
Fine-grained Forward Prediction based Dynamic
Packet Scheduling Mechanism for Multipath TCP

in Lossy Networks
Dan Ni1, Kaiping Xue1*, Peilin Hong1, Sean Shen2*

1 The Department of EEIS, University of Science and Technology of China, Hefei, Anhui 230027 China
2 DNSLAB, China Internet Network Information Center, Beijing 100190 China

*kpxue@ustc.edu.cn, sean.s.shen@gmail.com

Abstract—Nowadays, multi-interface terminals in heteroge-
neous network may access Internet through various access tech-
nologies, and further aggregate network resources from multiple
paths as much as possible. Multipath TCP exploits multiple paths
simultaneously by stripping data of a connection over multiple
TCP flows, each of which is through a disjoint path. However, it
encounters the problem caused by the great number of out-of-
order packets at receiver due to dissimilar path characteristics,
i.e. latency, bandwidth, packet loss rate, etc. The previous
intelligent scheduling mechanisms to keep in-order delivery all
ignored packet losses and became fragile in lossy networks. In
this paper, we present Fine-grained Forward Prediction based
Dynamic Packet Scheduling Mechanism(F2P-DPS) for multipath
TCP. It utilizes the idea of TCP modeling to estimate the latency
on the path under scheduling and the data amount sent on the
other paths simultaneously, which takes packet loss rate into
consideration, and then decides which packets to send on the
under-scheduling path. From the simulation, we can see that our
mechanism obviously improves throughput and reduces cache
occupancy at receiver in lossy networks.

I. INTRODUCTION

As various radio access technologies(RATs) overlap and
form heterogeneous networks, it is common that mobile termi-
nals equipped with multiple network interfaces, which make
data transmission through different interfaces simultaneous-
ly become possible. Unfortunately, currently used protocols
utilize only a single interface at a time even though multi-
ple interfaces are connected. Theoretically, reasonable data-
stripping solutions to exploit multiple interfaces can aggregate
the available network resources of different RATs to provide
better service, such as higher bandwidth, better connectivity
and so on. However, if each interface is relative to a different
path, simultaneous transmission over different paths for one
application stream leads to packet reordering due to the
dissimilar path characteristics, i.e. latency, bandwidth, packet
loss rate, etc. It can adversely affect the performance of any
real-time applications.

In recent years, there are solutions of data stripping [1] on
multi-interface terminals to enhance concurrent transfer across
multiple paths for different purpose, such as load sharing, in-
order delivery, fairness and so on. These solutions can be
implemented at different layers to efficiently schedule packets.
Firstly, we talk about some typical scheduling schemes in
link layer and network layer. Link layer solutions of traffic

distribution over multi-radio networks has been studied in [2].
It is based on the MAC-layer measurement, dispersing traffic
across the links in proportion to their available capacities. The
most notable network layer solution is the earliest delivery path
first (EDPF) scheduling [3]. It transmits the packet through the
path that delivers it the earliest. However, these lower layer
scheduling solutions are transparent to transport layer, which
means the transport layer doesn’t aware of these multiple
paths. Regarding to TCP, it can’t distinguish out-of-order from
packet loss, which leads to lots of unnecessary retransmission.

Application layer solutions [4], [5] are also proposed, which
can use either TCP or UDP to transmit. [4] adopts an approach
that works in the case of using HTTP, which issues a set
of range queries each using a separate connection on a
different interface. MuniSocket [5] describes the design and
implementation of an UDP-based socket that utilizes multiple
network interfaces connected through heterogeneous networks.
However, the applications need modifications to be aware of
multiple interfaces.

Consequently, transport layer solution better suits multi-
interface terminals for the reason not only it is the lowest layer
to keep end-to-end semantics among peers, but also it can
provides transparency for applications. Since TCP has good
features, such as providing reliable delivery and guaranteeing
fairness, multipath transmission protocols based on TCP have
been studied [6], [7], [8], [9] and some are further specified
by IETF WG, such as Load Sharing for SCTP(LS-SCTP)
[10], which is improved on Stream Control Transmission
Protocol(SCTP) [11], and Multipath TCP(MPTCP) [12]. In
TCP-based multipath transmission, a connection can be com-
posed of multiple TCP flows and the scheduling is packet-
oriented, which means packets of a connection are scheduled
individually and sent over different TCP flows. It can exploit
multiple paths simultaneously if each TCP flow is relative to a
disjoint path. When disjoint paths have significantly different
latencies, the scheduling function should be carefully designed
because the packets are strictly ordered and large number of
out-of-order packets at receiver will increase the end-to-end
delay and decrease the throughput heavily.

