
Receive Buffer Pre-division Based Flow
Control for MPTCP

Jiangping Han1,2, Kaiping Xue1,2(B), Hao Yue3, Peilin Hong1, Nenghai Yu1,
and Fenghua Li4

1 Department of EEIS, University of Science and Technology of China,
Hefei 230027, Anhui, China

kpxue@ustc.edu.cn
2 Science and Technology on Communication Networks Laboratory,

Shijiazhuang 050081, Hebei, China
3 Department of Computer Science, San Francisco State University,

San Francisco, CA 94132, USA
4 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China

Abstract. Multipath TCP (MPTCP) enables terminals utilizing multi-
ple interfaces for data transmission simultaneously, which provides bet-
ter performance and brings many benefits. However, using multiple paths
brings some new challenges. The asymmetric parameters among different
subflows may cause the out-of-order problem and load imbalance prob-
lem, especially in wireless network which has more packet loss. Thus
it will significantly degrade the performance of MPTCP. In this paper,
we propose a Receive Buffer Pre-division based flow control mechanism
(RBP) for MPTCP. RBP divides receive buffer according to the predic-
tion of receive buffer occupancy of each subflow, and controls the data
transmission on each subflow using the divided buffer and the number
of out-of-order packets, which can significantly improve the performance
of MPTCP. We use the NS-3 simulations to verify the performance of
our scheme, and the simulation results show that RBP algorithm can
significantly increase the global throughput of MPTCP.

Keywords: MPTCP · Receive buffer · Pre-division · Flow control
Wireless · Out-of-order

1 Introduction

Nowadays, the Internet is developing rapidly. Various network access technolo-
gies have been developed and used, and one terminal is always equipped with
multiple network interfaces. However, traditional TCP only makes use of one
interface at a time, which neither takes full advantages of the network resources
nor meets the increasing demand on data transmission. Researchers have pro-
posed a number of protocols [1–3] that utilize multipath transmission to solve this
problem. The solutions on transport layer are hot topics of the discussion [4–6],
c© Springer Nature Singapore Pte Ltd. 2018
L. Zhu and S. Zhong (Eds.): MSN 2017, CCIS 747, pp. 19–31, 2018.
https://doi.org/10.1007/978-981-10-8890-2_2

20 J. Han et al.

since the transport layer is the lowest layer to maintain the end-to-end connec-
tion and no change needs to be made at the intermediate nodes. Multipath TCP
(MPTCP) [7] has become a new standard supported by IETF MPTCP work-
ing group. It can utilize multiple network interfaces simultaneously while is also
compatible with existing network systems. Thus, it has received much attention
from both academia and industries.

MPTCP could aggregate bandwidth resources and improve overall through-
put. However, different from TCP which only uses one path to transmit data,
using multiple paths will cause new problems, like the out-of-order problem and
load imbalance problem. These problems will lead to the degradation of overall
network performance. Especially in today’s heterogeneous networks, which has
many wireless links and different path parameters. Wireless networks lead to
more packet loss and different paths lead to asymmetrical scenarios, will make
it harder to collaborate different paths, and the impact will be even severer.

Specifically, out-of-order packets will cause buffer bloat in receive buffer,
which will block the data transmission and decrease the throughput. This prob-
lem can be solved using scheduling algorithm [8]. The main idea is to schedule
the packets and make the packets arrive at receiver in-order. However, there are
still some limitations in the scheduling algorithms. Scheduling algorithms are
suitable for the situation where there are obvious differences among different
subflows’ round-trip time (RTT). If the difference is within two times, it will be
hard for scheduling algorithms to achieve good performance. On the other hand,
scheduling algorithms always reserve a block of sending buffer for the subflow
with smaller RTT. If the size of the buffer is limited and insufficient for every
subflow, less data will be sent on the subflow with larger RTT, which will then
cause the load imbalance problem.

The other method to reduce the out-of-order packets is controlling the traffic
flow on each subflow independently according to the characteristics of subflow.
In the original flow control of MPTCP, subflows share one receive buffer. The
subflows compete against each other, which will cause unreasonable distribution
of receive buffer among subflows and make the out-of-order problem even worse.
MPTCP uses multiple paths for parallel transmission, where each subflow can
easily implement separate flow control. Meanwhile, an independent control for
each subflow will lead to better use of the different characteristics among subflows
and a more reasonable data distribution. The idea of flow control with evenly
divided buffer has been mentioned in CMT-SCTP [9]. But this mechanism does
not consider the path difference between subflows.

