
OCPS:Offset Compensation based Packet
Scheduling Mechanism for Multipath TCP

Dan Ni, Kaiping Xue*, Peilin Hong, Hong Zhang, Hao Lu
The Department of EEIS, University of Science and Technology of China, Hefei, Anhui 230027 China

*kpxue@ustc.edu.cn

Abstract—As terminals are equipped with multiple interfaces
and allowed to access heterogeneous networks, transferring
data simultaneously through all the available paths becomes
possible and also brings many benefits. Multipath TCP (MPTCP)
distributes an application stream over different TCP connec-
tions. Since different paths have disparate latencies, out-of-
order packets problem occurs at receiver. Large number of
these packets exhaust the limited receive buffer and make the
receive window stall, which greatly degrade the throughput.
Thus, a scheduling mechanism plays an important role to keep
in-order delivery. Previous intelligent scheduling mechanisms
schedule data independently each time and doesn’t utilize the
feedback carried in acknowledgements, which lose flexibility.
Our Offset Compensation based Packet Scheduling (OCPS)
mechanism gets feedback information from SACK options and
gains the knowledge of whether last scheduling round still causes
out-of-order problem. Then it modifies the scheduling next round
accordingly by using an offset. The simulation results illustrate
our mechanism enhance throughput and reduce cache occupancy
at receiver.

I. INTRODUCTION

Nowadays, mobile equipments always have more than one
network interfaces, such as WiFi and 3G/4G and so on. When
the various radio access technologies (RATs) overlap in a
place, simultaneously exploring different interfaces becomes
possible, which can aggregate path’s capacity, improve robust-
ness and balance load. Regarding to multipath transmission,
a new module to manipulate different paths should be imple-
mented to the kernel. Theoretically, it can be at any layer only
if it is transparent to the application layer. In the context, we’d
like to use transport layer solutions [1] [2] [3] [4]. Because
it is the lowest layer to keep end-to-end semantics among
peers, any other lower layer solutions [5] [6] will confuse
TCP, making it hard to distinguish out-of-order from packet
loss. Application layer solutions [7] [8] need modifications
to applications and let them aware of multiple interfaces.
Moreover, TCP can react to the congestion on different paths
more instantly while compared with any other transport layer
protocols.

Since the latency of each path differs, there is a high
probability that the packets with lower sequence numbers sent
over a slower path arrive at the sink later than the packets
with higher sequence numbers sent over a faster path. Thus,
there exists holes in sequence numbers. The receiver has to
store large number of out-of-order packets, which will exhaust
the limited receive buffer and occupy the receive window.
Employing a large buffer at receiver is always a solution, but

it wastes the memory. Instead, the problem can be resolved
more intelligently at the sender with a little computing by
implementing a scheduling mechanism..

IETF’s MPTCP working group has been working hard to
standardize a multipath protocol on transport layer, which
is Multipath TCP (MPTCP) [2]. The networking stack is in
Fig.1. It adds MPTCP layer above TCP, which helps manage
multiple paths between endpoints, a scheduling function is also
implemented to keep in-order delivery. An original data stream
is then divided into several segments and sent over multiple
TCP connections, which is named as ”TCP subflows” in
MPTCP. MPTCP introduces dual sequence numbers. Subflow
sequence numbers (SSNs) are used at the subflow level to
reorder data within each TCP subflow, while data sequence
numbers (DSNs) are used at the connection level to reorder
data collected from all subflows. Moreover, MPTCP provides
coupled congestion control to compete friendly with regular
TCP flows.

Fig. 1. MPTCP Internet Stack

MPTCP uses a connection-level acknowledgment, DATA
ACK, to act as a cumulative ACK for the connection as a
whole. In the context, we may also name DATA ACK as
CumAck. The DATA ACK indicates how much data has been
successfully received without holes. This is in comparison to
the subflow-level ACK, which acts analogous to TCP SACK
[9], given that there may still be holes in the data stream
at the connection level. Besides, TCP SACK options carry
related information about the consequence of the scheduling
last round, telling sender whether the data arrive in order. In
this paper, we propose an Offset Compensation based Packet
Scheduling (OCPS) mechanism. The sender gets feedback in-
formation from SACK options and has the knowledge whether
it schedules too many or too few packets last round. Then, it
will modify the value in next scheduling round accordingly.