In this paper we propose a new scheduling algorithm
for MPTCP: Fine-grained Forward Prediction based Dynam-
ic Packet Scheduling(F2P-DPS). It allocates some specific

978-1-4799-3572-7/14/$31.00 ©2014 IEEE

packets to under-scheduling TCP subflow by estimating the
amount of packets that will be transmitted on other TCP
subflows simultaneously. The estimation is done by utilizing
TCP characteristics of each TCP subflow within a connection.
It adopts the idea of TCP modeling and takes account of packet
loss, which is more adaptive and suitable in lossy networks.

Remainder of this paper is organized as follows. In section
II, we discuss related works of the scheduling algorithms for
multipath transmission based on TCP. Section III elaborates
the idea of F2P-DPS by an example of two-path MPTCP
scenario. F2P-DPS adopts the idea of TCP modeling. Further-
more, in section IV, we use NS-3 to verify that the scheduling
algorithm we propose can reduce the number of out-of-order
packets at receiver and enhances total throughput. Section IV
concludes the paper.

II. RELATED WORK

There are several multipath transmission protocols based on
TCP, such as LS-SCTP(improved on SCTP) and MPTCP. They
support to establish a connection with multiple TCP flows
through different paths, thus scheduling algorithm is essential
to distribute data efficiently over multiple TCP flows.

Stream Control Transmission Protocol(SCTP) [11] is a
transport layer protocol and supports multi-homing, serving
in a similar role to TCP and UDP. Multi-homed terminal
with SCTP assigns a different IP address for each interface
and uses them in a single ”association”, which is similar
to ”connection”. SCTP supports the sender to establish an
association with a primary path and reserves alternative paths
for retransmission or back-up. If the primary path fails, the
alternative paths can be used.

Concurrent Multipath Transfer using SCTP(CMT-SCTP)
[13] extends SCTP to support simultaneously use multiple
paths within a SCTP association. The sender simply adopts
round robin(RR) manner without intelligence, where it just
schedules data from the sending buffer in sequence to the
available congestion window space of the next path. However,
It can’t alleviate the effects brought up by heterogeneous
path characteristics, such as packet reordering. Packets with
larger sequence number may arrive at receiver earlier than
expectation, and have to wait until the sequence numbers are
continuous. The number of out-of-order packets aggregated
from multiple paths arises due to the dissimilar and timely
changed path characteristics(e.g, latency, bandwidth, packet
loss rate). A large receive buffer is required to cache out-of-
order packets, which leads to large waiting delay and heavily
degrades the throughput.

Just as mentioned above, in-order delivery in a single
connection over multiple paths is important. Load Sharing
for SCTP(LS-SCTP) [10] supports weighted round robin
and distributes data to each path in proportion to the ra-
tio cwnd/RTT(congestion window/round trip time). However,
it is coarse-grained and can’t ensure in-order delivery for
each packet. WestwoodSCTP(W-SCTP) [14] performs a more
intelligent bandwidth aware scheduling at sender, which is
named as BAS. It scores for each path, and the path with

Fig. 1. MPTCP Internet stack

the lowest score has the highest priority to transmit packets. It
tries to provide in-order delivery but still suffers from serious
performance degradation if the paths in an association have
significantly different latencies.

Forward Prediction Packet Scheduling(FPS) for multi-
interface terminals with disparate latencies is introduced in
[15], which is verified in SCTP. When a path under scheduling
frees congestion window space to pull new data from sending
buffer, it estimates the duration of this new transmission. Then
it estimates the number of packets(N) that can be delivered
simultaneously in other paths during this given duration. The
estimation is based on the assumption that no loss will occur,
thus the congestion window size will increase for every RTT.
Then the under-scheduling path chooses (N+1)th packet and
the following ones from the sending buffer to fill its congestion
window. If the packets experience no loss, the estimation is
precise and FPS can keep windows sliding smoothly at both
sides and enhances throughput. However, in lossy networks
where losses should be taken into consideration, it becomes
fragile.

For SCTP isn’t compatible with regular TCP, it is difficult to
implement SCTP in the current network. Recently, Multipath
TCP(MPTCP) [12] is raised to conquer the problems in SCTP.
MPTCP can establish a MPTCP connection with multiple
regular TCP subflows, each may be on a different path, and
it can just fall back to regular TCP when there is only a
TCP subflow. As shown in Fig.1, it adds MPTCP layer above
TCP layer to the networking stack, with the original transport
layer called subflow layer. Subflow layer can just adopt regular
TCP. In MPTCP layer, it divides data of a connection into
several portions and schedule them on parallel TCP subflows.
Since the packets are strictly ordered by sequence number,
scheduling algorithm at MPTCP layer is essential and needs
more intelligence to improve the chances of in-order delivery
at connection level.

