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Abstract— Data access control is a challenging issue in public
cloud storage systems. Ciphertext-policy attribute-based encryp-
tion (CP-ABE) has been adopted as a promising technique to
provide flexible, fine-grained, and secure data access control for
cloud storage with honest-but-curious cloud servers. However,
in the existing CP-ABE schemes, the single attribute authority
must execute the time-consuming user legitimacy verification and
secret key distribution, and hence, it results in a single-point
performance bottleneck when a CP-ABE scheme is adopted in
a large-scale cloud storage system. Users may be stuck in the
waiting queue for a long period to obtain their secret keys,
thereby resulting in low efficiency of the system. Although multi-
authority access control schemes have been proposed, these
schemes still cannot overcome the drawbacks of single-point
bottleneck and low efficiency, due to the fact that each of the
authorities still independently manages a disjoint attribute set.
In this paper, we propose a novel heterogeneous framework
to remove the problem of single-point performance bottleneck
and provide a more efficient access control scheme with an
auditing mechanism. Our framework employs multiple attribute
authorities to share the load of user legitimacy verification.
Meanwhile, in our scheme, a central authority is introduced to
generate secret keys for legitimacy verified users. Unlike other
multi-authority access control schemes, each of the authorities
in our scheme manages the whole attribute set individually. To
enhance security, we also propose an auditing mechanism to
detect which attribute authority has incorrectly or maliciously
performed the legitimacy verification procedure. Analysis shows
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that our system not only guarantees the security requirements but
also makes great performance improvement on key generation.

Index Terms— Cloud storage, access control, auditing,
CP-ABE.

I. INTRODUCTION

CLOUD storage is a promising and important service
paradigm in cloud computing [1]–[4]. Benefits of using

cloud storage include greater accessibility, higher reliability,
rapid deployment and stronger protection, to name just a few.
Despite the mentioned benefits, this paradigm also brings forth
new challenges on data access control, which is a critical issue
to ensure data security. Since cloud storage is operated by
cloud service providers, who are usually outside the trusted
domain of data owners, the traditional access control methods
in the Client/Server model are not suitable in cloud storage
environment. The data access control in cloud storage envi-
ronment has thus become a challenging issue.

To address the issue of data access control in cloud storage,
there have been quite a few schemes proposed, among which
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) is
regarded as one of the most promising techniques. A salient
feature of CP-ABE is that it grants data owners direct control
power based on access policies, to provide flexible, fine-
grained and secure access control for cloud storage systems.
In CP-ABE schemes, the access control is achieved by using
cryptography, where an owner’s data is encrypted with an
access structure over attributes, and a user’s secret key is
labelled with his/her own attributes. Only if the attributes
associated with the user’s secret key satisfy the access struc-
ture, can the user decrypt the corresponding ciphertext to
obtain the plaintext. So far, the CP-ABE based access control
schemes for cloud storage have been developed into two
complementary categories, namely, single-authority scenario
[5]–[9], and multi-authority scenario [10]–[12].

Although existing CP-ABE access control schemes have a
lot of attractive features, they are neither robust nor efficient
in key generation. Since there is only one authority in charge
of all attributes in single-authority schemes, offline/crash of
this authority makes all secret key requests unavailable during
that period. The similar problem exists in multi-authority
schemes, since each of multiple authorities manages a disjoint
attribute set.
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In single-authority schemes, the only authority must verify
the legitimacy of users’ attributes before generating secret
keys for them. As the access control system is associated
with data security, and the only credential a user possess
is his/her secret key associated with his/her attributes, the
process of key issuing must be cautious. However, in the
real world, the attributes are diverse. For example, to verify
whether a user is able to drive may need an authority to give
him/her a test to prove that he/she can drive. Thus he/she can
get an attribute key associated with driving ability [13]. To
deal with the verification of various attributes, the user may
be required to be present to confirm them. Furthermore, the
process to verify/assign attributes to users is usually difficult
so that it normally employs administrators to manually handle
the verification, as [14] has mentioned, that the authenticity
of registered data must be achieved by out-of-band (mostly
manual) means. To make a careful decision, the unavoidable
participation of human beings makes the verification time-
consuming, which causes a single-point bottleneck. Especially,
for a large system, there are always large numbers of users
requesting secret keys. The inefficiency of the authority’s
service results in single-point performance bottleneck, which
will cause system congestion such that users often cannot
obtain their secret keys quickly, and have to wait in the system
queue. This will significantly reduce the satisfaction of users
experience to enjoy real-time services. On the other hand, if
there is only one authority that issues secret keys for some
particular attributes, and if the verification enforces users’
presence, it will bring about the other type of long service
delay for users, since the authority maybe too far away from
his/her home/workplace. As a result, single-point performance
bottleneck problem affects the efficiency of secret key genera-
tion service and immensely degrades the utility of the existing
schemes to conduct access control in large cloud storage
systems. Furthermore, in multi-authority schemes, the same
problem also exists due to the fact that multiple authorities
separately maintain disjoint attribute subsets and issue secret
keys associated with users’ attributes within their own admin-
istration domain. Each authority performs the verification and
secret key generation as a whole in the secret key distribution
process, just like what the single authority does in single-
authority schemes. Therefore, the single-point performance
bottleneck still exists in such multi-authority schemes.