The remainder of this paper is organized as follows. Sec-
tion II is the state of art, where many scheduling algorithms

IEEE ICC 2015 - Communications QoS, Reliability and Modeling Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 6187

for multipath TCP will be introduced. Section III elaborates
our mechanism, giving how sender utilizes the feedback in
the acknowledgements. In section IV, we compare OCPS
with some other scheduling mechanisms by NS-3 simulation.
Section V concludes the paper.

II. RELATED WORK

In this section, some scheduling algorithms for multipath
TCP will be introduced. Stream Control Transport Protocol
(SCTP) is another multipath transport layer protocol, which
is proposed earlier than MPTCP, which has already been
implemented into the kernel. Even though, SCTP has draw-
backs, such as it can’t compatible with regular TCP and it
is aggressive to other regular TCP flows at bottleneck. That’s
why MPTCP is being proposed and received much attention.
Most of the scheduling mechanisms introduced in this section
are based on SCTP. Moreover, they can be applied to MPTCP
with only a few modifications.

Load Sharing for SCTP (LS-SCTP) [10] supports weighted
round robin and distributes data to each path in proportion
to the ratio cwnd/RTT (congestion window/round trip time).
However, it is coarse-grained and can’t ensure in-order deliv-
ery for each packet. WestwoodSCTP (W-SCTP) [11] performs
a more intelligent Bandwidth Aware Scheduling at sender,
which is named as BAS. It scores for each path, and the
path with the lowest score has the highest priority to transmit
packets. It tries to provide in-order delivery but still suffers
from serious performance degradation if the paths in an
association have significantly different latencies.

Forward Prediction Packet Scheduling (FPS) for multi-
interface terminals with disparate latencies is introduced in
[12], [13], which is verified in SCTP. When a path under
scheduling frees congestion window space to pull new data
from sending buffer, it estimates the duration of this new
transmission. Then it predicts the number of packets (N)
that can be delivered simultaneously in other paths during
this given duration. Then the under-scheduling path chooses
(N + 1)th packet and the following ones from the sending
buffer to fill its congestion window.

MPTCP scheduler [14] is similar with FPS, which is im-
plemented in Linux MPTCP kernel [15]. The amount of data
scheduled on each TCP subflow is in proportion to the estimat-
ed bandwidth of the path, calculated by BW = cwnd/RTT .
In addition, it has the intelligence to choose which packet
to allocate from the shared sending buffer. However, these
two mechanisms schedules every round independently without
utilizing the feedback of the previous predictions. Meanwhile,
they all ignore the packet loss when scheduling.

We have already proposed a scheduling mechanism for
MPTCP, which is more suitable in lossy networks, named
F2P-DPS [16]. It schedules packets as the same way in FPS,
however the algorithm to estimate N is different. F2P-DPS
is more adaptive and suitable for wireless networks with
inevitable packet loss during transmission. It utilizes the idea
of TCP modeling. Since the estimation is in a statistical sense,
it may not instantly react to the varying of path condition.

All the scheduling algorithms ignore the feedback carried
in the acknowledgements, which should have clues about
previous scheduling. Thus, the sender has no prior knowledge
to correct scheduling of the next round and has to do the
scheduling each round independently.

III. OFFSET COMPENSATION BASED PACKET SCHEDULING
MECHANISM(OCPS)

In this section, we present Offset Compensation based
Packet Scheduling (OCPS) for MPTCP. Scheduling function
at MPTCP layer collects the path conditions while feedback
module collects the knowledge of previous predictions. Here,
the basic scheduling mechanism can be FPS,F2P-DPS or any
other mechanisms, OCPS provides modification for these basic
scheduling algorithms.

When using FPS or F2P-DPS, the path with larger latency
doesn’t take the bottommost packets to send. Instead, schedul-
ing function firstly predicts the arrival time (i.e, t′) of the
packets on this subflow in a new round and calculates the
total data amount (i.e, N) that can be sent on other subflows
before t′. Then this under-scheduling subflow skips the first N
packets in the send buffer and chooses the (N + 1)th packet
with the following ones to send.

