
Nonlinear Dyn (2016) 84:549–557
DOI 10.1007/s11071-015-2506-2

ORIGINAL PAPER

An improved secure and efficient password and chaos-based
two-party key agreement protocol

Yu Liu · Kaiping Xue

Received: 12 July 2015 / Accepted: 9 November 2015 / Published online: 23 November 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Recently, chaos has been treated as a good
way to reduce computational complexity while satis-
fying security requirements of a key agreement pro-
tocol. Guo and Zhang (Inf Sci 180(20):4069–4074,
2010) proposed an chaotic public-key cryptosystem-
based key agreement protocol. Lee (Inf Sci 290:63–71,
2015) has proved that Guo et al.’s scheme cannot resist
off-line password guess attack. In this paper, we fur-
therly demonstrate Guo et al.’s scheme has redundancy
in protocol design and still has some securityflaws. Fur-
thermore, we present an improved secure password and
chaos-based two-party key agreement protocol, which
can solve the security threats of replay and denial-of-
service attacks. Meanwhile, we simplify the protocol
steps to reduce redundancy in protocol design. From
security and performance analysis, our proposed pro-
tocol can resist the security flaws in related works, and
it has less communication overhead and computational
complexity.

Keywords Key agreement · Chaos · Denial of
service · Replay attack · Off-line password-guessing
attack · Protocol security
Y. Liu
Department of Management, Hefei University, Hefei,
People’s Republic of China
e-mail: sissi_liuyu@163.com

K. Xue (B)
Department of EEIS, University of Science and
Technology of China, Hefei, People’s Republic of China
e-mail: kpxue@ustc.edu.cn

1 Introduction

Mutual authentication andkey establishment are impor-
tant for secure communication over an open chan-
nel between two or more participants. The exist-
ing key establishment schemes can be divided into
two categories: key distribution and key agreement.
Trusted third party (TTP) is usually supposed to be
involved in key distribution schemes. Different from
key distribution, no participant can predetermine the
session key in key agreement schemes (This feature
is named as the contributory nature of key agree-
ment). Most of recent key agreement schemes are
originated from Deffie–Hellman (D–H) key agree-
ment which was proposed by Diffie and Hellman [8].
However the original D–H protocol is vulnerable to
man-in-the-middle attacks. So secure key agreement
has to be based on mutual authentication between
each two participants in a group. Meanwhile, in the
key agreement protocol design, communication over-
head and computational complexity must be taken into
consideration.

Chaos is a kindof deterministic random-like process,
which is generated by a nonlinear dynamic system,
and can be used to design digital chaos-based cryp-
tosystems. In the past few years, cryptography systems
based on chaos theory have been studied widely [7,10],
such as random number generating [15], symmetric
encryption [4,6,14,17], asymmetric encryption [2,3],
hash functions [1,20,21], two-party key agreement
[5,9,13,16,19], and three-party key agreement [11,12].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-015-2506-2&domain=pdf

550 Y. Liu, K. Xue

In 2007, Xiao et al. [19] proposed a chaos-based key
agreement protocol based on utilizing chaotic public-
key cryptosystem [3]. Comparing to the traditional pro-
tocols in the area of key agreement, It could reduce
computation complexity. However, Guo and Zhang
[9] pointed out that Xiao et al.’s [19] scheme could
not resist server spoofing attacks and denial-of-service
(DoS) attacks. Furthermore, in Guo and Zhang [9] pro-
posed an improved scheme, which claimed that their
protocol could resist the security flaws of Xiao et al.’s
protocol. Moreover, in [13], the author has proved that
Guo et al.’s scheme cannot resist off-line password
guess attack. However, the improved scheme in [13]
introduces a traditional asymmetric encryption algo-
rithm to address the issue. In this paper, we demonstrate
that Guo et al.’s protocol has unnecessary redundancy
in protocol design. The authentication phase and the
key agreement phase totally need nine steps in [9]. In
comparison, only seven steps are needed in [19]. More
steps have more communication overhead and com-
putational complexity, which will increase the imple-
mentation time of key agreement to bring about more
unnecessary delay. Furthermore, this protocol also has
the threat of replay attacks and DoS attacks.