A straightforward idea to remove the single-point bottleneck
is to allow multiple authorities to jointly manage the universal
attribute set, in such a way that each of them is able to
distribute secret keys to users independently. By adopting
multiple authorities to share the load, the influence of the
single-point bottleneck can be reduced to a certain extent.
However, this solution will bring forth threats on security
issues. Since there are multiple functionally identical author-
ities performing the same procedure, it is hard to find the
responsible authority if mistakes have been made or malicious
behaviors have been implemented in the process of secret key
generation and distribution. For example, an authority may
falsely distribute secret keys beyond user’s legitimate attribute
set. Such weak point on security makes this straightforward
idea hard to meet the security requirement of access control

for public cloud storage. Our recent work, TMACS [15], is a
threshold multi-authority CP-ABE access control scheme for
public cloud storage, where multiple authorities jointly manage
a uniform attribute set. Actually it addresses the single-point
bottleneck of performance and security, but introduces some
additional overhead. Therefore, in this paper, we present a
feasible solution which not only promotes efficiency and
robustness, but also guarantees that the new solution is as
secure as the original single-authority schemes.

The similar problem has been considered and partly tack-
led in other related areas, such as public key infrastructure
(PKI) for e-commerce [16]. To reduce the certificate author-
ity (CA)’s load, one or more registration authorities (RAs)
are introduced to perform some of administration tasks on
behalf of CA. Each RA is able to verify a user’s legitimacy
and determine whether the user is entitled to have a valid
certificate. After the verification, it validates the credentials
and forwards the certificate request to CA. Then, CA will
generate a certificate for the user. Since the most heavy
work of verification is performed by a selected RA, the load
of CA can be largely reduced. However, the security of
the scheme with single-CA/multi-RAs partly depends on the
trustiness of multiple RAs. In order to achieve traceability,
CA should store some information to confirm which RA has
been responsible for verifying the legitimacy of a specific
user.

In this paper, inspired by the heterogeneous architecture
with single CA and multiple RAs, we propose a robust and
auditable access control scheme (named RAAC) for public
cloud storage to promote the performance while keeping
the flexibility and fine granularity features of the existing
CP-ABE schemes. In our scheme, we seperate the procedure
of user legitimacy verification from the secret key generation,
and assign these two sub-procedures to two different kinds
of authorities. There are multiple authorities (named attribute
authorities, AAs), each of which is in charge of the whole
attribute set and can conduct user legitimacy verification
independently. Meanwhile, there is only one global trusted
authority (referred as Central Authority, CA) in charge of
secret key generation and distribution. Before performing a
secret key generation and distribution process, one of the AAs
is selected to verify the legitimacy of the user’s attributes
and then it generates an intermediate key to send to CA. CA
generates the secret key for the user on the basis of the received
intermediate key, with no need of any more verification. In
this way, multiple AAs can work in parallel to share the load
of the time-consuming legitimacy verification and standby
for each other so as to remove the single-point bottleneck
on performance. Meanwhile, the selected AA doesn’t take
the responsibility of generating final secret keys to users.
Instead, it generates intermediate keys that associate with
users’ attributes and implicitly associate with its own identity,
and sends them to CA. With the help of intermediate keys,
CA is able to not only generate secret keys for legitimacy
verified users more efficiently but also trace an AA’s mistake
or malicious behavior to enhance the security.

The main contributions of this work can be summarized as
follows.
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1) To address the single-point performance bottleneck of key
distribution existed in the existing schemes, we propose
a robust and efficient heterogeneous framework with
single CA(Central Authority) and multiple AAs (Attribute
Authorities) for public cloud storage. The heavy load of
user legitimacy verification is shared by multiple AAs,
each of which manages the universal attribute set and
is able to independently complete the user legitimacy
verification, while CA is only responsible for computa-
tional tasks. To the best of our knowledge, this is the
first work that proposes the heterogeneous access control
framework to address the low efficiency and single-point
performance bottleneck for cloud storage.

2) We reconstruct the CP-ABE scheme to fit our proposed
framework and propose a robust and high-efficient access
control scheme, meanwhile the scheme still preserves
the fine granularity, flexibility and security features of
CP-ABE.

3) Our scheme includes an auditing mechanism that helps
the system trace an AA’s misbehavior on user’s legitimacy
verification.

The rest of this paper is organized as follows. In Section II,
we brief some related works about CP-ABE and some exist-
ing extension schemes for cloud storage access control. In
Section III, technical preliminaries are presented. Following
the definition of system model and security assumptions in
Section IV, we introduce our proposed heterogeneous frame-
work with single-CA/multi-AAs and relative access control
scheme for public cloud storage in Section V. In Section VI
and Section VII, we analyze our proposed scheme in terms
of security and performance, respectively. In Section VIII we
briefly introduce the construction of a hybrid multi-authority
system. Finally, the conclusion is given in Section IX.