In this paper, we propose a Receive Buffer Pre-division based flow control For
MPTCP (RBP). RBP enables flow control on each subflow separately according
to buffer pre-divition, which can control the data distribution among subflows
reasonably and solve the above-mentioned problems effectively. The main con-
tributions of our work can be summarized as follows:

– We propose a new flow control mechanism based on receive buffer pre-
division, which can distribute data according to the performance of subflows.
This scheme decreases the influence of bufferbloat and improves the perfor-
mance of MPTCP.

Receive Buffer Pre-division Based Flow Control for MPTCP 21

– We propose a scheme estimating the buffer occupancy of each subflow which
dynamically adjusts to the actual situation, thus is more adaptable to the
real network.

– Simulation results show that the proposed scheme can effectively improve the
throughput of MPTCP.

The rest of this paper is organized as follows. In Sect. 2, we will introduce the
flow control of TCP and MPTCP. The details of our algorithm will be described
in Sect. 3. In Sect. 4, we evaluated the performance of the proposed algorithm.
Finally, we will conclude our work in Sect. 5.

2 Related Work

Scheduling algorithm is an approach to enhance the performance of MPTCP.
Scheduling algorithm can solve out-of-order problem caused by asymmetry of
paths, and try to ensure the packets to reach receiver in order. When a subflow
is under scheduling, sender estimates N, the number of packets which can arrive
at sender before the first packet at this subflow, and skips these N packets to
send. These N packets will be reserved for other subflows.

There are many recearches on scheduling algorithm. Linux-MPTCP
scheduling algorithm [10] is a predictive scheduling algorithm supported in
Linux-MPTCP kernel code. Linux-MPTCP scheduling algorithm ignores the
change of congestion and other factors and just makes N =

∑
j,RTTj<RTTi(

RTTi

RTTj
· cwndj

)
. Forward Prediction Scheduling (FPS) [11], Fine-grained For-

ward Prediction based Dynamic Packet Scheduling (F2P-DPS) [12], Offset Com-
pensation based Packet Scheduling (OCPS) [13] are the enhancements of Linux-
MPTCP scheduling algorithm, which consider the change of congestion window,
wireless packet loss and feedback information respectively, and gradually increase
the accuracy of schedule algorithms.

Although the modelling of scheduling algorithm is becoming better designed,
there are still some limitations as we mentioned before. The scope of application
is limited, and sometimes it needs a large buffer. So we can think about this
question from another perspective.

In the original MPTCP, receive buffer is shared, and receiver notifies the
overall buffer allowance (rwnd), which controls the data flow of the total MPTCP
connection. When sender receives an ACK from subflowi, it will change the send
window of subflowi as Send Windowi = min(cwndi, rwnd), where cwndi is the
congestion window of subflowi, and rwnd is the total advertisement window
carried in ACK. If Send Windowi −Outstandingi > 0, subflowi is able to send
new data, where Outstandingi is the unACKed data of subflowi on subflow
level.

In the original MPTCP protocol, cwndi is the congestion window of subflow
level, and rwnd is the receive window of connection level. Sender makes use of
cwndi and rwnd to control the data sent on subflowi, which will lead to a mess
in different subflows, and cause a decline in the global throughput. If sender can

22 J. Han et al.

keep all of the packets arriving at receiver in order or receiver has an infinite
buffer, it will be unnecessary to keep flow control on each subflow independently.
However, the capacity of different subflows is always different, and it is impossible
to make all the packets arriving at receiver in order because of different RTTs
and packet loss. In this case, to distinguish each subflow and make an individual
flow control will become a better choice.

Concurrent Multipath Transfer using SCTP (CMT-SCTP) [14] is also a mul-
tipath protocol on transport layer. Although the discussion of SCTP is gradually
weakening, MPTCP could also draw lessons from the thought of flow control
scheme. CMT-SCTP came up with a flow control scheme based on buffer alloca-
tion [9]. The basic idea is to evenly divide the buffer space into N parts (where
N is the number of subflows), and make an independently flow control on each
subflow.

