as Qi(t). The transmission queue

dynamics is expressed as

Qi(t+ 1) = max {Qi(t) + ai(t)− xi(t), 0} . (2)

where ai(t) is the amount of data generated by flow i at source

node si in time slot t, and xi(t) is the sending rate of flow i
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Fig. 1. Schematic diagram of the service delay.

at the source node si. Flow i adjusts its congestion window,

denoted by wi(t), to change the sending rate distributively.

For the communication link l ∈ L, the backlog in time slot t
is denoted by bl(t) which evolves as

bl(t+ 1) = max
{
bl(t) +

∑
i∈N

Rlixi(t)− cl, 0
}
. (3)

Since the network structure from the source node si to the

destination node di is unknown, we consider it as a whole

system and denote the RTT as Di(t). When given a sending

rate xi(t), we can get Qi(t + 1) according to (2) and Di(t)
fed back from the network. Therefore, the total service delay

Ti(t) is the sum of the flow i’s queuing delay at the source

node si and the RRT fed from the network, i.e.,

Ti(t) =
Qi(t+ 1)

λi
+Di(t), (4)

where λi is the average data generation rate of flow i in the

source node si, i.e., λi = E[ai(t)]. Based on Little’s Law [20],

the average queuing delay is proportional to the ratio of the

average queue length to the average arrival rate. In order to

achieve congestion control and meet the deterministic delay

in end-to-end communication, we impose the deterministic

constraint on the service delay of each flow i ∈ N as follows:

lim
T→+∞

1

T

T−1∑
t=0

Pr (Ti(t) ≥ Li,max) ≤ εi. (5)

where Li,max is the maximum end-to-end service delay and

εi � 1 is the corresponding tolerant probability of delay

violation.

The channel transmission resources can be fully utilized

when we increase the size of the congestion window. However,

the congestion even packet loss can occur for overly large

windows. Based on TCP Vegas, we define the utility function

as U(xi(t)) = αipi log xi(t), where αi is a constant and pi is

the propagation delay of flow i. Considering the deterministic

constraint of the whole system delay, the network utility

maximization problem is formulated as follows:

P: max
x(t)≥0

∑
i∈N

Ūi

s.t.
∑
i∈N

Rlixi(t) � cl, l ∈ L

lim
T→+∞

1

T

T−1∑
t=0

Pr (Ti(t) ≥ Li,max) ≤ εi, (6)

where Ūi = limT→+∞
1
T

∑T−1
t=0 U(xi(t)) is the long-term

time-averaged utility function of flow i, and x(t) = (xi(t), i ∈
N ) is the sending rate vector containing all flows.

IV. TWO-TIMESCALE CONGESTION WINDOW CONTROL

(TCWC)

For flows that violate the deterministic delay constraints, we

should give a higher priority to ensure the performance of the

service. In this section, we consider a two-timescale flow pri-

ority assignment and congestion window control mechanism.

Specifically, every successive T0 time slots are grouped as a

time frame and denoted by T (m) = [(m−1)T0, · · ·,mT0−1],
in which m ∈ Z

+ is the index of the time frame. In the

ending of each time frame (i.e., the long timescale), each flow

is assigned unique priority which determines the step size of

the congestion window adjustment. Subsequently, in each time

slot within the mth frame, (i.e., the short timescale), each

flow adjusts the size of the congestion window based on the

assigned priority distributively.

In this section, we first transform the network utility max-

imization into the drift-plus-penalty minimization, via Lya-

punov optimization, in each time slot, taking into account

the queue backlog of flows at source nodes and links, and

deterministic delay constraints. Then we obtain the adjustment

strategy of the congestion window in each time frame accord-

ing to the Lagrangian dual method and the KKT condition. In

the ending of each time frame, we use extreme value theory to

process and analyze the service delay data in the frame, and

update the priority of all flows.