However, the estimation of N in each round isn’t always
precise. It may be larger or smaller than the true value due to
the varying of path conditions.

A. Overview: Two Specific Situations

We assume there are subflowi and subflowj , where
RTTi << RTTj . Dual space sequence numbers are used
in the form (DSN,SSN), where the former item means
connection level sequence number and the latter one means
subflow level sequence number. (DSN,SSN) contained in
DATA segments indicates the mapping of DSN and SSN .
Meanwhile, (DSN,SSN) contained in ACK segments indi-
cates the next expected sequence number at the connection
level and the subflow level. We assume DSN starts with 0,
and SSNs on subflowi and subflowj starts with 10831,
566 respectively. In this way, the spaces of DSN and SSN
will not overlap. The packet size is equal to 1400bytes. Each
time subflowj sends packets, it needs scheduling. subflowi

always takes the bottommost packets to send, while subflowj

takes (N +1)th packet and the following ones to send. At the
scheduling time all the transmission events haven’t occurred
yet, the sender estimates N by using scheduling algorithms
(e.g, FPS, F2P-DPS), estimated N is always different from
the true value. Thus, two different situations may occur:

1) Situation1: the estimation of N is too large.
The sender distributes too many packets on subflowi. Then,

the packets sent on the subflowj arrive at receiver too early
and have to wait for reordering at receive buffer. It is just the
example showed in Fig.2, we assume at scheduling time the
congestion window (cwnd) on subflowi and subflowj are 2
and 3 separately. And cwnd is increased by 1 every round. In
the figure, packets on subflowj arrive at receiver after the first
5 packets sent on subflowi. Thus, if N = 5 and subflowj

IEEE ICC 2015 - Communications QoS, Reliability and Modeling Symposium

6188

(0,10831)

(2800,13631)

(1400,12231)

(4200,15031)
(5600,16431)

(7000,17831)(8400,19231)(13000,20631)(14400,22031)
0,

31)22

Subflowi SubflowjRECEIVERSENDER SENDER

R
T
T
i

R
T
T
j

...

Scheduling

8 9 10741 2 3
N=7

Shared send buffer

31)

Cum
Ack3

Cum
Ack1

Cum
Ack2

Cum
Ack4

Cum
Ack5

Cum
Ack5

SAC
K4 31

Cum
Ack6

Cum
Ack7

Cum
Ack8

(9
80
0,
56
6)

(1
02
00
,1
96
6)

(1
16
00
,3
36
6)

SA
C
K
1

SA
C
K
2

SA
C
K
3

CumAck1

CumAck2

CumAck3

CumAck4

(1400,12231)

(2800,13631)

(4200,15031)

(5600,16431)

CumAck5

CumAck6

CumAck7

CumAck8

(7000,17831)

(9800,20631)

(14400,22031)

(15800,23431)

SACK1 (7000,1966) (9800,566) (10200,1966)

SACK2 (7000,3366) (9800,566) (11600,3366)

SACK3 (7000,4766) (9800,566) (13000,4766)

SACK4 (8400,19231) (9800,566) (13000,4766)

ACK First left edge First right edgeSACK

5 6

Cwndi=2

Cwndi=3

Cwndi=4

Cwndj=3

Fig. 2. Situation1:The Estimation of N is Too Large

(0,10831)

(2800,13631)

(1400,12231)

(8400,15031)
(9800,16431)

(10200,17831)
(11600,19231)
(13000,20631)(14400,22031)

0
31),22

Subflowi SubflowjRECEIVERSENDER SENDER

R
T
T
i

R
T
T
j

...