II. RELATED WORK

Ciphertext-Policy Attribute-Based Encryption (CP-ABE)
has so far been regarded as one of the most promising tech-
niques for data access control in cloud storage systems. This
technology offers users flexible, fine-grained and secure access
control of outsourced data. It was first formulated by Goyal et
al. in [17]. Then the first CP-ABE scheme was proposed by
Benthencourt et al. in [18], but this scheme was proved secure
only in the generic group model. Subsequently, some cryp-
tographically stronger CP-ABE constructions [19]–[21] were
proposed, but these schemes imposed some restrictions that
the original CP-ABE does not have. In [22], Waters proposed
three efficient and practical CP-ABE schemes under stronger
cryptographic assumptions as expressive as [18]. To improve
efficiency of this encryption technique, Emura et al. [23]
proposed a CP-ABE scheme with a constant ciphertext
length. Unlike the above schemes which are only limited to
express monotonic access structures, Obtrovsky et al. [24]
proposed a more expressive CP-ABE scheme which can sup-
port non-monotonic access structures. Recently, Hohenberger
and Waters [25] proposed an online/offline ABE technique
for CP-ABE which enables the user to do as much pre-
computation as possible to save online computation. It’s a
promising technique for resource-limited devices.

In general, there are two categories of CP-ABE schemes
classified by the number of participating authorities in key
distribution process. One category is the single-authority
scheme, the other is multi-authority scheme. In single-
authority schemes [5]–[7], [26]–[29], only one authority is
involved to manage the universal attribute set, generate and
distribute secret keys for all users. In [7] and [26], the
authors respectively proposed CP-ABE schemes with efficient
attribute revocation capability for data outsourcing systems.
Wu et al. [5] proposed a Multi-message Ciphertext-Policy
Attribute-Based Encryption(MCP-ABE) which encrypts mul-
tiple messages within one ciphertext so as to enforce flexible
attribute-based access control on scalable media. The litera-
tures [27]–[29] took the efficiency issue into consideration,
but they mainly considered the computation complexity inside
the cryptography algorithms rather than interaction protocols
between different entities in the real world, such as the
procedure of user legitimacy verification. To sum up, in single-
authority schemes, the single-point performance bottleneck has
not been widely addressed so far.

To meet some scenarios where users’ attributes come
from multiple authorities, some multi-authority schemes have
been proposed. Based on the basic ABE [30] scheme,
Chase et al. [31] proposed the first multi-authority scheme
which allows multiple independent authorities to moni-
tor attributes and distribute corresponding secret keys, but
involves a central authority (CA). Subsequently, some multi-
authority ABE schemes without CA have been proposed, such
as [13] and [32]. Since the first construction of CP-ABE [18], a
great many multi-authority schemes have been conducted over
CP-ABE. Muller et al. [33] proposed the first multi-authority
CP-ABE scheme in which a user’s secret key was issued
by an arbitrary number of attribute authorities and a master
authority. Then Lewko et al. [10] proposed a decentralized CP-
ABE scheme where the secret keys can be generated fully by
multiple authorities without a central authority. Ruj et al. [34]
applied Lewko’s work [10] for access control in cloud storage
systems, and also proposed a revocation method. Lin et al. [32]
proposed a decentralized access control scheme based on
threshold mechanism. In [11] and [36], the authors proposed
two efficient multi-authority CP-ABE schemes for data access
control in cloud storage systems, where a central authority
is only needed in system initialization phase. Based on the
basic multi-authority architecture, some other literatures tried
to address the user identity privacy issue [36], [37], policy
update [38], and the accountability to prevent key abusing
[39], [40]. However, in above multi-authority schemes, multi-
ple authorities separately manage disjoint attribute sets. That is
to say, for each attribute, only one authority could issue secret
keys associated with it. Therefore, in large-scale systems,
the single-point performance bottleneck still exists in multi-
authority schemes due to the property that each of the multiple
authorities maintains only a disjoint subset of attributes.

Recently, we considered the single-point performance bot-
tleneck of CP-ABE based schemes and devised a thresh-
old multi-authority CP-ABE access control scheme in our
another work [15]. Different from other multi-authority
schemes, in [15], multiple authorities jointly manage a uniform
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attribute set. Taking advantage of (t, n) threshold secret shar-
ing, the master secret key can be shared among multiple
authorities, and a legal user can generate his/her secret key
by interacting with any t authorities. This scheme actu-
ally addressed the single-point bottleneck on both security
and performance in CP-ABE based access control in public
cloud storage. However, it is not efficient, because a user has
to interact with at least t authorities, and thus introduces higher
interaction overhead.