A. Per-slot Optimization via Lyapunov Optimization

Firstly, we know that Pr (Ti ≥ Li,max) ≤ εi can be recast

as E [Ti] ≤ εiLi,max for each flow i by using the upper

bound condition Pr (Ti ≥ Li,max) ≤ E [Ti] /Li,max based

on the Markov’s inequality [21]. So the deterministic delay

constraints in (6) can be equivalently rewritten as

lim
T→+∞

1

T

T−1∑
t=0

E [Ti(t)] ≤ εiLi,max. (7)

The long-term average constraints on queue or delay can be

transformed to queue stability constraints based on the concept

of virtual queue [22]. We introduce the virtual queue QV
i for

the constraint (7), and give the queue dynamics as

QV
i (t+ 1) =max{QV

i (t) + Ti(t)− εiLi,max, 0}. (8)

So we only need to ensure that the virtual queue is stable,

which is equivalent to satisfying the time-averaged constraints.

The problem P is equivalently transferred to

P1: max
x(t)≥0

∑
i∈N

Ūi

s.t.
∑
i∈N

Rlixi(t) � cl, l ∈ L

Stability of (2), (8). (9)
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Let Q(t) =
(
Qi(t), Q

V
i (t) : i ∈ N

)
denote the physical and

virtual queues vector and define the conditional expected

Lyapunov drift-plus-penalty in time slot t as

E

[
V
(
L(Q(t+ 1))− L(Q(t))

)
−
∑
i∈N

U(xi(t))|Q(t)
]
, (10)

where L (Q(t)) is the Lyapunov function, described as

L (Q(t)) =
1

2

∑
i∈N

([
Qi(t)

]2
+
[
QV

i (t)
]2)

. (11)

The weight parameter V > 0 controls the tradeoff between the

queue length stability and the accuracy of the optimal solution

of (9).

Theorem 1: For the optimization problem

P2: min
x(t)≥0

∑
i∈N

(
V (ai(t)− xi(t))

((
1 +

1

λ2i

)
Qi(t)

+
1

λi
(QV

i (t) +Di(t)− εiLi,max)
)
− U(xi(t))

)
s.t.

∑
i∈N

Rlixi(t) � cl, l ∈ L. (12)

The optimal solution to the problem will asymptotically ap-

proach to the problem P1 as V decreases.

Proof: According to (2) and {max{(·), 0}}2 ≤ (·)2, we

can get

ΔQi(t)

= Q2
i (t+ 1)−Q2

i (t)

= {max {Qi(t) + ai(t)− xi(t), 0}}2 −Q2
i (t)

≤ (Qi(t) + ai(t)− xi(t))
2 −Q2

i (t)

= (ai(t)− xi(t))
2 + 2Qi(t)(ai(t)− xi(t)). (13)

Similarly, according to (8), we have

ΔQV
i (t)

= [QV
i (t+ 1)]2 − [QV

i (t)]
2

= {max{QV
i (t) + Ti(t+ 1)− εiLi,max, 0}}2 − [QV

i (t)]
2

≤ (QV
i (t) + Ti(t+ 1)− εiLi,max)

2 − [QV
i (t)]

2

= (Ti(t+ 1)− εiLi,max)
2 + 2QV

i (t)(Ti(t+ 1)− εiLi,max)

=
(Qi(t+ 1)

λi
+Di(t)− εiLi,max

)2
+ 2QV

i (t)

∗
(Qi(t+ 1)

λi
+Di(t)− εiLi,max

)
=

(ai(t)− xi(t))
2 +Q2

i (t)

λ2i
+ (Di(t)− εiLi,max)

2

+
2(ai(t)− xi(t))

λi

(Qi(t)

λi
+QV

i (t) +Di(t)− εiLi,max

)
+ 2QV

i (t)
Qi(t)

λi
+ 2

(
QV

i (t) +
Qi(t)

λi

)(
Di(t)− εiLi,max

)
.

(14)

The upper bound of the Lyapunov drift ΔLt = L (Q(t+ 1))−
L (Q(t)) in time slot t can be derived as

ΔLt =
1

2

∑
i∈N

(
[ΔQi(t)]

2 + [ ΔQV
i (t)]

2
)

≤
∑
i∈N

(ai(t)− xi(t))
((

1 +
1

λ2i

)
Qi(t) +

1

λi
(QV

i (t)

+Di(t)− εiLi,max)
)
+ C0 + C1(t), (15)

where

C0(t) =
∑
i∈N

1

2

(
1 +

1

λ2i

)
(ai(t)− xi(t))

2,

C1(t) =
∑
i∈N

(
1

2

(Q2
i (t)

λ2i
+ (Di(t)− εiLi,max)

2
)

+QV
i (t)

Qi(t)

λi
+
(
QV

i (t) +
Qi(t)

λi

)(
Di(t)− εiLi,max

))
.