Scheduling

4 5 61 2 3

N

Shared send buffer

31)

Cum
Ack3

Cum
Ack1

Cum
Ack2

SAC
K1

SAC
K2

SAC
K2

Cum
Ack5

31

Cum
Ack6

Cum
Ack7

Cum
Ack8

(4
20
0,
56
6)

56
00
,1
96
6)

(7
00
0,
33
66
)

SA
C
K
3

SA
C
K
4

C
um
A
ck4

CumAck1

CumAck2

CumAck3

CumAck4

(1400,12231)

(2800,13631)

(4200,15031)

(10200,4766)

CumAck5

CumAck6

CumAck7

CumAck8

(11600,19231)

(13000,20631)

(14400,22031)

(15800,23431)

SACK1 (4200,15031) (8400,15031) (9800,16431)

SACK2 (4200,17831) (8400,15031) (10200,17831)

SACK3 (5600,1966) (8400,15031) (10200,17831)

SACK4 (7000,3366) (8400,15031) (10200,17831)

ACK First left edge First right edgeSACK

44

Cwndi=2

Cwndi=3

Cwndi=4

Cwndj=3

Fig. 3. Situation2:The Estimation of N is Too Small

takes the 6, 7, 8th packets to fill its congestion window, all
the packets will arrive at the receiver in order.

However, in this situation, the sender predicts N = 7
and takes 8, 9, 10th packets from the shared sending buffer
to send on subflowj . The corresponding sequence numbers
are (9800, 566), (10200, 1966), (11600, 3366), which are
in the form (DSN, SSN). The first 5 packets sent on
subflowi arrive at the receiver in order and return cumulative
ACKs(CumAcks). But the following 3 DATA segments sent
on subflowj arrive at the receiver too early and trigger SACK.
We take SACK1 as a example to explain how SACK works.
The ACK field of SACK1 is (7000, 1966), where 7000 is
the next expected sequence number on the connection level
and 1966 is the next expected sequence number on subflowj .
First left edge (9800, 566) and first right edge (10200, 1966)
are two boundaries of the first block storing continuous out-
of-order packets. These out-of-order packets are the packets
that arrive at the receiver earlier than expected time while
the packets with lower sequence numbers still haven’t arrive
yet. In additions, more blocks need more fields to carry the
boundaries. When the 8th segment (9800, 566) arrives at
the receiver, the sequence numbers at the connection level
have holes because 7000 and 8400 haven’t arrived. Thus, the
segment (9800, 566) is stored and the first block boundaries
are carried in the SACK options. Then, there are another 3
SACKs. When the data segment (8400, 19231) arrives at the
receiver, the packets stored in receive buffer are all reordered
and a CumAck is returned again.

2) Situation2: the estimataion of N is too small.
The sender schedules too few packets on subflowi. Then,

the packets sent on subflowj arrive late and the receiver has to
store packets from subflowi for a while until the packets are
in order. It is the example showed in Fig.3. In this situation,
subflowj predicts N = 3 and takes 4, 5, 6th packets to fill its
congestion window at scheduling time, while the true value
is still 5. The corresponding sequence numbers of these three
data segments are (4200, 566),(5600, 1966),(7000, 3366). The
first 3 packets sent on subflowi arrive at the receiver in
order and CumAcks are returned consequently. When the

4th packet (8400, 15031) on subflowi arrives at the receiver,
there are holes at the connection level because the DATA
segments with DSN being 4200, 5600, 7000 which scheduled
to subflowj haven’t arrived yet. Thus SACK1 is triggered
and sent back on subflowi, which contains the boundaries of
the first continuous out-of-order packets, the first left edge is
(8400, 15031) and first right edge is (9800, 16431). After that,
there are another 3 SACKs. When data segment (7000, 3366)
arrives the receiver, the packets stored in the receive buffer are
all reordered and a corresponding CumAck is returned again.

The more the estimation deviates from the true value, the
worse the performance is. The main issue of our algorithm is
how to distinguish Situation1 from Situation2 and then set an
offset for each subflow to modify its estimated N .

B. Terminology

For each subflowk, we introduce 5 parameters, Nk, ak,
athreshk, bk, bthreshk. In order to explain the algorithm
more clearly, we introduce two concepts, master-subflow and
slave-subflow, which will be explained below.