In this paper, we present an efficient heterogeneous frame-
work with single CA/multiple AAs to address the problem of
single-point performance bottleneck. The novel idea of our
proposed scheme is that the complicated and time-consuming
user legitimacy verification is executed only once by one
selected AA. Furthermore, an auditing mechanism is proposed
to ensure the traceability of malicious AAs. Thus our scheme
can not only remove the single-point performance bottleneck
but also be able to provide a robust, high-efficient, and secure
access control for public cloud storage.

III. PRELIMINARIES AND DEFINITIONS

In this section, we first give a brief review of background
information on bilinear maps and the security assumptions
defined on it. Then we briefly introduce CP-ABE and LSSS
which are the constituents in our scheme.

A. Bilinear Maps

Let G, GT be two multiplicative cyclic groups with the same
prime order p, and g be a generator of G. A bilinear map e :
G×G → GT defined on G has the following three properties:

1) Bilinearity: ∀a, b ∈ Zp and g1, g2 ∈ G, we have
e(ga

1 , gb
2) = e(g1, g2)

ab.
2) Non-degeneracy: ∀g1, g2 ∈ G such that e(g1, g2) �= 1,

which means the map does not send all pairs in G × G

to the identity in GT .
3) Computability: There is an efficient algorithm to compute

e(g1, g2) for all g1, g2 ∈ G.
Definition 1 (Decisional q-Parallel Bilinear Diffie-Hellman

Exponent Assumption(Decisional q-BDHE)): The decisional
q-BDHE problem is that, in a group G of prime order p, give
a, s, b1, b2, …, bq ∈ Zp, if an adversary is given:

�y = (g, gs, ga, . . . , g(aq), g(aq+2), . . . , g(a2q )

∀1≤ j≤q, gs·b j, ga/b j, . . . , g(aq/b j ), g(aq+2/b j ), . . . , g(a2q/b j )

∀1≤ j,l≤q,l �= j , ga·s·bl/b j , . . . , gaq ·s·bl/b j ),

it must remain hard to distinguish e(g, g)aq+1s ∈ GT from a
random element R in GT .

B. Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

Although the definitions and constructions of different
CP-ABE schemes are not always consistent, the uses of the
access structure in Encrypt and Decrypt algorithms are nearly
the same. Here we adopt the definition and construction from
[18] and [22].

A CP-ABE scheme consists of four algorithms: Setup,
Encrypt, Key Generation (KeyGen), and Decrypt.

Setup(λ, U ) → (P K , M SK ). The setup algorithm takes the
security parameter λ and the attribute universe description U
as the input. It outputs the public parameters P K and a master
secret key M SK .
Encrypt(P K , M, A) → CT . The encryption algorithm takes
the public parameters P K , a message M , and an access struc-
ture A as input. The algorithm will encrypt M and produce a
ciphertext CT such that only a user whose attributes satisfies
the access structure will be able to decrypt the message. We
will assume that the ciphertext implicitly contains A.
KeyGen(M SK , S) → SK . The key generation algorithm
takes the master secret key M SK and a set of attributes S
as input. It outputs a secret key SK .
Decrypt(P K , CT, SK ) → M . The decryption algorithm takes
the public parameters P K , a ciphertext CT which contains an
access policy A, and a secret key SK as input, where SK is
a secret key for a set S of attributes. If the set S of attributes
satisfies the access structure A, the algorithm will decrypt the
ciphertext and return a message M .

C. Access Structures and Linear Secret Sharing Schemes

Definition 2 (Access Structure): Let {P1, P2, . . . , Pn} be a
set of parties. A collection A ⊆ 2{P1,P2,...,Pn} is monotonic
if ∀B, C: if B ∈ A and B ⊆ C, then C ∈ A. An
access structure (respectively, monotonic access structure) is a
collection (respectively, monotonic collection) A of non-empty
subsets of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The
sets in A are called authorized ones, and the sets not in A are
called unauthorized ones.

Observing the constructions in [17], [18], and [22], an LSSS
access structure can be used to denote the access policy A.
Following the method defined in [41], any monotonic boolean
formula can be converted into an LSSS representation. The
description of LSSS is presented as follows.

Definition 3 (Linear Secret Sharing Schemes (LSSS)):
A secret-sharing scheme � over a set of parties P is called
linear (over Zp) if:

1) The shares for each party form a vector over Zp.
2) There exists a matrix an M with l rows and n columns,

which is called the sharing-generating matrix for �.
For all i = 1, . . . , l, the i -th row of M is labeled by
a party ρ(i), where ρ is the function associating rows
of M to parties in P . When we consider the vector
�v = (s, r2, . . . , rn) ∈ Zn

p, where r2, . . . , rn are randomly
chosen and s is the secret to be shared, then �λ = M×�v

is the vector of l shares of the secret s according to �.
The share λi belongs to the party ρ(i).