(16)

Here, C0(t) is bounded based on the queue stability assump-

tion. and C1(t) is independent of the optimization variable

xi(t) except Di(t). These two items do not affect system

performance in Lyapunov optimization, so we can omit details

for simplified analysis. Therefore, the long-term time-averaged

problem P1 can be transformed into the minimizing the drift-

plus-penalty upper bound in each time slot t. Due to the

stability of queues, we have E(Qi(t)) = E(QV
i (t)) = 0.

Besides, the model parameters are all average bounded. There-

fore, according to (10) and (15), we can get

E

[
VΔLt −

∑
i∈N

U(xi(t))
]
≤ E

[
V
(∑

i∈N
(ai(t)− xi(t))

∗ (Di(t)− εiLi,max) + C0 + C1(t)
)
−
∑
i∈N

U(xi(t))
]

≤ V ∗ C − E

[∑
i∈N

U(x∗i (t))
]
= V ∗ C −

∑
i∈N

U(x∗i ),

(17)

where C is a constant and x∗i is the optimal solution to P1.

Accumulate both sides of the above inequality from time slot

0 to t− 1 and let L (Q(0)) = 0, we can derive

1

t

t−1∑
τ=0

E

[
−
∑
i∈N

U(xi(τ))
]
≤ V ∗ C −

∑
i∈N

U(x∗i ). (18)

Obviously, the time average expected of negative utility func-

tion can be arbitrarily close to the optimal x∗i as V decreases.

In fact, there is an implicit relationship between Di(t) and

x(t) due to the unknown of multi-flow transmission coupling.

Therefore, we cannot directly solve the optimal solution to

this problem, which is also in line with the mechanism that

the congestion window should be gradually adjusted according

to the feedback RTT.
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B. Congestion Window Adjustment Based on Service Delay

Since the sending rates xi(t) of all flows should be in-

dependent of each other, we consider using the Lagrangian

dual method to decouple the constraints. The Lagrangian of

problem P2 can be obtained as

h(x(t),μ) =
∑
i∈N

(
V (ai(t)− xi(t))

((
1 +

1

λ2i

)
Qi(t)

+
1

λi
(QV

i (t) +Di(t)− εiLi,max)
)

− U(xi(t))

)
+
∑
l∈L

μl

(∑
i∈N

Rlixi(t)− cl

)
=
∑
i∈N

(
V (ai(t)− xi(t))

((
1 +

1

λ2i

)
Qi(t)

+
1

λi
(QV

i (t) +Di(t)− εiLi,max)
)

− U(xi(t)) + xi(t)
∑
l∈L

Rliμl

)
−
∑
l∈L

clμl,

(19)

where μ = (μl ≥ 0, l ∈ L) is the Lagrange multiplier vector

associated with the inequality constraint. The Lagrange dual

function d(μ) is the lower bound of the Lagrangian, i.e.,

infx(t) h(x(t), μ). Therefore, the Lagrange dual problem is

formulated as

max
μ≥0

d(μ) =max
μ≥0

min
x(t)≥0

h(x(t),μ) (20)

Because the upper bound of Lyapunov-drift-penalty is a con-

vex function of xi and the constraints are linear, P2 is a

convex optimization problem. The optimal solution x∗(t) =
(x∗i (t), i ∈ N ) of P2 and the optimal solution μ∗ = (μ∗

l ≥
0, l ∈ L) of the dual problem can be obtained according to

the KKT conditions, i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈N

Rlix
∗
i (t) � cl,

μ∗
l ≥ 0,

∂h(x∗(t),μ∗)

∂xi(t)
= 0,

μ∗
l

(∑
i∈N

Rlix
∗
i (t)− cl

)
= 0.