However, subflows are always asymmetric in the real station, evenly dividing
the buffer space does not consider the inconsistency between parameters of dif-
ferent subflows. Therefore it will not adapt to the actual network well. Sender
should consider the capacity of different subflow, and adjust with the actual
situation.

3 Receive Buffer Pre-division Based Flow Control
Algorithm

To address the problems caused by asymmetric paths of subflows and improve the
global throughput of MPTCP in heterogeneous networks, we propose a Receive
Buffer Pre-division based flow control algorithm (RBP) for MPTCP. The basic
idea of RBP is to distribute the overall rwnd into rwndi on each subflow accord-
ing to the capacity of different subflows. To achieve this goal, we make some
modification on the sender. The receiver do not need to make any changes. The
receiver still notice the overall receive window to the sender. Then the sender
estimates the buffer occupancy of each subflow, and then divides the receive
window according to the estimation.

Division of
receiving buffer

Division of
receiving window

Separate flow
control on each

subflow

rwnd

rwnd0 rwnd1 rwndN-1

For every subflows

For
 subflow0

For
 subflow1

For
 subflowN-1

Fig. 1. Receive buffer pre-division based flow control algorithm

Receive Buffer Pre-division Based Flow Control for MPTCP 23

Figure 1 shows the basic idea of RBP. The sender first estimates the aver-
age maximum buffer occupancy of each subflow in MPTCP, and then divides
the receive buffer according to the estimation. After that, the sender counts
the unACKed packets on connection level of each subflow, and sets the receive
window to the remaining buffer capacity. Finally, the variable rwnd will be dis-
tributed among all the subflows and the results will be used for flow control on
each subflow.

RBP consists of three parts: (1) division of receive buffer; (2) division of
receive window; and (3) separate flow control on each subflow. Next, we will
describe them in details.

3.1 Division of Receive Buffer

In RBP, the sender first estimates the average maximum buffer occupancy of
each subflow, and distributes the buffer based on the estimation results. Buffer
occupancy depends on the congestion window and RTT. Notice that congestion
window will be changed by congestion control algorithms according to varying
path condition, especially in wireless networks with serious packet loss. In order
to estimate the congestion window, we assume that the path condition is stable
during the estimation.

We use acwndi to denote the short-time average size of the congestion window
of subflowi. When cwndi changes, acwndi will be updated as follows:

acwndi ←− (1 − β) · acwndi + β · cwndi, (1)

where β is the weight between 0 and 1. Here, we take β = 1/16, which refers to
the update of congestion degree in [15].

Figure 2 illustrates an example of two subflows. The round-trip times of
subflow0 and subflow1 are denoted as RTT0 and RTT1, respectively. Here,

sender
subflow1

sender
subflow0

receiver

1 2 3 4

1 2 3 4 5 6 7

Fig. 2. Estimation of buffer occupy

24 J. Han et al.

we assume that RTT0 < RTT1. The sender estimates the average size of the
congestion window for subflow0 as acwnd0.

As shown in Fig. 2, subflow1 will cause out-of-order packets received from
subflow0 in the receive buffer. If subflow1 sends its first packet before subflow0,
there will be

⌈
RTT1

2·RTT0
+ 1

2

⌉
· acwnd0 out-of-order packets in the receive buffer.

Otherwise, there will be
(⌈

RTT1
2·RTT0

+ 1
2

⌉
− 1

)
·acwnd0 out-of-order packets in the

receive buffer. The probabilities of these two cases are both 1
2 . Also, there will be

acwnd0 packets that are in transmission from the sender to the receiver, which
should also be considered. Therefore, the average buffer occupancy of subflow0

is acwnd0 ·
(⌈

RTT1
2·RTT0

+ 1
2

⌉
+ 1

2

)
.

When there are more than two subflows in a MPTCP connection, the calcu-
lation on the number of out-of-order packets and the average buffer occupancy
is similar to that in the above example. For subflowi, every subflowj(j �= i) will

cause acwnd i ·
(⌈

RTTj

2·RTTi
+ 1

2

⌉
+ 1

2

)
out-of-order packets in the receive buffer.

The number of out-of-order packets from subflowi depends on the maximum
value of them, i.e., maxj �=i acwnd i ·

(⌈
RTTj

2·RTTi
+ 1

2

⌉
+ 1

2

)
.