Every linear secret sharing-scheme based on the above
definition enjoys the linear reconstruction property, defined
as follows: Suppose that � is an LSSS structure for access
structure A. Let S ∈ A be any authorized set, and let
I ⊂ {1, 2, . . . , l} be defined as I = {i : ρ(i) ∈ S}. Then,
there exist constants {ωi ∈ Zp}i∈I such that, if {λi } are valid
shares of any secret s according to �, then �i∈I ωiλi = s.
These constants {ωi } can be found in time polynomial in the
size of the share-generating matrix M. Note that, for any
unauthorized set S �∈ A, no such constants {ωi } exist.
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Fig. 1. System model.

IV. SYSTEM MODEL AND SECURITY ASSUMPTIONS

In this section, we give the definitions of the system model,
the security assumptions and requirements of our public cloud
storage access control.

A. System Model

The system model of our design is shown in Fig. 1, which
involves five entities: a central authority (CA), multiple
attribute authorities (AAs), many data owners (Owners),
many data consumers (Users), and a cloud service provider
with multiple cloud servers(here, we mention it as cloud
server.).

• The central authority (CA) is the administrator of the
entire system. It is responsible for the system construction
by setting up the system parameters and generating public
key for each attribute of the universal attribute set. In the
system initialization phase, it assigns each user a unique
Uid and each attribute authority a unique Aid . For a
key request from a user, CA is responsible for generating
secret keys for the user on the basis of the received
intermediate key associated with the user’s legitimate
attributes verified by an AA. As an administrator of the
entire system, CA has the capacity to trace which AA has
incorrectly or maliciously verified a user and has granted
illegitimate attribute sets.

• The attribute authorities (AAs) are responsible for
performing user legitimacy verification and generating
intermediate keys for legitimacy verified users. Unlike
most of the existing multi-authority schemes where each
AA manages a disjoint attribute set respectively, our
proposed scheme involves multiple authorities to share
the responsibility of user legitimacy verification and each
AA can perform this process for any user independently.
When an AA is selected, it will verify the users’ legitimate
attributes by manual labor or authentication protocols,
and generate an intermediate key associated with the
attributes that it has legitimacy-verified. Intermediate key
is a new concept to assist CA to generate keys.

• The data owner (Owner) defines the access policy about
who can get access to each file, and encrypts the file

under the defined policy. First of all, each owner encrypts
his/her data with a symmetric encryption algorithm. Then,
the owner formulates access policy over an attribute
set and encrypts the symmetric key under the policy
according to public keys obtained from CA. After that, the
owner sends the whole encrypted data and the encrypted
symmetric key (denoted as ciphertext CT ) to the cloud
server to be stored in the cloud.

• The data consumer (User) is assigned a global user
identity Uid by CA. The user possesses a set of attributes
and is equipped with a secret key associated with his/her
attribute set. The user can freely get any interested
encrypted data from the cloud server. However, the user
can decrypt the encrypted data if and only if his/her
attribute set satisfies the access policy embedded in the
encrypted data.

• The cloud server provides a public platform for own-
ers to store and share their encrypted data. The cloud
server doesn’t conduct data access control for owners.
The encrypted data stored in the cloud server can be
downloaded freely by any user.

B. Security Assumptions and Requirements

In our proposed scheme, the security assumptions of the
five roles are given as follows. The cloud server is always
online and managed by the cloud provider. Usually, the cloud
server and its provider are assumed to be “honest-but-curious”,
which means that they will correctly execute the tasks assigned
to them for profits, but they would try to find out as much
secret information as possible based on data owners’ inputs
and uploaded files. CA is the administrator of the entire
system, which is always online and can be assumed to be
fully trusted. It will not collude with any entity to acquire
data contents. AAs are responsible for conducting legitimacy
verification of users and judging whether the users have the
claimed attributes. We assume that AA can be compromised
and cannot be fully trusted. Furthermore, since the user legiti-
macy verification is conducted by manual labor, mis-operation
caused by carelessness may also happen. Thus, we need an
auditing mechanism to trace an AA’s misbehavior. Although a
user can freely get any encrypted data from the cloud server,
he/she cannot decrypt it unless the user has attributes satisfying
the access policy embedded inside the data. Therefore, some
users may be dishonest and curious, and may collude with
each other to gain unauthorized access or try to collude with
(or even compromise) any AA to obtain the access permission
beyond their privileges. Owners have access control over their
uploaded data, which are protected by specific access policies
they defined.

To guarantee secure access control in public cloud storage,
we claim that an access control scheme needs to meet the
following four basic security requirements:

• Data confidentiality. Data content must be kept confiden-
tial to unauthorized users as well as the curious cloud
server.

• Collusion-resistance. Malicious users colluding with each
other would not be able to combine their attributes to
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decrypt a ciphertext which each of them cannot decrypt
alone.

• AA accountability. An auditing mechanism must be
devised to ensure that an AA’s misbehavior can be
detected to prevent AAs’ abusing their power without
being detected.

• No ultra vires for any AA. An AA should not have
unauthorized power to directly generate secret keys for
users. This security requirement is newly introduced
based on our proposed hierarchical framework.