In current MPTCP specification [12], it simply uses round
robin(RR) manner to schedule data. MPTCP employs a large
receive buffer shared by all the subflows to hold out-of-
order packets. Linux-MPTCP scheduler [16] is an intelligent
scheduler implemented in Linux MPTCP kernel [17]. The
amount of data scheduled on each TCP subflow is in pro-
portion to the estimated bandwidth of the path, calculated
by BW = cwnd/RTT . Besides, it has the intelligence to
choose which packet to allocate from the shared sending
buffer. Nonetheless, it doesn’t utilize the TCP characteristic
of each subflow and becomes fragile in lossy networks.

Above all, in-order delivery among different paths is a
big challenge for multipath transmission, some packets arrive
much earlier than others through quicker paths will cause
head-of-line blocking problem. What’s more, when multiple
paths have significantly different latencies, packet reordering
will become critical. The intelligent scheduling algorithms at
sender have been proposed in former researches to minimize
the chance of out-of-order, however they all ignore packet
losses and provide less robustness in lossy networks.

III. FINE-GRAINED FORWARD PREDICTION BASED
DYNAMIC PACKET SCHEDULING MECHANISM(F2P-DPS)

In this section, we propose a new intelligent scheduling
mechanism named Fine-grained Forward Prediction based Dy-
namic Packet Scheduling(F2P-DPS) for MPTCP. The schedul-
ing function at sender intelligently distributes packets in a
connection over multiple TCP subflows, each of which is
through a different paths.

F2P-DPS is closer to FPS, but more fine-grained and pro-
vides more robustness in lossy networks. When a subflow is
under scheduling, the sender predicts the variation of TCP
window size for each faster subflows in the same connection,
and estimates the data amount Ntotal sent on them during one
successful delivery time on the under-scheduling subflow. The
under-scheduling subflow then select (Ntotal + 1)th packet
and the following ones to fill its congestion window. The
estimation model is the key issue to be solved. FPS ignores
packet loss, while F2P-DPS takes losses into consideration.
F2P-DPS adopts the idea of TCP modeling, which models
TCP’s behavior for each TCP subflow by averaging all the
possible packet loss events. In this section, we yield a expres-
sions for Ntotal, as a function of RTT and packet loss rate.

We adopt most of our terminology from TCP modeling
[18], [19], which develops the characteristics of steady-state
throughput and latency. We assume each subflow adopts TCP
Reno and model TCP Reno in terms ”round”, the same as
that in [19]. A round starts with transmission of the packets
in current congestion window. The first ACK reception marks
the end of the current round and the beginning of the next
round. The duration of a round is equal to the RTT. We make
some other assumptions as follows:

1) On every TCP subflow, the packet arrives at the receiver
side in order if the packets are not lost in transmission.

2) On every TCP subflow, loss indication is triggered by
triple duplicated ACKs or timeout.

3) The modeling of TCP Reno adopts independent loss
model, which means the loss rate of a packet is independent
of any loss rate of other packets.

4) The time needed to send all the packets in a round is
smaller than RTT.

We elaborate the main idea of F 2−DPS through a two-path
MPTCP scenario illustrated in Fig.2. Both endpoints(e.g.client
and server) support MPTCP and a connection with two TCP
subflows(e.g.subflow0, subflow1) has been established be-
tween them. These two subflows are transmitted on dissimilar
paths, where path1 experiences larger delay than path0, which

means RTT1 > RTT0. The packet loss rates of these two
paths are p0 and p1 separately. The packets of the connection
generated at client can go through either path0 or path1.
Besides, it is allowed that more subflows through different
paths join the connection. In this text, we just use the two-
path scenario for the simplification of analysis.