Then, the average maximum buffer occupancy of the subflowi can be calcu-
lated as follows:

Bufi = acwnd i ·
(⌈

maxj �=i RTTj

2 · RTTi
+

1
2

⌉
+

1
2

)
, (2)

where Bufi is the estimation of the average maximum buffer occupancy of
subflowi.

After estimating the average maximum buffer occupancy, the receive buffer
will be allocated among all the subflows and the distribution is proportional to
the estimated average maximum buffer occupancy, which is shown as follows:

Bi = recvBuffer · Bufi

N−1∑
i=0

Bufi

. (3)

Suppose there are N subflows in total, Bi is the allocation of available receive
buffer to subflowi and recvBuffer is the variable that contains the size of the
receive buffer and will be transmitted to the sender from the receiver at the
beginning of the transmission.

3.2 Division of Receive Window

In this part, the sender records the amount of unACKed data on the connection
level, and calculates the size of residual available buffer for each subflow. Then,
it will allocate rwnd based on the residual available buffer size of each subflow.
Each subflow subflowi obtains rwndi, which is the receive window on subflow
level. Then, the send window of subflowi will be determined by rwndi as follows:

Receive Buffer Pre-division Based Flow Control for MPTCP 25

rwndi =

⎧⎪⎪⎨
⎪⎪⎩

0 Bi ≤ unorderedi,
rwnd · (Bi − unorderedi)∑

Bi>unorderedi

(Bi − unorderedi)
else. (4)

Here, rwndi is the resudual buffer size distributed to subflowi, rwnd is the
size of the total available buffer noticed by the receiver, and unorderedi is the
amount of unACKed data on connection level of subflowi. We can observe that
the sender allocates rwnd based on the ratio of (Bi − unorderedi). If (Bi −
unorderedi) ≤ 0, which indicates there are too many out-of-order packets from
subflowi, the sender will temporarily stop sending data on subflowi.

3.3 Separate Flow Control on Each Subflow

After the above two steps, the shared receive window rwnd will be divided into
a set of receive windows rwndi for each subflow subflowi. The amount of data
transmitted on each subflow will be controlled by the rwndi. The send window on
subflow level slides according to the congestion window and the receive window
of each subflow. The send window for a subflow cannot exceed the overall send
window for the connection.

When subflowi is able to send data, the send window of subflowi will be
restricted by the congestion window of the subflow as follows

Send Windowi = min(cwndi, rwndi), (5)

where cwndi is the congestion window of subflowi and rwndi is the receive
window of subflowi. The send window of subflowi cannot exceed the minimum
of cwndi and rwndi.

Then, the amount of data that subflowi can send will be controlled by the
send window and the size of unACKed data from subflowi as follows

Send datai = Send Windowi − Outstandingi, (6)

where Outstandingi is the size of unACKed data from subflowi, which is dif-
ferent from unorderedi. If Send datai > 0, subflowi is able to send new data.

It can be observed that subflows influence each other when they share the
same receive buffer. RBP enables independent flow control on each subflow,
and restricts the rate of subflow with too many out-of-order packets. Then, the
sender could transmit more data on the subflow with higher throughput, which
reduces the number of out-of-order packets and achieves load balancing. RBP
does not change the congestion window size. When the number of out-of-order
packets on the connection level decreases, it will resume the normal throughput
quickly, which can achieve good adaptability to the network. The RBP algorithm
is described in Algorithm1.

26 J. Han et al.

Algorithm 1. RBP Algorithm Description
Input:

The receive window: rwnd;
The congestion window of subflowi: cwndi;
The average congestion window of each subflow: acwnd1, acwnd2, ..., acwndN−1.

Output:
The amount of new data which is able to send on subflowi: Send datai

acwndi ←− (1 − β) · acwndi + β · cwndi

for j = 0 → N − 1 do

Bufj = acwnd j ·
(⌈

maxk,k �=j RTTk

2·RTTj
+ 1

2

⌉
+ 1

2

)

end for
for j = 0 → N − 1 do

Bj = recvBuffer · Bufj
∑N−1

j=0 Bufj

end for
if Bi ≤ unorderedi then

rwndi = 0
else

rwndi = rwnd · Bi − unorderedi∑
Bi>unorderedi

(Bi − unorderedi)

end if
Send Windowi = min(cwndi, rwndi)
Send datai = Send Windowi − Outstandingi

4 Performance Evaluation

In this section, we evaluate the efficiency of the RBP algorithm on NS-3 [16]
simulator. The basic MPTCP code is provided by Google MPTCP Group [17].
We use the original MPTCP and TCP on each subflow as comparisons at the
same time. We evaluate the performance of the RBP algorithm in terms of the
overall throughput, the throughput of subflows, and the number of out-of-order
packets in receive buffer.