Based on [9] and [19], we provide an improved
secure password and chaos-based two-party key agree-
ment protocol. In general, our main contributions in
this paper are as follows:

(A) We give the security analysis of Guo et al.’s proto-
col in details. We demonstrate some crucial secu-
rity flaws of Guo et al.’s protocol and figure out
there is unnecessary redundancy in its protocol
design;

(B) In our proposed scheme, the timestamp value is
introduced to resist replay attacks. We use a hash
function with the shared secret and some context
information to bind multiple steps as an organic
whole, which makes every step message cannot
be separately used to launch replay attacks and
DoS attacks;

(C) We further simplify the protocol process, which
reduces the number of implementing steps and
interaction times. Inheriting the security features
of Guo et al.’s scheme, our protocol efficiently
reduces the computation and communication over-
head.

The remaining part of the paper is organized as fol-
lows. Section2 reviews and analyzes Guo et al.’s proto-

col. Section3 describes our proposed chaos-based key
agreement protocol in details. Sections4 and 5 presents
its security and performance analysis. At last, the con-
clusion is provided in Sect. 6.

2 Review of Guo et al.’s protocol

In this section, we first describe the Chebyshev chaotic
map, which has semigroup property and can be used
to design chaos-based public-key cryptosystems [3].
After that, we introduce Guo et al.’s two-party key
agreement protocol and give its security and perfor-
mance analysis.

2.1 Chebyshev chaotic map

The Chebyshev polynomial of degree n is defined as

Tn(x) = cos(n ∗ arccos(x)), −1 ≤ x ≤ 1,

where n ≥ 2. T0(x) = 1 and T1(x) = x , so the recur-
rent formulas are

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

. . .

Tn+1(x) = 2xTn(x) − Tn−1(x), n = 1, 2, . . . (1)

One of the most important properties related to this
paper is semigroup property:

Tr (Ts(x)) = cos (r ∗ arccos (cos (s ∗ arccos(x))))

= cos (rs ∗ arccos(x)) = Tsr (x)

= Ts (Tr (x)) ,

which can be used in designing key agreement proto-
cols and public-key encryption schemes.

For more details, [3] can be referred to.

2.2 Review of Guo et al.’s protocol

Guo and Zhang [9] assumes that the user A and the
server B shares the hashvalue of A’s identification I DA

and his/her random password PWA, defined as h pw =
H(I DA||PWA), where H(·) denotes the chaotic hash
function (for example, the hash function designed in
[18]) and “||” denotes the bitwise concatenation oper-
ation.

123

An improved secure and efficient password 551

Fig. 1 The schematic of
Guo et al.’s protocol

The process of Guo et al.’s protocol is illustrated in
Fig. 1, and the detailed steps are described as follows:

(1) User A → Server B: {I DA, ra, M1}1

At first, A generates a random number ra ∈
[−1, 1], then computes the following function:

M1 = H
(
h pw||ra)

.

Finally, A sends its identification I DA, ra, and
M1 to B;

(2) Server B → User A: {rb, M2}
After receiving the message, B takes out his own
copy of h pw by using the index “I DA.” After that
B sets h pw and ra as the inputs, implements the
bitwise concatenation operation, and further com-
putes the hash value. Then B verifies whether the
hash value is equal to the received M1. If not, B
stops here; otherwise,A is successfully authenti-
cated. After the verification, B generates a random
number rb ∈ [−1, 1], computes the function M2

as follows:

M2 = H
(
h pw||ra||rb) .