(21)

According to (19), we can get

∂h(x∗(t),μ∗)

∂xi(t)
=
∑
l∈L

Rliμ
∗
l −

αipi
x∗i (t)

− V B∗
i (t) (22)

where

B∗
i (t) =

(
1 +

1

λ2i

)
Qi(t) +

1

λi
(QV

i (t) +D∗
i (t)− εiLi,max)

(23)

When the network meets the determined requirements and

reaches the optimum, the number of packets queued in routers

of the flow i’s path can be easily expressed as

w∗
i (t)− pix

∗
i (t) = (D∗

i (t)− pi)x
∗
i (t) =

∑
l∈L

Rlib
∗
l

x∗i (t)

cl
,

(24)

where w∗
i (t) is the congestion window of flow i and b∗l is the

backlog of the communication link l when the whole system

reaches equilibrium. Let u∗l =
b∗l
cl

and according to (21), (22)

and (24), we can derive

x∗i (t) =
αipi∑

l∈LRli
b∗l
cl

− V Bi(t)
=

αipi
D∗

i (t)− pi − V B∗
i (t)

(25)

Obviously, u∗l ≥ 0 and
∂h(x∗(t),μ∗)

∂xi(t)
= 0. When u∗l = 0, b∗l =

0 and μ∗
l

(∑
i∈N Rlix

∗
i (t)−cl

)
= 0. In this case, the backlog

of communication link l is empty, which means the total arrival

rate does not exceed its capacity, i.e.,
∑

i∈N Rlix
∗
i (t) � cl.

When u∗l > 0,
∑

i∈N Rlix
∗
i (t) = cl. In summary, (x∗i (t), μ

∗
l )

satisfies the KKT conditions in (21). Therefore, x∗i (t) is the

optimal solution of problem P2. In the fluid model, the sending

rate xi can be approximated by the ratio of the congestion

window to the RTT, i.e., x∗i (t) =
w∗i (t)
D∗i (t)

, so we can get

w∗
i (t)

pi
−
(
1 +

V B∗
i (t)

pi

)w∗
i (t)

D∗
i (t)

= αi. (26)

The above equation represents that the entire network has

reached the optimal solution of the original utility function

maximization problem, otherwise we should adjust the conges-

tion window according to the current network conditions. Sim-

ilar to TCP Vegas, the congestion window is only increased

or decreased by 1 per RTT, which depends on the size of

both sizes in (26). For flow i at the source node si, when

the congestion window is wi(t) and the network end-to-end

delay is Di(t), we design the update strategy of the congestion

window as

wi(t+ 1) = wi(t)−
1

Di(t)
sgn(∇i(t)− αi), (27)

where

∇i(t) =
wi(t)

pi
− wi(t)

Di(t)
− V

Bi(t)wi(t)

piDi(t)
,

Bi(t) =
(
1 +

1

λ2i

)
Qi(t) +

1

λi
(QV

i (t) +Di(t)− εiLi,max),

(28)

where sgn(·) is the sign function. Obviously, the difference

between the first two terms of ∇i(t) is consistent with tradi-

tional TCP Vegas, where is represents the number of packets

in the entire network. Besides, we additionally consider the

impact of physical and virtual queues.
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C. Delay-Aware Priority Based on Extreme Value Analysis

To judge whether the probability constraints is satisfied, we

consider the case of service delay violation Ti(t) > Li,max,

which is an extreme event with low probability when εi � 1.

The extreme value theory can help us characterize the tail

distribution and statistics of extreme events.

Based on the Pickands-Balkema-de Haan Theorem [23], the

conditional complementary cumulative distribution function

(CCDF) of the excess value can be estimated as follows. For

a random variable T with the cumulative distribution function

(CDF) FT (t), and a threshold value tu, when the threshold

tu → F−1
T (1) = sup{t : FT (t) < 1}, the CCDF of the

excess value X|T>tu = T − tu > 0, i.e., F̄X|T>tu(x) =
Pr (T − tu > x|T > tu), can be approximately expressed as

G(x;σ,ξ ) =

(
1 +

ξx

σ

)−1/ξ

;σ > 0, ξ ∈ R. (29)