Nk: the amount of packets distributed to other subflows
by using scheduling algorithms(e.g, FPS, F2P-DPS...) at
subflowk’s scheduling time.

ak: the offset for subflowk to modify Nk when Nk last
round is too large. It is negative.

athreshk: the threshold for subflowk to determine whether
to exponentially or linearly decrease ak.
bk: the offset for subflowk to modify Nk when Nk last

round is too small. It is positive.
bthreshk: the threshold for subflowk to determine whether

to exponentially or linearly increase bk.
Two concepts (master-subflow and slave-subflow): for each

subflow, any subflow with longer RTT is its master-subflows,
and the subflow with shoter RTT is its slave-subflow.

The master-subflow (e.g, subflowk) calculates Nk by esti-
mating the number of the packets that can be sent simultane-
ously on all its slave-subflows.

IEEE ICC 2015 - Communications QoS, Reliability and Modeling Symposium

6189

C. The Detailed Algorithm

Since each TCP subflow uses TCP SACK, when packets
arrive at the receiver out of order, SACK options will be
contained in the acknowledgements. SACK information can
specify the blocks of continuous out-of-order segments stored
at receiver. There are two cases. In the first case, the out-
of-order is within each TCP subflow, which means holes are
at the subflow level. Each TCP subflow may operate loss
recovery algorithm according to standard TCP when receiving
an acknowledge. In the latter case, the out-of-order is among
different subflows, which means holes are at the connection
level. In this case, which is also the emphasis we will talk
about in detail later, the SACK submitted to MPTCP layer is
an indication that the prediction deviates from the true value.
Then, the sender determines whether it is in Situation1 or
Situation2, which subflow was wrongly estimated last round
and which subflow should update its offset. Now, let’s rethink
those two situations in the two-subflow MPTCP scenario
mentioned above.

In Situation1, the sender receives SACK from subflowj

and finds out no loss indication within subflowj . Hence, it
infers that the out-of-order are between subflows, which is
caused by wrongly estimating in last scheduling round. After
comparing the DSNs in the hole with the DSNs in the send
buffer, the sender finds out the packets in the hole were
scheduled on subflowi. Since subflowj is master-subflow
of subflowi, this SACK means the estimated Nj last round
is too large. When subflowj is ready to send packets next
scheduling round, the sender modifies Nj as N ′

j = Nj + aj ,
where Nj is the theoretical value calculated by using FPS or
F2P-DPS and aj is a negative offset, which makes theoretical
value approximates the real value step by step. Here, we
define another parameter asthreshj , which is a threshold
to decide whether aj is exponentially decreased or linearly
decreased. If continuous SACK indicates it is in Situation1,
the offset should be decreased according to the algorithm.
Otherwise, when a SACK indicates it changes from Situation1
to Situation2, the offset should be cleared and athreshj

should be halved.
In Situation2, the sender receives SACK from subflowi

finds out no loss indication within subflowi. Thus, it indicates
the out-of-order are between subflows. Then the sender discov-
ers the packets in the hole were scheduled to subflowj . Since
subflowj is master-subflow of subflowi, this SACK means
the estimated Nj last round is too small. When subflowj is
ready to send packets in the next round., the sender modifies
Nj as N ′

j = Nj + bj , where bj is a positive offset. Also
bthreshj is needed to determine whether bj is exponentially
increased or linearly increased. If continuous SACK indicates
it is in Situation2, the offset should be increased. Otherwise,
when a SACK indicates it changes from Situation2 to Sit-
uation1, the offset should be cleared and bthreshj will be
halved.

OCPS algorithm description is showed in Algorithm.1. If
the number of subflows is more than 2, the algorithm is also

Algorithm 1 OCPS Algorithm Description
Require: The sender receives subflowk’s SACK and updates

the offset.
if some holes belong to subflowk’s slave-subflows then

if Continuously indicating Nk is too large then
if ak > athreshk then

exponentially decrease ak (ak = 2ak);
else

linearly decrease ak (ak = ak − 1);
end if

else
halve bthreshk (bthreshk = bk/2) ;
clear bk (bk = 0);

end if
end if
if some holes belong to subflowk’s master-subflows then

for each subflowl in subflowk’s master-subflows do
if Continuously indicating Nl is too small then

if bl < bthreshl then
exponentially increase bl (bl = 2bl);

else
linearly increase bl (bl = bl + 1);

end if
else

halve athreshl (athreshl = al/2);
clear al (al = 0);

end if
end for

end if

applicable. When SACK is returned from subflowk and it
can’t handle the out-of-order problem by simply retransmit-
ting, which means the packets in the holes are sent on other
subflows, it operates in two folds:

• Step1: The sender finds whether the packets in some
holes were scheduled to subflowk’s slave-subflows. If
so it means at subflowk’s scheduling time, the sender
is supposed to distribute too many packets to its slave-
subflows, estimated Nk of subflowk is larger than the
true value. Thus, when (Nk + 1)th packet on subflowk

arrives at receiver, some of the first Nk packets are still
on the way, which causes the holes. The offset ak for
subflowk is modified accordingly and Nk for the next
scheduling round should be increased by ak, where ak is
negative.

• Step2: The sender checks whether there are packets in the
holes were scheduled to subflowk’s master-subflows. If
so for subflowk’s each master-subflow (e.g, subflowl)
the estimated Nl of last scheduling round is smaller than
the true value, the offset bl is modified accordingly and
Nl for the next scheduling round should be increased by
bl, where bl is positive.

When subflowk’s Nk is continuously indicated too large,
ak is decreased step by step. Once a returned SACK indicates

IEEE ICC 2015 - Communications QoS, Reliability and Modeling Symposium

6190

subflowk’s Nk is too small, ak is cleared and athreshk

is halved. Similarly, when subflowk’s Nk is continuously
indicated too small, bk is increased step by step. Once a
returned SACK indicates subflowk’s Nk is too large, bk is
cleared and bthreshk is halved.

IV. PERFORMANCE EVALUATION

In this section, we evaluate our scheduling mechanism
(OCPS) proposed in this paper on NS3 simulator [17]. The
MPTCP NS3 code is provided by google mptcp group [18].
Another two scheduling mechanisms, FPS and F2P-DPS are
implemented as comparisons. The main difference between
FPS and F2P-DPS is the algorithm to estimate N . Compared
with FPS, F2P-DPS is more adaptive and suitable in wireless
networks, in which packet loss is inevitable. Sometimes when
the path conditions vary a lot, they may still suffer. On
the contrary, OCPS is fit for the condition where the path
conditions vary a lot. It modifies the estimation by utilizing
the feedback in SACK instantly.

1) Simulation Setup

MPTCP
client

MPTCP
server

50ms/2Mbps

200ms/387Kbps

50m
s/10
0Mb

ps

50ms/100Mbps

50ms/100Mbps

50ms
/100M

bps

50m
s/10
0M
bps

50ms/100Mbps

UDP client UDP server

R 1,1 R 1,2

R 2,1 R 2,2

pathA

pathB

Fig. 4. Simulation Setup

In the simulation, MPTCP client establishes two subflows
with MPTCP server. As showed in Fig.4, two subflows are
through different paths: pathA and pathB . Another pair of
UDP client and UDP server produce UDP traffic and compete
with MPTCP flow at bottleneck. Ri,j is the router on each
path, i = 1 means it is the router on pathA while i = 2
means it is the router on pathB . There are two routers on each
path, and the link between the Ri,1 and Ri,2 is the bottleneck.
The path pathA’s bottleneck has 2Mbps bandwidth and 50ms
latency, which represents a WIFI link. The path pathB’s
bottleneck has 387Kbps and 200ms latency, which represents
a 3G link. The Link queue limit and type on bottleneck are
set 100 packets and Droptail, respectively. The loss rate on
pathA is set to 0.5%. The ratio of the latency on these two
paths is equal to 1:2.