V. OUR PROPOSED ACCESS CONTROL SCHEME

This section first gives an overview of our proposed scheme,
and then describes the scheme in detail. Our scheme consists
of five phases, namely System Initialization, Encryption, Key
Generation, Decryption, and Auditing & Tracing.

A. Overview of Our Scheme

To achieve a robust and efficient access control for public
cloud storage, we propose a hierarchical framework with
single CA and multiple AAs to remove the problem of single-
point performance bottleneck and enhance the system effi-
ciency. In our proposed RAAC scheme, the procedure of
key generation is divided into two sub-procedures: 1) the
procedure of user legitimacy verification; 2) the procedure
of secret key generation and distribution. The user legitimacy
verification is assigned to multiple AAs, each of which takes
responsibility for the universal attribute set and is able to verify
all of the user’s attributes independently. After the successful
verification, this AA will generate an intermediate key and
send it to CA. The procedure of secret key generation and
distribution is executed by the CA that generates the secret
key associated with user’s attribute set without any more
verification. The secret key is generated using the intermediate
key securely transmitted from an AA and the master secret key.

In our one-CA/multiple-AAs construction, CA participates
in the key generation and distribution for security reasons:
To enhance auditability of corrupted AAs, one AA cannot
obtain the system’s master secret key in case it can optionally
generate secret keys without any supervision. Meanwhile, the
introduction of CA for key generation and distribution is
acceptable, since for a large-scale system, the most time-
consuming workload of legitimacy verification is offloaded
and shared among the multiple AAs, and the computation
workload for key generation is very light. The procedure of
key generation and distribution would be more efficient than
other existing schemes.

To trace an AA’s misbehavior in the procedure of user legit-
imacy verification, we first find the suspected data consumer
based on abnormal behavior detection, which is similar to the
mechanisms used in [40] and [41]. For a suspected user, our
scheme can trace the responsible AA who has falsely verified
this user’s attributes and illegitimately assigned secret keys to
him/her.

B. Details of Our Proposed RAAC Scheme

1) System Initialization: Firstly, CA chooses two multiplica-
tive cyclic groups G(the parameter g is a generator of G) and

GT with the same prime order p, and defines a binary map
e : G × G → GT on G. CA randomly chooses α, β, a and
b ∈ Zp as the master secret key. CA also randomly gener-
ates public keys for each attribute Atti , (i = 1, 2, . . . , U):
h1, h2, . . . , hU ∈ G. Besides, let H : (0, 1)∗ → Zp be a hash
function. The published public key is:

P K = GT , G, H, g, ga, e(g, g)α, h1, . . . , hU

and the master secret key is:

M SK = α, β, a, b

which implicitly exists in the system, and doesn’t need to be
obtained by any other entity.

Another task for CA in this operation is handling AAs’
and users’ registration. Here, CA generates a pair of keys
(skCA, vkCA) to sign and verify, in which, vkCA is publicly
known by each entity in the system. Each AA sends a
registration request to CA during the System Initialization.
For each legal AA, CA assigns a unique identity Aid ∈ Zp ,
randomly chooses a private key kAid ∈ Zp , and computes its
corresponding public key P K Aid = gkAid . Furthermore, CA
generates a certificate CertAid which includes the public key
P K Aid , and sends it with the corresponding private key kAid

to the AA with the identity Aid . Meanwhile, each user gets
his/her Uid , private key kUid and CertUid from CA.

2) Encryption: The procedure of Encryption is performed
by the data owner himself/herself. To improve the system’s
performance, the owner first chooses a random number κ ∈
GT as the symmetric key and encrypts the plaintext message
M using κ with the symmetric encryption algorithm. The
encrypted data can be denoted as Eκ(M). Then the owner
encrypts the symmetric key κ using CP-ABE under the access
policy A defined by himself/herself. The owner defines an
easy expressed monotonic boolean formula. Following the
method defined in [41], the owner can turn it to an LSSS
access structure, which can be denoted as (M, ρ). Here,
M is an l × n matrix, where l is the scale of a specific
attribute set associated with a specific access policy and n
is a variable that is dependent on the monotonic boolean
formula definition and the LSSS turning method. The function
ρ maps each row of M to a specific attribute, marked as
ρ(i) ∈ {Att1, Att2, . . . , AttU }. A random secret parameter
s is chosen to encrypt the symmetric key κ . To hide the
parameter s, a random vector �v = (s, y2, y3, . . . , yn) ∈ Zn

p is
selected, where y2, y3, . . . , yn are randomly chosen and used
to share the parameter s. Each λi = Mi �v
 is computed for
i = 1, 2, . . . , l, where Mi denotes the i -th row of the matrix
M. Owner randomly selects r1, r2, . . . , rl ∈ Zp and uses the
public key generated by CA to compute:

(C = κe(g, g)αs, C ′ = gs,

∀i = 1 to l, Ci = (ga)λi · hρ(i)
−ri , Di = gri ).

The ciphertext CT can be denoted as the format shown in
Fig. 2. Finally, the owner sends CT to the cloud server.