Finally, B sends rb and M2 to A.
(3) User A → Server B: {M3}

After receiving the message, A sets h pw, ra, and
rb as the inputs, implements the bitwise concate-
nation operation, and further computes the hash
value. Then A verifies whether the hash value is

1 Here, “A→B:{C}” represents a transmission process, that A
transmits a message C to B.

equal to the received M2. If not, A stops here; oth-
erwise, B is successfully authenticated, and the
mutual authentication is done. After that, A com-
putes the function M3 and sends its value to B:

M3 = H
(
h pw ⊕ rb

)
,

where ⊕ is the bitwise XOR operator;
(4) After receiving the message, B computes the hash

function H(h pw ⊕ rb) and verifies whether it is
equal to the received M3. If not, B stops here;
otherwise, B confirms that M3 is really sent by A;

(5) User A → Server B: {M4}
A generates a random integer r and then computes
the function Tr (ra) according to Formula (1) in
Sect. 2.1, and r denotes theChebyshev polynomial
of degree. After that A computes the function M4

and sends its value to B as follows:

M4 = H
(
h pw

) ⊕ H (Tr (ra)) .

(6) Server B → User A: {M5, M6}
After receiving the message, B computes the
function M4 ⊕ H(h pw) to get and store X (=
H(Tr (ra))).After that, B generates a random inte-
ger s and computes the function Ts(ra) accord-
ing to Formula (1) in Sect. 2.1, and the parameter
s denotes the Chebyshev polynomial of degree.
Then, B computes two functions M5 and M6 as
follows:

M5 = H
(
H

(
h pw

) ⊕ H(X)
) ⊕ Ts(ra),

M6 = H (Ts(ra)) .

Finally, B sends the values of M5 and M6 to A.

123

552 Y. Liu, K. Xue

(7) User A → Server B: {M7}
While receiving themessage, A takes out its stored
h pw and Tr (ra). Then A computes the following
function:

Ts(ra) = H
(
H

(
h pw

) ⊕ H (H (Tr (ra)))
) ⊕ M5,

and verifies whether its hash value is equal to the
received M6. If it holds true, A confirms that M5

is really sent by B and Ts(ra) is valid; otherwise,
A stops here. Finally, A computes the function M7

and sends its value to B as follows:

M7 = H
(
H

(
h pw

) ⊕ Ts(ra)
) ⊕ Tr (ra).

(8) B takes out its stored h pw and Ts(ra), then com-
putes the function Ts(ra) as follows:

Tr (ra) = H
(
H

(
h pw

) ⊕ Ts(ra)
) ⊕ M7.

After that, B verifies whether its hash value is
equal to the stored X obtained in Step 6. If yes,
B confirms that the value of Tr (ra) is valid and
keep it as a secret.

(9) Respectively, A and B can compute the share ses-
sion key as the following function:

Ksession = Tr (Ts(ra)) = Ts (Tr (ra)) = Trs(ra).

2.3 Security and performance analysis of Guo et al.’s
protocol

In Guo and Zhang [9] claims to solve the security prob-
lem in [19], such as server spoofing attacks and off-line
password-guessing attacks. However, Guo et al.’s pro-
tocol has much unnecessary redundancy of communi-
cation overhead and computational complexity. Addi-
tional redundancy increases the implementation time of
key agreement, which would bring about unnecessary
delay.

In Guo et al.’s protocol, the first step and the sec-
ond step cannot successfully realize mutual authenti-
cation. Attackers can use previously intercepted mes-
sages in the first step from other legitimate users to
launch replay attacks so as to pass the server’s verifi-
cation. Only until the third step message is received,
and the server can identify it is from an illegal attacker.
Moreover, it is intended to further launch DoS attacks
by launching a large number of replay attacks. DoS
attacks can consume more server’s processing power.
This security flaw can be used to launch DoS attacks
and prevent legitimate users’s access requests.

Moreover, in [13], the author has proved that Guo
et al.’s scheme cannot resist off-line password guess
attack. From the message in Step1, the attacker can get
I DA, ra and M1(= H(h pw||ra)), then the attacker
can guess the password as PW ′

A, compute h′
pw =

H(I DA||PW ′
A) and M ′

1 = H(h′
pw||ra). After that,

the attacker check whether M ′
1 is equal to M1. If

being false, repeat the guess process, until M ′
1 = M1.