Fig. 2. An example of two-path MPTCP scenario

Fig.3 shows packet transmission process of the two-path
MPTCP scenario. At time instance t, subflow1 is ready to send
new packets, the expected receipt time of these new packets is
t′. In Fig.4, we model subflow0’s behavior during [t, t′]. We
assume the first loss indication occurs at packet i1 on subflow0,
and the number of lost packets in the same round is nloss1.
These i1 packets are transmitted within r1 rounds, and the total
number of packets transmitted in r1 rounds is nmax(i1). When
these nloss1 losses are all recovered, the number of packets
have already been transmitted except for the retransmitted ones
is N1. Finally, the number of packets transmitted on subflow0
during [t, t′] is Ntotal, which is derived by averaging all the
possible packet loss events. The detailed modeling steps are
as follows:

A. Expected t’

In Fig.3, at time instance t, subflow1 has free congestion
window space, cwnd1, and is ready to send new packets.
The expected transfer time of these cwnd1 packets is derived,
which is similar with the derivation of latency in TCP model-
ing [18]. And the expected receipt time of these cwnd1 packets
is t′.

If all these cwnd1 packets are transmitted successfully on
subflow1, the successful delivery time is RTT1/2 and the
possibility is p̂1 = (1− p1)

cwnd1.
Otherwise, if nloss packets are lost, there are two cases

to be discussed. In the first case, cwnd1 − nloss < 3,
the sender will not receive enough ACKs and resort to a
timeout. The average duration of a timeout, accounting for the
exponential backoff of the retransmission timer on the loss of
a retransmitted packetis given by

E(TO) = TO
1 + p2 + 2p2 + 4p3 + 8p4 + 16p5 + 32p6

1− p
(1)

where TO is the duration of time the sender waits before
retransmitting the first lost packet on the specific subflow. With

Fig. 3. Packet transmission process of two-path MPTCP scenario Fig. 4. Modeling TCP’s behavior on subflow0 during [t,t’]

p1 the packet loss rate and TO1 the waiting time for a time-
out on subflow1, E(TO1) is obtained. Thus, the successful
delivery time in this case is E(TO1) and the possibility is
p̂2 = cwnd1∗ (C1

cwnd1−1(1−p1)∗pcwnd1−2
1 +C2

cwnd1−1(1−
p1)

2 ∗pcwnd1−3
1). In the second case, cwnd1−nloss ≥ 3, the

sender will receive enough ACKs and enter fast retransmission
to recover, the successful delivery time is 1/2RTT1+RTT1 =
3/2RTT1 and the possibility is p̂3 = 1−p̂1−p̂2. By averaging
all these possibilities, t′ satisfies

t′ = t+
RTT1

2
p̂1 +

3RTT1

2
p̂2 + E(TO1)p̂3 (2)

B. Calculation of r1 and nmax(i1)

Fig.4 shows TCP’s behavior on subflow0 during [t, t′]. The
cwnd of the first round on subflow0 is a1, and the first
loss indication occurs at packet i1. Let cwnd0i1 denote the
congestion window of the round when the i1th packet is
transmitted. These i1 packets may be transmitted in slow start
phase or congestion avoidance phase within r1 rounds, and the
total number of packets transmitted in r1 rounds is nmax(i1).
We derive the expression for r1 and nmax(i1), which are the
function of i1 and a1. Considering the different phases these
i1 packets may be in, there are three cases as follows:

1) Slow start phase: If cwnd0i1 < ssthresh, these i1
packets are all transmitted in slow start phase and cwnd
increases exponentially. ssthresh is the slow start threshold.
With a1 the cwnd of the first round, r1 is obtained by solving∑n=r1−1

n=1 a1 ∗ 2(n−1) ≤ i1 ≤ ∑n=r1
n=1 a1 ∗ 2(n−1), thus

r1 =

⌈
log2 (

i1
a1

+ 1)

⌉
(3)

nmax(i1) = a1 ∗ 2(r1−1) (4)

2) Congestion avoidance phase: If a1 > ssthresh, the i1
packets are all transmitted in congestion avoidance phase and
cwnd is increased linearly. With a1 the cwnd of the first round,
r1 is obtained by solving

∑n=r1−1
n=1 (a1 + n − 1) ≤ i1 ≤∑n=r1

n=1 (a1 + n− 1), thus

r1 =

⌈√
4a21 − 4a1 + 1 + 8i1 + 1− 2a1

2

⌉
(5)

nmax(i1) =
(2a1 + r1 − 1) ∗ r1

2
(6)

3) Both phases: If cwnd0i1 > ssthresh and a1 <
ssthresh, these i1 packets are transmitted firstly in slow
start phase and then congestion avoidance phase. The slow
start phase ends when cwnd reaches ssthresh, the number
of rounds,rss, in slow start phase can be obtained by solving
a1 ∗ 2rss−1 ≤ ssthresh ≤ a1 ∗ 2rss , thus

rss =

⌈
log2

ssthresh

a1

⌉
. (7)