3) Key Generation and Distribution: This procedure is
totally different from those existing CP-ABE schemes.
It involves the given user, a selected AA and CA. We divide
the procedure into the following 4 steps.
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Fig. 2. Format of owners’ data in the cloud server.

◦ STEP 1: U j → AAi . When a user U j with the identity
Uid j makes a secret key request, the user selects an AA(AAi

with the identity Aidi ) by a certain scheduling algorithm
and sends the CertUid to show the validity of his/her
identity, along with some proofs to show that he/she has
the attribute set that he/she claims to have.

◦ STEP 2: AAi → C A. The user legitimacy verification
process may involve manual labor or verification proto-
cols performed by AAi . After successful verification, AAi

obtains the current timestamp value T S, computes t1 =
H (Uid j ||T S||0) and t2 = H (Uid j ||T S||1), and generates
an intermediate key ICAidi ,Uid j as follows:

ICAidi ,Uid j = {Kx = h
kAidi t1
x , Jx = ht2

x }∀x∈S j

where Sj is the verified legitimate attribute set for the user
with the identity Uid j . Finally this AA securely sends the
following message to CA:

{Uid j , Aidi , Sj , ICAidi ,Uid j , T S}
◦ STEP 3&STEP 4: C A → AAi → U j . After receiving

the message from the AA, CA first uses Aidi to obtain the
corresponding stored public key P K Aidi . Then CA checks
whether the transmission delay is within the allowed time
interval � T . We assume that the current time is T ′. If
T ′ − T S >� T , CA stops here and sends RE J to the AA.
Otherwise, CA continues to compute t1 = H (Uid j ||T S||0),
t2 = H (Uid j ||T S||1), and makes sure t1 and t2 haven’t yet
been re-used from the same user. This can prevent AA’s
collusion attack (We will discuss the collusion attack in
Section VI.). CA continues to use its master secret key
M SK to generate a secret key SK j for the user as follows:

K = gα(P K Aidi )
aβt1 gaαt2 = gα(gkAidi )aβt1 gaαt2,

L = (P K Aidi )
βt1 gαt2 = (gkAidi )βt1 gαt2,

∀x ∈ Sj , K ′
x = K β

x · gb(t1+t2) = h
kAidi βt1
x · gb(t1+t2),

K ′′
x = Jα

x · g−b(t1+t2) = hαt2
x · g−b(t1+t2).

To simplify the formulas, a parameter d is introduced:

d = kAidi βt1 + αt2 (1)

Therefore, the formulas of the user’s secret key SK j can be
simply denoted as:

K = gα · gad, L = gd ,

∀x ∈ Sj : K ′
x = K β

x · gb(t1+t2) = h
kAidi βt1
x · gb(t1+t2),

K ′′
x = Jα

x · g−b(t1+t2) = hαt2
x · g−b(t1+t2).

With the relay of AAi , CA securely sends SK j and T S to
the user.

4) Decryption: The procedure of Decryption is performed
by the user. A user can freely query and download any inter-
ested encrypted data from the public cloud storage. However,
he/she cannot decrypt data unless his/her attribute set satisfies
the access structure embedded in the ciphertext. For the user
U , let MU be a sub-matrix of M, where each row of MU

corresponds to a specific attribute in U ’s attribute set SU . Let
I ⊂ {1, 2, . . . , l} denote {i : ρ(i) ∈ SU }, and Mi denote the
i -th row of M.

If the user U ’s attribute set SU satisfies the access structure
(M, ρ), the vector �e = (1, 0, . . . , 0) is in the span of matrix
MU , which means an appropriate parameter {ωi ∈ Zp}i∈I can
be found to satisfy �e = (ω1, ω2, . . . , ω|I |)MU .

The parameter {ωi }i∈I can further help the user to find the
hidden secret parameter s:

s = (1, 0, . . . , 0) · (s, y2, . . . , yn)



= �e · �v
 = (ω1, ω2, . . . , ω|I |)MU · �v


= (ω1, ω2, . . . , ω|I |) · �λI

 =

∑

i∈I

ωi · λi . (2)

where, �λI denotes the sub-vector of (λ1, λ2, . . . , λl).
For any x ∈ SU , the user computes

K Kx = K ′
x · K ′′

x

=
(

h
kAidi βt1
x · gb(t1+t2)

)
·
(

hαt2
x · g−b(t1+t2)

)

= hd
x , (3)

and stores it. Using the parameter {ωi }i∈I , the user further
computes:

CU = e(C ′, K )∏
i∈I

(e(Ci , L) · e(Di , K Kρ(i)))ωi

= e(gs, gα · gad)
∏
i∈I

(e((ga)λi · hρ(i)
−ri , gd) · e(gri , hρ(i)

d))ωi

= e(g, g)α·s · e(g, g)a·s·d
∏
i∈I

e(g, g)d ·a·λi·ωi

= e(g, g)α·s · e(g, g)a·s·d

e(g, g)
d ·a·∑

i∈I
(λi ·ωi )

= e(g, g)αs. (4)

The user can further compute the symmetric key κ as
follows:

κ = C/CU = C/e(g, g)αs. (5)

With the computed symmetric key κ , the user can further
decrypt the ciphertext CT to obtain the final plaintext data M .