Comparing with online password-guessing attack, this
attack is easy to succeed.

In addition, too many steps will bring about more
delay and reduce the service performance, such as
access success rate and playback continuity of stream-
ing, especially in the wireless, mobile Internet environ-
ment. According to our analysis, we found that Guo
et al.’s protocol has much unnecessary redundancy in
design. For example, Step 3 and Step 5 of Guo et al.’s
protocol can be merged as one step. More importantly,
the authentication phase and the key agreement phase
can be combined into one complete phase, which can
ensure the compactness of the protocol.

To summarize, compared with the [19], Guo and
Zhang [9] protocol provides an enhanced secure chaos-
based key agreement protocol, but the added com-
munication overhead and computational complexity in
some environments are believed to be unacceptable. To
enhance security and reduce the redundancy of Guo et
al.’s scheme, we provide an improved secure and effi-
cient chaos-based key agreement protocol, which has
fewer steps, but surmounts the aforementioned security
flaws in [9].

3 Improved two-party password authentication
key agreement protocol

Assume that the user A and the server B share the hash
value h pw = H(I DA||PWA) of A’s random pass-
word PWA and A’s identification I DA. This assump-
tion is reasonable as the same as in [9], because in most
password-based authentication systems, the hash value
of the user’s password, rather than the plain password,
is required to be stored in the server. In our proposed
protocol, the timestampvalue is introduced into thepro-
tocol design. Some related context information set as
the input of hash functions is used to verify whether the
messages and the new generated parameters are from
the real hoped communication end.

123

An improved secure and efficient password 553

Fig. 2 The schematic of
our proposed protocol

The process of our proposed protocol is illustrated in
Fig. 2, and the detailed steps are described as follows:

(1) User A → Server B: {I DA, N1, ra, T1, T2}
A generates a random number ra ∈ [−1, 1], a ran-
dom integer r and a timestampvalue N1, then com-
putes Tr (ra) according to Formula (1) in Sect. 2.1.
Next, A computes the functions T1 and T2 as fol-
lows:

T1 = H
(
h pw||ra||N1

) ⊕ H (Tr (ra)) ,

T2 = H (H (Tr (ra))) .

Finally, A sends its identification I DA, N1, ra, T1,
T2 to the server B.

(2) Server B → User A: {rb, T3, H(Ts(ra))}
After receiving the message, the server first veri-
fies the timeliness of it: whether the timestamp N1

in the receivedmessage is in a permitted time win-
dow. If not, the server B stops here. Otherwise, B
goes on to take out his own copy of h pw by using
the index “I DA,” and computes the function KB1
as follows:

KB1 = H
(
h pw||ra||N1

)
.

Then B computes the function KB1 ⊕ T1 to
get X1(=H(Tr (ra))) and further verifies whether
H(X1) = T2. If not, B stops here; otherwise, A
passes the verification and is successfully authen-
ticated. After that, B generates a random number
rb ∈ [−1, 1] and a random integer s; nextly B
computes the function Ts(ra) according to For-
mula (1) in Sect. 2.1. Then B computes the func-
tions T3 and T4 as follows:

T3 = H
(
h pw||ra||rb) ⊕ Ts(ra),

T4 = H (Ts(ra)) .

Finally, B sends rb, T3, T4 to A.
(3) User A → Server B: {T5}

After receiving themessage, A computes the func-
tion KA as follows:

KA = H
(
h pw||ra||rb) .

Then A computes the function KA ⊕ T3 to get the
value of X2(=Ts(ra)) and verifies whether H(X2)

is equal to the received T4. If not, A stops here;
otherwise, the server B is authenticated.After that,
A computes the function T5 as follows:

T5 = H
(
h pw ⊕ rb

) ⊕ Tr (ra).

Finally, A sends T5 to B.
(4) After receiving the message, the server B com-

putes

KB2 = H
(
h pw ⊕ rb

)
.