The (rss + 1)th round enters in congestion avoidance phase,
the cwnd of this round is a′1 = ssthresh + 1 and the left
number of packets is i′1 = i1 − a1 ∗ (2rss − 1). Thus, the
number of rounds to transmit the left packets in congestion
avoidance phase, referring to Enq.(5), is given by

rca =

⌈√
4a′21 − 4a′1 + 1 + 8i′1 + 1− 2a′1

2

⌉
(8)

Thus, r1 and nmax(i1) in this case are

r1 = rss + rca (9)

nmax(i1) = a1∗2(rss−1)+
[2(ssthresh+ 1) + rca − 1] ∗ rca

2
(10)

C. Calculation of N1

Since multiple losses are allowed in a round, we denote
nloss1 the number of losses in r1th round, including the first
loss. For this given (i1, nloss1), TCP’s behavior to recover
these lost packets is certain no matter where the losses happen.
Let t1 the time instance when nloss1 are all recovered and the
sender starts to send a new round of data, we can then calculate
the total amount of packets, N1, sent in [t, t1] excluding
retransmitted ones.

We denote cwnd0i1 the cwnd of r1(i1)th round. The cwnd
of the round following is cwnd1i1 , the new data transmitted in
it besides the packets in cwnd0i1 is nrnd1i1 . The number of
successfully transmitted packets in cwnd0i1 is ndup1i1 , it also

represents the number of duplicated ACKs received by sender.
Thus, we have

cwnd1i1 = cwnd0i1 (11)

nrnd1i1 = cwnd0i1 − nmax(i1) + i− 1 (12)

ndup1i1 = cwnd0i1 − nloss1 (13)

Considering that losses can be recovered by fast retransmission
or timeout retransmission, there are two cases as follows:

1) Fast retransmissions: If ndup1i1 ≥ 3, the sender will
get at least three duplicated ACKs for packet i1 and enter fast
retransmission and recovery. Otherwise, the sender resorts to a
timeout. We denote t1 the time instance when loss is recovered
after fast retransmission and N1 the total amount of packets
excluding retransmitted ones during[t, t1], thus

t1 = t+ (r1 + 1) ∗RTT0 (14)

N1 = nmax(i1) + nrnd1i1 (15)

After fast retransmission, cwnd is reduced to
a2 = max{2, cwnd1i1/2nloss1} and the sender enters
into congestion avoidance phase with cwnd = a2.

2) Timout retransmission: If ndup1i1 < 3, the sender will
not receive not enough duplicated ACKs and resort to a
timeout to recover. With p0 the packet loss rate and TO0 the
waiting time for a timeout on subflow0, the average duration
of a timeout is E(TO0) according to Enq.(1).

t1 = t+ r1 ∗RTT0 + E(TO0) (16)

N1 = nmax(i1) + nrnd1i1 (17)

where nrnd1i1 is obtained from Enq.(12). After a timeout
retransmission, cwnd is set to a2 = 1 and sender enters into
slow start phase with cwnd = a2.

D. Expected Ntotal

During the period [t1, t
′], subflow0’s initial cwnd is a2,

and we assume the first loss indication occurs at packet i2.
Hence, t2, N2 is obtained in the same way as t1, N1, and
t3, N3; ...tl, Nl can also be acquired. Here, tl must be satisfied

tl ≤ t′, tl+1 > t′ (18)

For each (ik, nlossk), it provides the place of the first loss
and the number of all the losses in the same round. TCP’s
behavior to recover these lost packets is certain no matter
where the following losses happen. It means Nk is the same if
different packet loss events have the same ik and nlossk. The
number of possible packet loss events with given (ik, nlossk)
is Cnlossk

cwnd1
ik

. The probability, denoted by Pk, of this given

(ik, nlossk) during[tk−1, tk] is

Pk = Cnlossk
cwnd1

ik

∗ pnlossk0 ∗ (1− p0)
Nk−nlossk (19)

Once pairs (i1, nloss1), (i2, nloss2)...(il, nlossl) are given,
N1, N2, ...Nl and P1, P2...Pl can be acquired referring to

Enq.(15), Enq.(17) and Enq.(19). Let Ntotal the total number
of packets sent on subflow0 during[t, t′] and P the probability
of these given pairs, we have

Ntotal = N1(i1) + ...+Nl(il) (20)

P =
l∏

k=1

Pk (21)

The expected data amount Ntotal transmitted on subflow0
is obtained by averaging Enq.(20) for the possible value of
nloss1...nlossl, i1...il. Thus,

E(Ntotal) =
∑

nloss1...nlossl
i1...il

P ∗Ntotal (22)

Finally, E(Ntotal) is the total number of packets estimated
to be transmitted successfully during period [t, t′] on subflow0,
subflow1 takes (E(Ntotal) + 1)th packet and the following
ones from sending buffer to fill its congestion window.