Maximal Segment Size(MSS) in our simulation is set to
1400 bytes, which is also the packet size at TCP layer. The
receive buffer of MPTCP is equal to 100MSS(136K). The
congestion control algorithm adopts RTT-compensation, which
is used widely in MPTCP and provides more friendliness.
The simulation time of MPTCP flow is 80s, during which
UDP traffic starts at 20s and ends at 40s. The UDP traffic
generator produces traffic with uniform distribution and the

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

Th
ro
ug
hp
ut
(M
bp
s)

Simulation Time(s)

FPS-OCPS
FPS

F2PDPS
F2PDPS-OCPS

Fig. 5. Comparison of Global Throughput

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Nu
m
be
ro
fu
no
rd
er
pa
ck
et
si
n
re
ce
ive

bu
ffe
r(M
SS
)

Simulation Time(s)

FPS
FPS-OCPS

F2PDPS-OCPS
F2PDPS

Fig. 6. Comparison of Out-of-order Packet Number

interval between continuous packets is set to 0.01s. The packet
length of each UDP packet is 1024bytes.

2) Simulation results
Since the path conditions vary a lot, the result of a single

sample is unconvincing. We run 100 times and obtain 100
samples in the simulation. The simulation results are the
average of all the samples for each scheduling scheme, and
mainly presented in two aspects, the global throughput and the
number of out-of-order packets.

Fig.5 compares the the global throughput of different mech-
anisms. For OCPS is an additional algorithm modifying the
basic scheduling algorithms, the two curves named FPS-OCPS
and F2PDPS-OCPS represent that OCPS is modified from
the basic scheduling algorithms being FPS and F2P-DPS
respectively. Thus, there are 4 curves in Fig.5, from which
we can clearly see that OCPS has larger throughput than FPS
and F2P-DPS. During 20s ∼ 40s, UDP flow competes with
MPTCP flow at bottleneck and the latency on pathB grows
heavily. Thus, the throughput of MPTCP degrades. As we
know, in lossy networks F2P-DPS works better than FPS, so
the throughput is much higher. The throughput improvement
by using OCPS which is modified from F2P-DPS is smaller
as showed in Fig.5.

In Fig.6 the number of out-of-order packets is presented.
Since the results are averaged over all the samples, the maxi-
mum number of out-of-order packets doesn’t reach 100MSS,
which is the size of receive buffer. From Fig.6, we can see the
number of out-of-order packets is much fewer when adopting

IEEE ICC 2015 - Communications QoS, Reliability and Modeling Symposium

6191

0 1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

Th
ro
ug
hp
ut
(K
bp
s)

Loss rate on subflow0

FPS-OCPS
FPS

F2PDPS-OCPS
F2P-DPS

Fig. 7. Comparison of Average Throughput with Varying Loss Rate

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

Av
er
ag
e
th
ro
ug
hp
ut
(K
bp
s)

Buffer size(KB)

FPS-OCPS
FPS

F2PDPS-OCPS
F2PDPS

Fig. 8. Comparison of Average Throughput with Varying Buffer Size

OCPS. Since OCPS provides an offset for each scheduling
round, the time of the packets stay in the receive buffer as
out-of-order ones is much shorter and the number of out-
of-order packets measured each time is fewer. From 20s ∼
40s, UDP flow competes with MPTCP flow at bottleneck
and the latency on pathB grows heavily. So the number of
out-of-order packets grows large and the end-to-end delay
increases accordingly, which also corresponds to the decrease
of throughput showed in Fig.5.

Fig.7 shows the average throughput with the loss rate on
pathA varying from 0.5% to 5%. The average throughput
heavily degrades when the loss rate increases. OCPS improves
the throughput for MPTCP no matter which basic scheduling
algorithm is used. Since F2P-DPS is more adaptive to lossy
networks, the average throughput of F2P-DPS is always larger
than that of FPS. So the increase of throughput by using
OCPS modified from F2P-DPS is smaller. Fig.8 presents the
average throughput with the buffer size varying. As the buffer
size grows, the throughput of different scheduling mechanisms
improves. When the receive buffer size increases from 64KB to
100KB, the throughput nearly doubles. Then with the receive
buffer size keep on growing, the gradient decreases.

V. CONCLUSIONS

Multipath TCP(MPTCP) can exploit heterogeneous paths
by implementing an intelligent packet scheduling mechanism
at sender. The segments in a connection should be carefully
scheduled to multiple TCP subflows on different paths with

minimal occurrence of reordering at receiver. However, some
previous scheduling mechanisms, FPS, F2P-DPS schedule
each round independently and ignore the feedback information
from acknowledgements. In this paper, we propose OCPS,
which uses the feedback carried in SACK to modify the next
round scheduling. The comparison is among basic scheduling
mechanisms (FPS, F2P-DPS) and our proposed one. The
results verify that OCPS outperforms the other two basic
scheduling mechanisms. Moreover, OCPS can be applied to
not only MPTCP, but also any multipath transmission based
on TCP which uses SACK.