Then B computes the function KB2 ⊕T5 to get the
value of X3(=Tr (ra)) and verify whether H(X3)

is equal to the value of T2 which is received in Step
1. If not, B stops here; otherwise, the server A is
authenticated.

(5) Respectively, A and B can calculate the share ses-
sion key Ksession as follows:

Ksession = Tr (Ts(ra)) = Ts (Tr (ra)) = Trs(ra).

4 Security analysis of our proposed protocol

The security of our proposed scheme is based on the
collision-resistant one-way chaotic hash function and
two chaoticmap problem: chaoticmapsDiscrete Loga-
rithmproblem (CMDLP), Computational chaoticmaps

123

554 Y. Liu, K. Xue

Diffie–Hellman problem (CCMDHP), defined as fol-
lows:

• CMDLP: Given two random variables x, y ∈R

[−1, 1], it is computationally infeasible to find out
an integer solution a such that y = Ta(x).

• CCMDHP: Given three parameters x , Ta(x) and
Tb(x), it is computationally infeasible to compute
Tab(x).

In this section, we summarize and analysis the main
security advantages of our proposed protocol. Our pro-
posed protocol has the following main security fea-
tures:

4.1 Contributory nature of key agreement

Based on design of our protocol, neither of the server
and the user can determine the session key in advance.

If a malicious Server B want to predetermine the
shared session key, it has to forge a suitable r ′ such that
Tr ′(ra) = Tr (ra), and selects a specific random integer
s before it sends T3 and T4 to User A. However, r ′ is
randomly selected by User A and Tr (ra) is protected
by H(T(r)(ra)). Computing Tr (ra) from H(Tr (ra))

is equal to implementing the exhaustion attack to crack
the one-way hash function.

For User A, who wants to predetermine the shared
session key, after receiving T3 and computing T3 ⊕
h(pw||ra||rb) to get a valid Ts(ra), although it is
computationally infeasible to derive s from known
ra and Ts(ra), he/she can use the approach in [3] to
derive:

s′ = arccos (Ts(ra)) + 2kπ

accos(ra)

∣
∣∣∣k ∈ Z

such that Ts(ra) = Ts′(ra). By utilizing s′, User A can
freely try to select a premeditated session key KAB (∈
Tn·s′(ra)|n ∈ Z+), and compute his/her corresponding
contribution as:

r ′ = arccos (KAB) + 2kπ

s′ · accos(ra)

∣∣∣∣k ∈ Z

However, before getting Ts(ra), User Amust first send
H(Tr (ra)) contained in T1. User A cannot predeter-
mine s′ as the above way when he/she sends T1 and
also make Tr (ra) = Tr ′(ra).

4.2 Session key security

Giving Tr (ra) and Ts(ra), without the knowledge
of s and r , it’s computationally infeasible to com-
pute Tsr (ra), which is owning to the chaotic maps
Diffie–Hellman Problem(CMDHP). Additionally, just
of using T3 = H(pwa ||ra||rb) ⊕ Ts(ra) and T5 =
H(h pw⊕rb)⊕Tr (ra), no one except Server B or User
A can get Tr (ra) and Ts(ra). Therefore, this authen-
ticated session key agreement can provide two-party
session key security.

4.3 Anti-replay and anti-D/DoS attacks

Random numbers and efficient chaos-based hash func-
tions ensure the randomness of the result of the key
agreement process. We also introduce the timestamp
value into the first two steps to address the threat
of replay attacks. An malicious attacker can inter-
rupt a previous first step message (User A has send
before) and replay it again. However, it will fail to
pass the verification of the timestamp, because N ′

1 in
the replayed message is not in a permitted time win-
dow.

Meanwhile, our scheme uses the property of col-
lision resistance of the chaos-based hash function to
implement mutual authentication. If passing the veri-
fication of the timestamp, our scheme uses hash func-
tion with the shared secret and some context informa-
tion to verify whether the new generated parameters
are really from the other expected side. A malicious
user cannot fake a legal T ′

1 with a timely timestamp
N ′
1, because he/she has no knowledge of h pw. In the

second step, although without a new timestamp, utiliz-
ing ra in T3 makes this message in this step link to the
first stepmessage. Therefore, nomalicious attacker can
replay a previous message linked to a legal and timely
T1, or fake a legal T3. Computation of T3 includes ra
generated by the user in the first step, and computa-
tion of T5 includes rb generated by the server in the
second step, so due to the one-way property of the
chaotic hash function and no knowledge of h pw, no
separate message can be interrupted to launch replay
attacks.