Here, G(x;σ,ξ ) is called the generalized Pareto distribution

(GPD), which contains a scale parameter σ and a shape

parameter ξ. The probability density function can be obtained

easily as

g(x;σ,ξ ) =
d[1−G(x;σ,ξ )]

dx
=

1

σ

(
1 +

ξx

σ

)−1−1/ξ

. (30)

In other words, regardless of the distribution of T , the cu-

mulative distribution function of the excess value X can be

approximated as a GPD distribution and is equivalent when

the threshold tu satisfied FT (tu) = 1, i.e., the threshold takes

the upper bound of T . Obviously, the parameters θ = [σ,ξ ]
determine the tail distribution characteristics of extreme events

and need to be estimated based on the actual data.

In the mth time frame, we can obtain service delay data

set Ti,m = {Ti(t), t ∈ T (m)} of each flows i by getting

the real-time queue buffer at the source node si and the

RTT fed from the destination node di. The selected thresh-

old value ti,u should be less than Li,max, otherwise it will

task more observation time to get enough excess value data.

Besides, threshold value ti,u should also be large enough to

approximately satisfy GPD distribution. For a given threshold

ti,u < Li,max, the excess value data set can be denoted as

Ti,m = {Ti(t) − ti,u|Ti(t) > ti,u, t ∈ T (m)}. In order

to fit GPD distribution with Ti,m, we use the maximum

likelihood estimation method to find the optimal parameters

by minimizing the negative log-likelihood function, which can

be expressed as

min
θ∈Θ(Ti,m)

− 1

|Ti,m|
∑

T∈Ti,m

ln g(T ; θ) =
1

|Ti,m|
∑

T∈Ti,m

Iθ(T ),

(31)

where

Iθ(T ) = ln σ +

(
1 +

1

ξ

)
ln

(
1 +

ξT

σ

)
, (32)

Algorithm 1 Two-Timescale Congestion Window Control

1: Input: V , λi, ti,u, ∀i ∈ N .

2: Initialization:

wi(0) = γi = 1, Qi(0) = QV
i (0) = 0, Ti = ∅, ∀i ∈ N .

3: for m = 0, 1, 2, ... do
4: for t = mT0, ..., (m+ 1)T0 − 1 do
5: Get Di(t) and update pi based on current RTT data.

6: Adjust the congestion window to wi(t+ 1) in (39).

7: Update the queue length according to (2) and (8).

8: Add Ti(t) to service delay data set Ti.
9: end for

10: Obtain excess value data Ti to estimate parameter

(σ∗
i , ξ

∗
i ) according to (34).

11: Update γi according to (40) and set Ti = ∅.

12: end for

and θ ∈ Θ(Ti,m) = {(σ,ξ )|σ > 0, 1+ξT/σ ≥ 0, ∀T ∈ Ti,m}.

The partial derivative of the function Iθ(T ) with respect to

parameter θ = (σ,ξ ) can be obtained as

∇Iθ(T ) =

⎡⎣∂Iθ(T )
∂σ

∂Iθ(T )
∂ξ

⎤⎦ =

⎡⎣ σ−T
σ(σ+ξT )

(1+ξ)T
ξ(σ+ξT ) − 1

ξ2 ln
(
1 + ξT

σ

)
⎤⎦ . (33)

In order to solve the large scale optimization problem, we

use the stochastic variance reduced gradient (SVRG) method

to obtain the optimal θ∗ and the iterative method has a faster

convergence rate [24]. The specific estimation of θ using

SVRG method at iteration n are described as follows:{
yn = θn−1 − η[∇Iθn−1

(T )−∇I
˜θ(T ) +∇R

˜θ(Ti,m)],
θn = argminθ∈Θ(Ti,m)||yn − θ||,

(34)

where η is the learning rate, T is a randomly selected

sample from Ti,m, θ̃ = 1
n

∑n−1
k=0 θk is an average estimate of

parameters θ for the previous n iterations and ∇R
˜θ(Ti,m) =

1
|Ti,m|

∑
T∈Ti,m

∇I
˜θ(T ) is an average estimate of the gradient.