Table 1. Flow parameters of simulation scenario

Parameters subflow0 subflow1

Path delay 10 ms – 50 ms 50 ms

Maximum bandwidth capacity 5 Mbps 10 Mbps

Packet loss rate 0.1% − 5% 0.1%

Maximal Segment Size (MSS) 1400 Bytes 1400 Bytes

Congestion control algorithm TCP-Reno TCP-Reno

Receive Buffer Pre-division Based Flow Control for MPTCP 27

The simulation scenario is shown in Fig. 3. There are two subflows in the
MPTCP connection, each of which is routed along a separate path. The mid-
dle link on each path is the bottleneck, and therefore the maximum bandwidth
capacity of subflow0 and subflow1 is 5 Mbps and 10 Mbps respectively. Each
subflow has a wireless link for the last hop to the MPTCP receiver, which suf-
fer from random packet loss. In addition, there is a UDP background flow that
is transmitted along each path. The traffic of the UDP flows is uniformly dis-
tributed and we set the interval between packets to 5 ms.

S1

S2

C1

C2

S0 C0

subflow0

subflow1
MPTCP

UDP
Background

UDP
Background

5Mbps 8 - 48ms

10Mbps 48

Fig. 3. Simulation scenario

Each subflow has different parameters, such as path delay, packet loss, and
so on. Table 1 shows the parameter configuration of subflow0 and subflow1. In
addition, the MSS of each subflow is set to 1400 Bytes, and the size of shared
receive buffer is 2×65536 Bytes. The receive buffer of single TCP is 65536 Bytes,
and the MSS of UDP is set to 1024 Bytes. For each scenario, we take the average
values of 50 simulation runs as results.

4.1 Asymmetric Scenario

The different path delay among subflows is an important factor that causes
the decrease of overall throughput in asymmetric scenarios. In a network, if
two subflows have the same path delay, it will result in the best performance.
However, it is difficult to achieve the best performance since different subflows
often have different path delay in real network.

In the first scenario, we change the path delay while maintain the other
parameters as constants. Specially, the path delay of subflow0 changes from
10 ms to 50 ms, and the delay of subflow1 is always 50 ms. We also set the loss
rate of subflow0 to 0.1% in the simulations.

Figure 4 shows the result of overall throughput. It can be observed that the
global throughput of these two schemes decrease simultaneously as the path delay
of subflow0 increases. Because the throughput of a subflow will be affected by
the path delay, and large delay may lead to a decrease in throughput. However,

28 J. Han et al.

10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0
g

lo
b

a
l
th

ro
u

g
h

p
u

t
(M

b
p

s
)

subflow0's delay (ms)

original MPTCP

RBP MPTCP

Fig. 4. Comparison of overall through-
put with the change of path delay

10 20 30 40 50

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

o
u

t-
o

f-
o

rd
e

r
p

a
c
k
e

ts
 (

M
S

S
)

subflow0's delay (ms)

original MPTCP

RBP MPTCP

Fig. 5. Comparison of out-of-order pack-
ets with the change of path delay

from Fig. 4 we can see that RBP brings a transmission gain on MPTCP, which
will result in a better performance. In the best case, RBP can achieve a gain
nearly 20%. However, transmission gain of RBP will be a little lower if the path
delay of subflow0 and subflow1 are similar, because the symmetric paths will
cause fewer out-of-order packets.

The results on the number of out-of-order packets in the receive buffer is
shown in Fig. 5. With the path delay increasing, the difference between the delays
of subflow0 and subflow1 becomes smaller, and the number of out-of-order
packets will significantly decrease, since the difference of path delay is the most
important factor that leads to the out-of-order packets in the receive buffer.
In addition, when RBP with independent control on each subflow is used, the
number of out-of-order packets will also decrease. At the beginning, when the
RTT of subflow0 is much smaller than subflow1, the number of out-of-order
packets decreases a lot with RBP algorithm. The gain will become smaller as
the difference between two subflows decreasing.