After receiving faked or replayed the first step mes-
sages from a malicious users, Server B can easily dis-
tinguish them from legal ones, so D/DoS can hardly
launched.

123

An improved secure and efficient password 555

4.4 Anti-off-line password-guessing attacks

The attacker can guess a h′
pw to check whether

H(H(h′
pw||ra||N1) ⊕ T1) = T2 after intercepting the

first stepmessage, or checkwhetherH(H(h′
pw||ra||rb)

⊕ T3) = T4 after intercepting the second step mes-
sage. However, because the value of h pw is a long-term
secret key between User A and Server B, and it is not
a password which may have defects on semantics, and
the off-line password-guessing attacks cannot be easily
launched. Moreover, owning to the one-way property
of the chaotic hash function, h pw cannot be computed
from the intercepted messages.

4.5 Mutual authentication and no server spoofing
attacks

In the proposed scheme, Sever B authenticates User A
by verify whether H(H(h pw||ra||N1)⊕ T1) = T2 and
H(H(h pw ⊕ rb) ⊕ T5) = T2. User A authenticates
Server B by verifying whether H(H(h pw||ra||rb) ⊕
T3) = T4. just because of using timestamp N1 and
random numbers ra and rb, no one can replay pre-
vious messages to pass the mutual authentication.
Because the value of h pw is a long-term secret key
between User A and Server B, it is not a pass-
word which may have defects on semantics. There-
fore, no one can successfully forge a T1, T3 or T5. No
server spoofing attacks can be launched by malicious
attackers.

5 Performance analysis of our proposed protocol

In this section, we will compare the computation com-
plexity and communication overhead of our proposed
protocol with Guo et al.’s protocol, and we will give
relative implementing time, Xiao et al.’s protocol and
Lee’s newly proposed scheme.

Similar as in [22], we have run 100 times in the
environment (CPU: 3.2GHz, RAM: 3.0G) to get the
average results. We have found that the implementing
time of SG (it denotes the chaotic map based Cheby-
shev polynomial computation):TSG is nearly 32.2ms
on average, and the time complexity of H (it denotes
the chaotic hash function) is below 0.2ms on aver-
age. Compared with TSG and TH , the time complex-
ity of XOR (it denotes the XOR operation) can be
ignored. The time complexity of CRT (it denotes the

CRT solving operation) is the most expensive one, in
which the time complexity of the modular squaring
operation(TMS) is nearly 17ms and the time complex-
ity of the squaring root solving operation(TSR) is about
77.2ms.

We set half of round-trip time (RTT) of ping “www.
google.com” as TComm (Where Comm denotes once
message transmission from one party to the other one),
which is about 36.0ms on average.

In our proposed protocol, the user requires TSG +
TXOR + 3TH of computational complexity in the first
step. After receiving the message, the server firstly
requires TXOR + TH to implement the verification,
and then requires TSG + TXOR + 2TH to compute
T3 and T4. In the third step, the user firstly requires
TXOR + 2TH to implement the verification, and then
need 2TXOR+Thash to compute T5. After receiving the
message, in the fourth step, the server firstly requires
2TXOR + 2TH to implement the verification. At last,
both of the user and the server need TSG to compute
Tr ·s(ra). Totally, our proposed protocol require three
transmissions, and the last transmission can be embed-
ded to the data transmission.

To be compared, Guo et al.’s protocol needs more
communication and computation overhead to achieve
the same security level. Xiao et al.’s protocol with
less computation overhead has some security vul-
nerabilities. The security of Lee’s scheme(including
timestamp-based one and nonce-based one) is based
on CRT(Chinese remainder theorem), which belongs
to asymmetric cryptography algorithms and requires
more time complexity.