Through multiple update iterations, we can get the optimal

estimates θ∗ = (σ∗
i , ξ

∗
i ) for the sample set Ti,m, i.e.,

F̄X|Ti>ti,u(t) = Pr(Ti − ti,u ≥ t|Ti > ti,u) ≈ G(t,σ ∗
i , ξ

∗
i ).
(35)

Moreover, the conditional probability can be expressed as

F̄X|Ti>ti,u(t) =
1− FTi

(t+ ti,u)

1− FTi(ti,u)
, (36)

where 1−FTi(ti,u) is the probability of exceeding the latency

threshold ti,u which can be estimated by the sample set as
|Ti,m|
|Ti,m| . Combining (29), (35) and (36), we can get

FTi
(t+ ti,u) = 1− |Ti,m|

|Ti,m|

(
1 +

ξ∗i t

σ∗
i

)−1/ξ∗i
. (37)
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Fig. 2. Link sharing network scenario.

Let t+ ti,u = Li,max, we can get

Pr(Ti ≥ Li,max) = 1− FTi
(Li,max)

=
|Ti,m|
|Ti,m|

[
1 +

ξ∗i (Li,max − ti,u)

σ∗
i

]−1/ξ∗i
,

(38)

and adjust congestion window by comparing with εi. When

Pr(Ti ≥ Li,max) > εi, flow i is more urgently compared to

those flows that satisfy the deterministic delay constraints. We

introduce γi to change the adjustment speed of the congestion

window wi. The update strategy in (27) can be modified as

wi(t+ 1) =

{
wi(t)− 1

Di(t)
, sgn(∇i(t)) ≥ 0

wi(t) +
γi(m)
Di(t)

, sgn(∇i(t)) < 0
, (39)

where

γi(m+ 1) =

{
βi, Pr(Ti ≥ Li,max) < εi

γi(m) + 1, Pr(Ti ≥ Li,max) ≥ εi
, (40)

is a quantified form of the flow i’s priority. For the flow whose

service delay does not satisfy deterministic constraints, we

should increase γi(m) to give the higher priority. For other

flows, we set the priority as βi close to 1, which means that all

flows whose current delay situation is not bad allocate a small

amount of communication resources to more urgent flows. The

steps of TCWC mechanism are detailed in Algorithm 1.

V. SIMULATION RESULTS

In the simulation, we consider a link sharing network

scenario where three source nodes are connected with three

destination nodes sharing a communication link, as shown in

Fig. 2. Three flows transmit data separately from different

source nodes to their respective connected destination nodes.

All links from source nodes to routers, between routers, and

from routers to destination nodes are set as the channel

with 5Mbps bandwidth and 2ms propagation delay. Three

nodes share a common communication channel and the size

of the data packets generated by each device is uniformly

1000 bits. The rest of simulation parameter values are set as:

λ = [2.25, 1.5, 0.75] Mbps, α = 4, Lmax = 0.12s, ε = 0.01,

V = 10−6.
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Fig. 3. Congestion window size for TCP Vegas.
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Fig. 4. Congestion window size for TCWC.

We compare the proposed TCWC algorithm with classic

TCP Vegas in Figs. 3 and 4. At the same time, we consider the

effect of different data generation rates in flows on congestion

window adjustment. The generation rates of application data in

the three node devices are same as parameter λ. On the whole,

TCP Vegas allocates the congestion window size equally to

flows 1 and 2, excluding flow 3 that has not reached the

average but is already optimal. In contrast, TCWC gives flows

of higher data generation rates larger congestion windows to

reduce the length of queue buffers at the source node. In the

initial stage, both TCP Vegas and TCWC adopt the default

scheme to increase the congestion window due to less RTT

samples and underutilized data queue buffers. For the flows of

the higher data generation, it can receive ACK and RTT earlier

and adjust the congestion window faster. During slow start, the

local queue buffers will increase rapidly, which play a major

role in the service delay and affect the window adjustment

strategy. Subsequently, different flows update the congestion

window distributively according to (27) and (28). In order to

facilitate the experiment, we choose the appropriate weight
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Fig. 5. Average congestion window v.s. data generation rate.
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Fig. 6. Average delay v.s. data generation rate.

parameter V to make ∇i(t) and αi on the same order of

magnitude. After about 1 seconds, the congestion window has

stabilized in TCP Vegas. However, considering flow queuing

delay at source nodes, TCWC takes about 8 seconds for the

entire network utility to reach optimal. Obviously, instead of

fairness, at the cost of reducing the number of windows for

other nodes, TCWC assigns a large congestion window to flow

1 for better performance.