Figure 6 shows the throughput of different subflows with original MPTCP
and RBP algorithm. As shown Fig. 4, RBP brings a gain on the total through-
put. Figure 6 shows more details of the gain. The throughput of subflow0 does
not decrease too much with RBP algorithm, but the throughput of subflow1

increases significantly, which will improve the overall throughput.

4.2 Wireless Scenario

In practice, random packet loss mostly occurs in wireless networks, which may
lead to the decrease of throughput. We change the packet loss rate of subflow0

from 0.1% to 5%, and maintain the other parameters as constants. The delay of
subflow1 is always 50 ms. We also set the path delay of subflow0 to 20 ms in
this scenario.

Receive Buffer Pre-division Based Flow Control for MPTCP 29

10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

s
u

b
fl
o

w
 t
h

ro
u

g
h

p
u

t
(M

b
p

s
)

subflow0's delay (ms)

original subflow0

RBP subflow1

original subflow0

RBP subflow1

Fig. 6. Comparison of subflow
throughput with the change of path
delay

0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

g
lo

b
a

l
th

ro
u

g
h

p
u

t
(M

b
p

s
)

subflow0's lossrate (%)

original MPTCP

RBP MPTCP

Fig. 7. Comparison of overall throughput
with the change of loss rate

Figure 7 shows the simulation results of overall throughput. With the random
packet loss rate on subflow0 increasing, the throughput of these two schemes
decreases. The reason is that a majority of congestion control algorithms are
based on packet loss, and large packet loss rate will cause poor throughput.
Moreover, large packet loss rate will lead to asymmetric situation of data sending
between subflows, which causes more out-of-order packets in connection level,
and hence the overall throughput will be further reduced. It can also be observed
that RBP still outperforms the original MPTCP.

The results on the number of unordered packets are shown in Fig. 8. Since
RBP controls data transmitted on each subflow independently and reason-
ably distributes data among subflows, it can effectively decrease the number

0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

o
u

t-
o

f-
o

rd
e

r
p

a
c
k
e

ts
 (

M
S

S
)

subflow0's lossrate (%)

original MPTCP

RBP MPTCP

Fig. 8. Comparison of out-of-order
packets with the change of loss rate

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

s
u

b
fl
o

w
 t
h

ro
u

g
h

p
u

t
(M

b
p

s
)

subflow0's lossrate (%)

original subflow0

RBP subflow1

original subflow0

RBP subflow1

Fig. 9. Comparison of subflow through-
put with the change of loss rate

30 J. Han et al.

of out-of-order packets. We can see RBP works better on the scenario with less
packet loss, because the packet loss will lead to more out-of-order packets and
make it difficult to estimate the transmission state. However, from Fig. 8 we
can see RBP still brings a better performance on out-of-order packets in lossy
scenarios.

Figure 9 shows the throughput of subflows. When the RBP algorithm is used,
the throughput of subflow1 is higher than that with original MPTCP. At the
same time, the throughput of subflow0 does not significantly decrease. Thus,
RBP still improves the overall throughput. Likewise, we can see that RBP allo-
cates more data on subflow1 than original MPTCP, which indicaets RBP allo-
cates more data on the best subflow, so as to achieve load balance between
subflows.

5 Conclusions

MPTCP uses multiple paths for data transmission at the same time, which needs
to be more precisely controlled. However, each subflow has its own congestion
window, but there is only one receive window on connection level. If there is
nothing different between subflows, and each packet can arrive at receiver in
order, it will be unnecessary for keeping separate flow control on each subflow.
However, the wireless network and asymmetrical paths lead to a degradation of
MPTCP, which is caused by misallocation of data among subflows.

RBP scheme makes independent flow control on each subflow and adjusts
to the actual situation. Thus it can regulate and control the data sent on each
subflow in detail. If there are too many out-of-order packets on one subflow,
which is beyond the permitted scope, sender will limit the data on the subflows,
so as to reduce the amount of out-of-order packets, and promote throughput
of the correct subflows, thus could also reduce bufferbloat and provide a better
performance. Therefore RBP can achieve the purposes of improving the overall
throughput and balancing traffic load between subflows, which can improve the
network performance greatly.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China under Grant No. 61379129 and No. 61671420, the Fund of Science and
Technology on Communication Networks Laboratory under Grant No. KX162600024,
Youth Innovation Promotion Association CAS under Grant No. 2016394, and the Fun-
damental Research Funds for the Central Universities.