Performance comparisons are given inTable1. From
the table, we can see that, compared with Guo et al.’s
protocol, two times of message transmissions have
been reduced. Computation overhead has also been
reduced compared with Guo et. al.’s scheme and Lee’s
scheme.

6 Conclusions

In this paper, we discuss several security flaws in Guo
et al.’s scheme, such as replay and DoS attacks. Fur-
thermore, it has unnecessary redundancy in protocol
design. In order to overcome these weaknesses and
improve performance, we propose an improved secure
password and chaos-based two-party key agreement
protocol. We demonstrate that our scheme can satisfy

123

www.google.com
www.google.com

556 Y. Liu, K. Xue

Table 1 Performance
comparison of these three
related protocols

S1: Computation
complexity
S2: Communication
complexity (total number of
transmission)

Related schemes Communication and computation complexity

Xiao et al. [19] S1: 2 · H + 4 · XOR + 4 · SG(≈ 129.2ms)

S2: 5 · Comm(≈ 180ms)

Guo and Zhang [9] S1: 22 · H + 11 · XOR + 4 · SG(≈ 133.2ms)

S2: 6 · Comm(≈ 216ms)

Lee (nonce based) [13] S1:15 · H + 1 · MS + 1 · SR + 4 · SG(≈ 226.0ms)

S2: 3 · Comm(≈ 108.0ms)

Lee (timestamp based) [13] S1:13 · H + 1 · MS + 1 · SR + 4 · SG(≈ 225.6ms)

S2: 2 · Comm(≈ 108.0ms)

Our proposed protocol S1: 11 · H + 7 · XOR + 4 · SG(≈ 131.0ms)

S2: 3 · Comm(≈ 72.0ms)

all the essential security requirements a key agreement
protocol, such as resisting replay, DoS, server spoof-
ing, and off-line password-guessing attacks. We also
demonstrate that our scheme not only hasmore security
features but also is more efficient in performance com-
pared with previous related works. Hence our scheme
is both effective and efficient. As a future work, we will
further introduce suitable solutions to further improve
protocol performance without compromising security.
Moreover, in our protocol, we use timestamp value to
resist replay and DoS attacks, which requires loose
clock synchronization. We will further study how to
use random number or serial number to replace the use
of timestamp value.

Acknowledgments The authors sincerely thank the anony-
mous reviewers for their valuable comments that have led to the
present improved version of the original manuscript.Meanwhile,
the authors would like to thank Prof. Peilin Hong for helpful
discussions and valuable suggestions during the whole writing
process of the paper. This work is supported by the National Nat-
ural Science Foundation of China under Grant No. 61379129 and
Youth Innovation Promotion Association CAS.

References

1. Amin, M., Faragallah, O.S., El-Latif, A.A.A.: Chaos-based
hash function (CBHF) for cryptographic applications.Chaos
Solitons Fractals 42(2), 767–772 (2009)

2. Baptista,M.:Cryptographywith chaos. Phys. Lett.A 240(1–
2), 50–54 (1998)

3. Bergamo, P., D’Arco, P., De Santis, A., Kocarev, L.: Secu-
rity of public-key cryptosystems based on Chebyshev poly-
nomials. IEEE Trans. Circuits Syst. I 52(7), 1382–1393
(2005)

4. Chen, J., Zhou, J., Wong, K.W.: A modified chaos-based
joint compression and encryption scheme. IEEE Trans. Cir-
cuits Syst. II Express Briefs 58(2), 110–114 (2011)

5. Chen, T.H., Wang, B.J., Tu, T.Y., Wang, C.H.: A security-
enhanced key agreement protocol based on chaotic maps.
Secur. Commun. Netw. 6(1), 108–114 (2013)

6. Chiaraluce, F., Ciccarelli, L., Gambi, E., Pierleoni, P.,
Reginelli,M.:A new chaotic algorithm for video encryption.
IEEE Trans. Consum. Electron. 48(4), 838–844 (2002)