ACKNOWLEDGMENT

This work is partly supported by the National Natural
Science Foundation of China under Grant No. 61170231, No.
61379129, and Intel ICRI MNC.

REFERENCES

[1] R. Stewart and Q. Xie. Stream Control Transmission Protocol. RFC
2960, October 2000.

[2] A. Ford. TCP Extensions for Multipath Operation with Multiple
Addresses. RFC 6824, January 2013.

[3] Y. Hasegawa, I. Yamaguchi, T. Hama, H. Shimonishi, and T. Murase.
Improved Data Distribution for Multipath TCP Communication. In
Proceedings of Global Telecommunications Conference 2005 on (Globe-
com’05), volume 1, pages 5–pp. IEEE.

[4] L. Magalhaesand R. Kravets. MMTP: Multimedia Multiplexing Trans-
port Protocol. ACM SIGCOMM Computer Communication Review, 31(2
supplement):220–243, 2001.

[5] J. Kim, T. Ueda, and S. Obana. MAC-level Measurement based
Traffic Distribution over IEEE 802.11 Multi-radio Networks. Consumer
Electronics, IEEE Transactions on, 54(3):1185–1191, 2008.

[6] K. Chebroluand R. Rao. Communication Using Multiple Wireless
Interfaces. In Proceedings of IEEE WCNC, volume 1, pages 327–331,
2002.

[7] D. Kaspar, K. Evensen, P. Engelstad, and A.F Hansen. Using HTTP
Pipelining to Improve Progressive Download over Multiple Hetero-
geneous Interfaces. In Proceedings of IEEE International Confer-
ence(ICC), pages 1–5. IEEE, 2010.

[8] P. Sharma, S. Lee, J. Brassil, and K.G. Shin. Aggregating Bandwidth
for Multihomed Mobile Collaborative Communities. Mobile Computing,
IEEE Transactions on, 6(3):280–296, 2007.

[9] M. Mathis and J. Mahdavi. TCP Selective Acknowledgment Options.
RFC 2018, October 1996.

[10] P. Amer. Load Sharing for the Stream Control Transmission Protocol
(SCTP). draft-tuexen-tsvwg-sctp-multipath-09, October 2014.

[11] C. Casetti and W. Gaiotto. Westwood SCTP: Load Balancing over
Multipaths Using Bandwidth-aware Source Scheduling. In Proceedings
of Vehicular Technology Conference Fall (VTC2004-Fall), volume 4,
pages 3025–3029. IEEE, 2004.

[12] F. H Mirani, N. Boukhatem, and M.A. Tran. A Data-scheduling
Mechanism for Multi-homed Mobile Terminals with Disparate Link
Latencies. In Proceedings of Vehicular Technology Conference Fall
(VTC 2010-Fall), 2010 IEEE 72nd, pages 1–5. IEEE, 2010.

[13] F. H. Mirani, M. Kherraz, and N. Boukhatem. Forward Prediction
Scheduling: Implementation and Performance Evaluation. In Proceed-
ings of Telecommunications (ICT), 2011 18th International Conference
on, pages 321–326. IEEE, 2011.

[14] S. Barré. Implementation and Assessment of Modern Host-based
Multipath Solutions. PhD thesis, 2011.

[15] http://www.multipath-tcp.org/.
[16] D. Ni, K. Xue, P. Hong, and S. Shen. Fine-grained Forward Prediction

based Dynamic Packet Scheduling Mechanism for Multipath TCP in
Lossy Networks. In Proceedings of International Conference on Com-
puter Communications and Networks(ICCCN2014). IEEE, 2014.

[17] www.nsnam.org/.
[18] http://code.google.com/p/mptcp-ns3/.

IEEE ICC 2015 - Communications QoS, Reliability and Modeling Symposium

6192