F2P-DPS provides an estimation model by averaging Ntotal

acquired from all the possible packet loss events on subflow0.
But the true value is the result of one trial, and our estimated
value may be deviate from the true value. Even though,
F2P-DPS provide more precise estimation model because it
considers the packet losses. Inevitably, F2P-DPS brings higher
complexity.

IV. PERFORMANCE EVALUATION

We evaluate our scheduling mechanism(F2P-DPS) proposed
in this paper on NS3 simulator. Also we implement anoth-
er scheduling mechanism(FPS) for comparison. Both these
intelligent scheduling mechanisms work to schedule packets
dynamically over multiple TCP flows on different paths.

Compared with the simple round robin scheduler(RR), FPS
enhances the chances of in-order delivery through multiple
paths and improves the global throughput. The simulation
results can certify that F2P-DPS is more suitable in lossy net-
works, improving global throughput and reducing the number
of out-of-order packets.

In the simulation, the sender establishes a connection con-
taining two TCP subflows with the receiver, each subflow
is through a different path. These two different paths have
significantly different path characteristics. It is allowed that
more subflows join the same connection, then the data will
be distributed over all the subflows to aggregate the network
resources. But in our simulation scenario, we only establish
two subflows through two different paths.

TABLE I
CONFIGURATION OF SUBFLOW0 AND SUBFLOW1

Configurations subflow0 subflow1

Delay(ms) 50 250
Bandwidth(Mbps) 5 2

Loss Rate(%) 0.1˜ 5 0.1
MSS(bytes) 1400 1400

0.1 0.5 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Loss Rate on Sublow0(%)

G
lo

ba
l T

hr
ou

gh
pu

t(M
bp

s)

RR
FPS
F2P−DPS

Fig. 5. Global throughput

0.1 0.5 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

Loss Rate on Subflow0(%)

G
lo

ba
l T

hr
ou

gh
pu

t G
ai

n(
%

)

Throughput Gain of F2P−DPS

Fig. 6. Global throughput gain of F2P-DPS based
on FPS

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

80

90

No. of Packets Transferred

Tr
an

sf
er

 T
im

e(
se

c)

RR
FPS
F2P−DPS

Loss Rate:
 suflow0: 1%
 subflow1: 0.1%

Fig. 7. Transfer time of the packets

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

No.of Packets Transferred

W
ai

tin
g

Ti
m

e
in

 B
uf

fe
r(

se
c)

FPS
F2P−DPS

Loss Rate:
 suflow0: 1%
 subflow1: 0.1%

Fig. 8. Waiting time in the receive buffer of the
out-of-order packets

0.1 0.5 1 2 3 4 5
0

2

4

6

8

10

12

Loss Rate on Subflow0(%)

Av
er

ag
e

O
cc

up
ie

d
R

ec
ei

ve
 B

uf
fe

r S
iz

e(
M

SS
) FPS

F2P−DPS

Fig. 9. Average of occupied receive buffer size

0.1 0.5 1 2 3 4 5
0

2

4

6

8

10

12

Loss Rate on Subflow0(%)

St
an

da
rd

 D
ev

ia
tio

n
of

 O
cc

up
ie

d
R

ec
ei

ve
 B

uf
fe

r S
iz

e(
M

SS
)

FPS
F2P−DPS

Fig. 10. Standard deviation(SD) of occupied receive
buffer size

The configuration of these two subflows on different paths is
presented in Table.I. The bandwidth of subflow0 and subflow1
are 5Mbps and 2Mbps respectively. The delay on subflow0 is
50ms, while the delay on subflow1 is 250ms. The random loss
rates on subflow0 vary from 0.1% to 5%, which represent the
lossy network on different levels. However, the loss rate on
subflow1 is fixed to 0.1%. Maximal Segment Size(MSS) in
our simulation is set to 1400 bytes, which is also the packet
size at TCP layer. At endpoints, the sender generates 10MB
data to sent out, and the receive buffer size is set to 64KB,
shared by both TCP subflows.