7. Dachselt, F., Schwarz, W.: Chaos and cryptography. IEEE
Trans. Circuits Syst. I Fundam. Theory Appl. 12(48), 1498–
1509 (2001)

8. Diffie, W., Hellman, M.E.: New directions in cryptography.
IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

9. Guo, X., Zhang, J.: Secure group key agreement protocol
based on chaotic hash. Inf. Sci. 180(20), 4069–4074 (2010)

10. Kocarev, L.: Chaos-based cryptography: a brief overview.
IEEE Circuits Syst. Mag. 1(3), 6–21 (2001)

11. Lai, H., Orgun, M.A., Xiao, J., Pieprzyk, J., Xue, L., Yang,
Y.: Provably secure three-party key agreement protocol
using Chebyshev chaotic maps in the standard model. Non-
linear Dyn. 77(4), 1427–1439 (2014)

12. Lee, C.C., Li, C.T., Chiu, S.T., Lai, Y.M.: A new three-party-
authenticated key agreement scheme based on chaotic maps
without password table. Nonlinear Dyn. 79(4), 2485–2495
(2014)

13. Lee, T.F.: Enhancing the security of password authenticated
key agreement protocols based on chaotic maps. Inf. Sci.
290, 63–71 (2015)

14. Li, C., Li, S., Alvarez, G., Chen, G., Lo, K.T.: Cryptanalysis
of two chaotic encryption schemes based on circular bit shift
and XOR operations. Phys. Lett. A 369(1), 23–30 (2007)

15. Özkaynak, F.: Cryptographically secure random number
generator with chaotic additional input. Nonlinear Dyn.
78(3), 2015–2020 (2014)

16. Tseng, H.R., Jan, R.H., Yang, W.: A chaotic maps-based
key agreement protocol that preserves user anonymity. In:
Proceedings of IEEE international conference on communi-
cations (ICC09), pp. 1–6. IEEE (2009)

17. Wang, Xy, Chen, F., Wang, T.: A new compound mode of
confusion and diffusion for block encryption of image based
on chaos. Commun. Nonlinear Sci. Numer. Simul. 15(9),
2479–2485 (2010)

18. Xiao, D., Liao, X., Deng, S.: One-way hash function
construction based on the chaotic map with changeable-
parameter. Chaos Solitons Fractals 24(1), 65–71 (2005)

123

An improved secure and efficient password 557

19. Xiao, D., Liao, X., Deng, S.: A novel key agreement pro-
tocol based on chaotic maps. Inf. Sci. 177(4), 1136–1142
(2007)

20. Xiao, D., Shih, F.Y., Liao, X.: A chaos-based hash function
with both modification detection and localization capabili-
ties. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2254–
2261 (2010)

21. Xu, S.J., Chen, X.B., Zhang, R., Yang, Y.X., Guo, Y.C.: An
improved chaotic cryptosystem based on circular bit shift
and XOR operations. Phys. Lett. A 376(10), 1003–1010
(2012)

22. Xue, K., Hong, P.: Security improvement on an anonymous
key agreement protocol based on chaotic maps. Commun.
Nonlinear Sci. Numer. Simul. 17(7), 2969–2977 (2012)

123

	An improved secure and efficient password and chaos-based two-party key agreement protocol
	Abstract
	1 Introduction
	2 Review of Guo et al.'s protocol
	2.1 Chebyshev chaotic map
	2.2 Review of Guo et al.'s protocol
	2.3 Security and performance analysis of Guo et al.'s protocol

	3 Improved two-party password authentication key agreement protocol
	4 Security analysis of our proposed protocol
	4.1 Contributory nature of key agreement
	4.2 Session key security
	4.3 Anti-replay and anti-D/DoS attacks
	4.4 Anti-off-line password-guessing attacks
	4.5 Mutual authentication and no server spoofing attacks

	5 Performance analysis of our proposed protocol
	6 Conclusions
	Acknowledgments
	References