References

1. Habak, K., Harras, K.A., Youssef, M.: Bandwidth aggregation techniques in het-
erogeneous multi-homed devices: a survey. Comput. Netw. 92, 168–188 (2015)

2. Lee, W., Koo, J., Park, Y., Choi, S.: Transfer time, energy, and quota-aware multi-
RAT operation scheme in smartphone. IEEE Trans. Veh. Technol. 65(1), 307–317
(2016)

Receive Buffer Pre-division Based Flow Control for MPTCP 31

3. Zheng, X., Cai, Z., Li, J., Gao, H.: Scheduling flows with multiple service frequency
constraints. IEEE Internet Things J. 4(2), 496–504 (2017)

4. Amer, P., Becke, M., Dreibholz, T., Ekiz, N., Iyengar, J., Natarajan, P., Stewart,
R., Tuexen, M.: Load sharing for the stream control transmission protocol (SCTP).
IETF Personal Draft, draft-tuexen-tsvwgsctp-multipath-13 (2016)

5. Li, M., Lukyanenko, A., Ou, Z., Ylä-Jääski, A., Tarkoma, S., Coudron, M., Secci,
S.: Multipath transmission for the internet: a survey. IEEE Commun. Surv. Tutor.
18(4), 2887–2925 (2016)

6. Shailendra, S., Bhattacharjee, R., Bose, S.K.: MPSCTP: a simple and efficient
multipath algorithm for SCTP. IEEE Commun. Lett. 15(10), 1139–1141 (2011)

7. Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP extensions for multipath
operation with multiple addresses. IETF RFC, RFC6824 (2013)

8. Xue, K., Han, J., Ni, D., Wei, W., Cai, Y., Xu, Q., Hong, P.: DPSAF: forward
prediction based dynamic packet scheduling and adjusting with feedback for mul-
tipath TCP in lossy heterogeneous networks. IEEE Trans. Veh. Technol. 67(2),
1521–1534 (2017)

9. Adhari, H., Dreibholz, T., Becke, M., Rathgeb, E.P., Tüxen, M.: Evaluation of
concurrent multipath transfer over dissimilar paths. In: Proceedings of 2011 IEEE
Workshops of International Conference on Advanced Information Networking and
Applications (WAINA 2011), pp. 708–714. IEEE (2011)

10. Barré, S., et al.: Implementation and assessment of modern host-based multipath
solutions. Ph.D. dissertation, UCL (2011)

11. Mirani, F.H., Boukhatem, N., Tran, M.A.: A data-scheduling mechanism for multi-
homed mobile terminals with disparate link latencies. In: Proceedings of the 72nd
IEEE Vehicular Technology Conference Fall (VTC 2010-Fall), pp. 1–5. IEEE (2010)

12. Ni, D., Xue, K., Hong, P., Shen, S.: Fine-grained forward prediction based dynamic
packet scheduling mechanism for multipath TCP in lossy networks. In: Proceedings
of the 23rd International Conference on Computer Communication and Networks
(ICCCN), pp. 1–7. IEEE (2014)

13. Ni, D., Xue, K., Hong, P., Zhang, H., Lu, H.: OCPS: offset compensation based
packet scheduling mechanism for multipath TCP. In: Proceedings of 2015 IEEE
International Conference on Communications (ICC 2015), pp. 6187–6192. IEEE
(2015)

14. Iyengar, J.R., Amer, P.D., Stewart, R.: Concurrent multipath transfer using SCTP
multihoming over independent end-to-end paths. IEEE/ACM Trans. Netw. 14(5),
951–964 (2006)

15. Kühlewind, M., Wagner, D.P., Espinosa, J.M.R., Briscoe, B.: Using data center
TCP (DCTCP) in the internet. In: Proceedings of 2014 IEEE Globecom Workshops
(GC Wkshps), pp. 583–588. IEEE (2014)

16. NS3 simulator. www.nsnam.org/
17. MPTCP NS3 code. http://code.google.com/p/mptcp-ns3/