The transfer time of 10MB data from sender to re-
ceiver in both mechanisms are recorded in the simulation.
With loss rate on TCP subflow0 increasing, the transfer
time increases accordingly and the throughput, calculated by
10MB ∗ 8/transfertime, degrades. Fig. 5 illustrates the
global throughput of RR, FPS and F2P-DPS, where RR is
the scheduling mechanism without any intelligence. We note
that both FPS and F2P-DPS outperform RR, that is to say,
the throughput can be improved if any intelligent scheduling
algorithm is used. Also, the throughput of FPS and F2P-DPS
decreases with loss rate on subflow0 increasing. It is because
the precision of the estimation model in both mechanisms
degrades when packet loss events occur frequently. Anyhow,
F2P-DPS outperforms FPS at any loss rate, improving the
global throughput in lossy networks.

To see the throughput enhancement more clearly, we define
throughput gain of F2P-DPS based on FPS to measure it,

which is given by

ThoughputGain =
ThF 2P−DPS − ThFPS

ThFPS
∗ 100% (23)

where ThF 2P−DPS ,ThFPS are the global throughput of F2P-
DPS and FPS respectively. The global throughput gain is
presented in Fig. 6, from which we note that the global
throughput gain of F2P-DPS can reach as much as 15%.
Fig. 7 illustrates the transfer times of packets, which shows
the relationship between the sequence number of each packet
and the time when the sender receives cumulative ACK for
the packet. The result indicates that F2P-DPS has the highest
throughput all the time. In this experiment, the packet loss
rates on subflow0 and subflow1 are fixed to 1% and 0.1%.

Further, we evaluate F2P-DPS in another perspective: out-
of-order packets. To the best of our knowledge, out-of-order
packets at receiver will have to wait in the buffer until the
packets are correctly reordered at connection level, and then
these packets will be submitted to the upper layer. We plot
the waiting time of out-of-order packets at receive buffer in
Fig. 8. F2P-DPS can provide more precise estimation model
than FPS and reduce the re-ordering time for the packets
as well. In addition, occupied receive buffer size plays an
important role of measuring the number of reordering packets.
Large occupied receive buffer size indicates large number of
reordering packets and leads to the degrading of MPTCP’s
performance. In the simulation, we read the size of occupied
receive buffer and record it for every 100ms. Fig. 9 and
Fig. 10 show the average and standard deviation(SD) of all
the records, the buffer size is counted by MSS(1400 bytes).

0.1 0.5 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

FPS:subflow1
 FPS:sublfow0

N
um

be
r o

f P
ac

ke
ts

 T
ra

ns
fe

rre
d

on
 E

ac
h

Su
bf

lo
w

Loss Rate on Subflow0(%)

 F2P-DPS:subflow1
 F2P-DPS:subflow0

Fig. 11. Number of packets transferred on each subflow

The occupied buffer size of both mechanisms increases with
loss rate on subflow0 increasing as shown in Fig. 9, but FPS
always occupies more receive buffer size. The SD curves in
Fig. 10 also illustrate that F2P-DPS has more robustness than
FPS in lossy networks.

Fig. 11 illustrates the number of packets taken over by each
subflow. The result shows that F2P-DPS can more efficiently
utilize subflow1 by scheduling more data to it, making data
load more balance between two subflows. Even though sub-
flow1 is less congested compared with subflow0, its large delay
leads to low throughput. F2P-DPS tries hard to make sending
window of each subflow slide more quickly and improves the
throughput on slower path.

We can conclude that the estimation model of F2P-DPS pro-
vides more precision than FPS in lossy networks. It improves
the global throughput acquired from all the paths and reduces
the number of reordering packets at receiver.

V. CONCLUSIONS

Multipath TCP(MPTCP) can exploit heterogeneous paths by
implementing an intelligent packet scheduling mechanism at
sender. The data in a connection should be carefully scheduled
to multiple TCP subflows on different paths with minimal
occurrence of reordering at receiver. However, some previous
scheduling mechanisms, such as FPS, provide a coarse estima-
tion model ignoring any losses. We present Fine-grained For-
ward Prediction based Dynamic Packet Scheduling(F2P-DPS)
in this paper for packet-loss environment. Our mechanism es-
timates the data amount to be transmitted on all the other paths
during one successful delivery time on the under-scheduling
path by modeling TCP’s behavior. The modeling takes cwnd,
RTT, and packet loss rate into account and averages all the
possible packet loss events that may happen. Our model adopts
TCP Reno and is based on the assumption of independent
random losses. F2P-DPS is validated to outperform FPS from
two important perspectives, global throughput and the number
of out-of-order packets in lossy networks.