In Figs. 5 and 6, the average-based congestion window

and service delay are compared between TCP Vegas and

TCWC algorithm respectively. Compared with the fairness

of TCP Vegas, our congestion control mechanism considers

flows queue at source nodes and gives higher priority to the

flows that do not satisfy delay constraints. When the data

generation rate is small relative to the link capacity, the buffers

of source nodes and communication links are almost empty,

which means low queuing delay. The service delay does not

violate the probability constraint, so the results of the two
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Fig. 7. CDF of service delay for TCP Vegas.
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Fig. 8. CDF of service delay for TCWC.

methods are almost the same. With the data generation rate

increases, the queue at the source node plays an important

role in service delay, prompting us to increase the congestion

window as much as possible to speed data transmission. When

the data rate is in the interval [0.75, 1.5]Mbps, the resource

utilization rate of the entire network reaches the maximum,

and the utility function and system performance reach the

optimum. As common link capacity is fully utilized, network

congestion will occur and cause the longer flow queuing

delay. Traditional TCP Vegas focuses on the end-to-end delay

and adjusts the congestion window fairly, resulting in higher

service delay for flows with larger data generation rates. In

contrast, TCWC will sense the queuing delay at source nodes

and increase the congestion window to decrease the service

delay, thereby maximize the total network utility.

Figs. 7 and 8 compare the CDF of service delay for different

flows between TCP Vegas and TCWC algorithm. In order to

obtain sample data whose service delay exceeds the threshold
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Lmax, we set the delay of the common communication link to

8ms and the other links to 4ms. In TCP Vegas, except for flow

2 where there is a small amount of sample data exceeds the

threshold, the service delay of other flow’s data packet is stable

within a cell range of about 0.02, or even smaller. Although the

packet service delays of flow 1 and 3 are both low and meet

the deterministic constraints, about 10 percent of the packets

at flow 2 exceed the delay threshold, which is a heavy-tailed

distribution. It is unacceptable for delay sensitive applications.

Since TCP Vegas is relatively fair to all flows in end-to-end

congestion control, the large difference is mainly reflected in

flow queuing delay at source nodes. In TCWC, we take into

account the deterministic requirements in (5) and give higher

priority to flow 1 that violates the constraint. In order to make

each flow meet the deterministic delay constraint as much as

possible in the limited communication resources, we increase

the sending rate to reduce the queue length generated by flow 2

at source node 2, and try to avoid the occurrence of congestion.

Correspondingly, the sending rate of flow 3 decreases, and the

service delay also increases. Therefore, we make the urgent

flow 2 satisfy the delay constraint by sacrificing the average

performance of flow 3 with less delay. Besides, we can see

that the CDFs of the service delay for all flows dynamically

approach to the light-tailed distribution.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose a two-timescale congestion win-

dow control (TCWC) mechanism with delay-aware priority

based on TCP Vegas. We consider the service delay from

the application perspective, including not only the network

delay but also the queueing delay at source nodes. By de-

signing a virtual queue, we transform the deterministic delay

constraint to the time-averaged queue stability, and solve it

in each time slot according to the Lyapunov drift-plus-penalty

method. Then we obtain the adjustment strategy of congestion

window according to Lagrangian duality theory. For further

guarantee the service delay, we apply extreme value theory to

evaluate the priorities of different flows, which determines the

update rate of congestion window. The simulation results show

that the proposed TCWC can adjust the congestion window

considering the queueing delay at the source nodes, which

can significantly reduce the average service delay and provide

better service delay guarantee than traditional TCP Vegas.

Although this work is based on TCP Vegas, the superi-

ority on service delay guarantee is verified to be effective

and general. In future works, our proposed two-timescale

framework can be extended to various existing optimization-

based congestion control algorithms for providing additional

capability of deterministic service delay guarantee.
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