F2P-DPS can be applied to not only MPTCP, but also
any multipath transmission based on TCP. It provides a more
accurate estimation model compared with any other schedul-
ing mechanisms, which just ignore packet losses. Since the

behaviors of some other TCP versions are more complicated,
F2P-DPS based on these TCP versions remains to be solved.
Furthermore, F2P-DPS with the correlated or bursty losses
should also be considered in the future.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant No. 61379129, No.
61170231, DSLAB Open Foundation and Intel ICRI MNC.

REFERENCES

[1] Karim Habak, Khaled A Harras, and Moustafa Youssef. Bandwidth
aggregation techniques in heterogeneous multi-homed devices: A survey.
arXiv preprint arXiv:1309.0542, 2013.

[2] Jong-Ok Kim, Tetsuro Ueda, and Sadao Obana. Mac-level measure-
ment based traffic distribution over ieee 802.11 multi-radio networks.
Consumer Electronics, IEEE Transactions on, 54(3):1185–1191, 2008.

[3] Kameswari Chebrolu and Ramesh Rao. Communication using multiple
wireless interfaces. In Proceedings of IEEE WCNC, volume 1, pages
327–331. Citeseer, 2002.

[4] Dominik Kaspar, Kristian Evensen, Paal Engelstad, and Audun Fosselie
Hansen. Using http pipelining to improve progressive download over
multiple heterogeneous interfaces. In Communications (ICC), 2010
IEEE International Conference on, pages 1–5. IEEE, 2010.

[5] Nader Mohamed, Jameela Al-Jaroodi, Hong Jiang, and David R Swan-
son. A user-level socket layer over multiple physical network interfaces.
In IASTED PDCS, pages 804–810, 2002.

[6] Y Hasegawa, I Yamaguchi, Takayuki Hama, H Shimonishi, and
T Murase. Improved data distribution for multipath tcp communica-
tion. In Global Telecommunications Conference, 2005. GLOBECOM’05.
IEEE, volume 1, pages 5–pp. IEEE.

[7] Luiz Magalhaes and Robin Kravets. Mmtp: multimedia multiplexing
transport protocol. ACM SIGCOMM Computer Communication Review,
31(2 supplement):220–243, 2001.

[8] Chung-Ming Huang, Ming-Sian Lin, and Lik-Hou Chang. The design
of mobile concurrent multipath transfer in multihomed wireless mobile
networks. The Computer Journal, 53(10):1704–1718, 2010.

[9] Samar Shailendra, R Bhattacharjee, and Sanjay K Bose. Mpsctp: a
simple and efficient multipath algorithm for sctp. Communications
Letters, IEEE, 15(10):1139–1141, 2011.

[10] P Amer. Load sharing for the stream control transmission protocol (sctp).
draft-tuexen-tsvwg-sctp-multipath-07, October 2013.

[11] R Stewart and Q Xie. Stream control transmission protocol. RFC 2960,
October 2000.

[12] A Ford. Tcp extensions for multipath operation with multiple addresses.
RFC 6824, January 2013.

[13] Janardhan R Iyengar, Paul D Amer, and Randall Stewart. Concurrent
multipath transfer using sctp multihoming over independent end-to-end
paths. Networking, IEEE/ACM Transactions on, 14(5):951–964, 2006.

[14] C Casetti and W Gaiotto. Westwood sctp: load balancing over multipaths
using bandwidth-aware source scheduling. In Vehicular Technology
Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, volume 4, pages
3025–3029. IEEE, 2004.

[15] Farhan H Mirani, Nadia Boukhatem, and Minh Anh Tran. A data-
scheduling mechanism for multi-homed mobile terminals with disparate
link latencies. In Vehicular Technology Conference Fall (VTC 2010-
Fall), 2010 IEEE 72nd, pages 1–5. IEEE, 2010.

[16] Sébastien Barré. Implementation and assessment of modern host-based
multipath solutions. PhD thesis, Citeseer, 2011.

[17] http://www.multipath-tcp.org/.
[18] Biplab Sikdar, Shivkumar Kalyanaraman, and KS Vastola. Analytic

models and comparative study of the latency and steady-state throughput
of tcp tahoe, reno and sack. In Global Telecommunications Conference,
2001. GLOBECOM’01. IEEE, volume 3, pages 1781–1787. IEEE, 2001.

[19] Jitendra Padhye, Victor Firoiu, Donald F Towsley, and James F Kurose.
Modeling tcp reno performance: a simple model and its empirical
validation. IEEE/ACM Transactions on Networking (ToN), 8(2):133–
145, 2000.