5) Auditing & Tracing: Each AA may generate an interme-
diate key for any attribute set associated with a specific user,
and then CA can generate the secret key for this user without
any more verification. However, AAs can be compromised
and cannot be fully trusted. Meanwhile, the user legitimacy
verification is conducted by manual labor, and therefore AAs
may maliciously or incorrectly generate an intermediate key
for an unverified attribute set. A malicious user will try any
possible means to gain the secret key associated with the
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specific attribute set to obtain the data access permission.
Under this assumption, the user would often show abnormal
behaviors. Usually, we need to hold the accountability of
AAs to prevent the compromised or misbehaved ones from
freely generating secret keys for malicious users. Like user
accountability addressed in [40], [41], and [43], we assume
that we have appropriate techniques to detect users’ abnormal
behaviors.

The procedure of Auditing & Tracing is periodically per-
formed or event-triggered by CA to mandatorily ask a sus-
pected user to securely submit K ′

x of a given attribute, L and
T S in his/her gained secret key. In order to continue to obtain
data, users have to cooperate to perform the process correctly.
However, in order to deceive CA, a suspected user still has
the motivation to submit a secret key component that doesn’t
belong to him/her. Thus, to implement an effective tracing, CA
must confirm the received secret key components really belong
to the given user. Based on the reasons mentioned above, the
tracing method should be executed as the following two sub-
procedures.
◦ Secret key ownership confirming. This procedure is exe-

cuted to confirm that the received secret key component
really belongs to the user who has submitted it. We assume
that the user is U j with the identity Uid j . CA randomly
selects a suspected attribute x in Sj , and asks U j to securely
submit his/her secret key components K ′

x , L and T S. Then
CA computes t1 = H (Uid j ||T S||0), t2 = H (Uid j ||T S||1)
and K �

x = hαt2
x · g−b(t1+t2), and confirms whether the

following equation holds:

e(hx , L) = e(g, K ′
x K �

x ).

If it holds, CA will further continue to execute the next
sub-procedure. Otherwise, it indicates that the suspected
user doesn’t correctly submitted his/her own secret key
components and the user will receive a severe punishment,
such as kicking the user out of the system.

◦ AA Tracing. This procedure is executed to trace and
confirm which AA has generated the suspected user’s secret
key. CA takes its master secret key M SK to recover the
public key associated with a specific AA as follows:

P K = (L · g−αt2)
1/βt1 = gkAidi βt1/βt1 = gkAidi . (6)

CA uses P K as an index to search its storage for the respon-
sible AA. If some AA with the identity Aidi owns a public
key that is equal to P K , it means that AA has maliciously
or incorrectly verified the legitimacy of this user. The found
AA should implement security enhancement or be kicked
out of the system as a severe punishment.

VI. SECURITY ANALYSIS

A. Data Confidentiality

To prove the data confidentiality of RAAC, we use the
following theorem:

Theorem 1: When the decisional q-parallel BDHE assump-
tion holds, no adversary can use a polynomial-time algorithm
to selectively break RAAC with a challenge matrix of size
l∗ × n∗, where l∗, n∗ ≤ q.

Proof: When kAidi βt1 + αt2 is simplified as d , and K ′
x

and K ′′
x are combined by a multiplication operation, the user’s

secret key can be simplified as:

K = gα · gad, L = gd , ∀x ∈ Sj , K Kx = K ′
x · K ′′

x = hd
x ,

where d can be seen as a random number based on different t1
and t2. Then the proof of Theorem 1 is similar to that in [22].
Interested readers are referred to read [22] for more details
about the proof. �

If the cloud server is curious about the plaintext, it would not
have any advantages compared with outside malicious users,
as the cloud server doesn’t participate in any user’s secret key
generation. All it does is storing the ciphertext, and it thus
find no way to obtain the plaintext.

B. User Collusion Resistance

Like the technique proposed in [22] which could prevent
user collusion attack, each user in our system is assigned a
global unique identity Uid , and each time when performing
the procedure of key generation and distribution, all the secret
key components are associated with a unique value d , which
a user is not able to compute. Thus, it is impossible for two
or more users to collude and decrypt the ciphertext.

Moreover, it’s important to note that, in order to introduce
the auditing and tracing mechanism, we divide the original
K Kx into two parts, namely K ′

x and K ′′
x . If there is no gb(t1+t2)

in K ′
x and no g−b(t1+t2) in K ′′

x , the malicious user can easily

gain h
kAidi β
x and hα

x . Then, this internal attacker can gather the
two secret key components about the other attributes different
from his/her own set. If the attacker obtains K and L from
the same AA with gathered information, he/she can further

use his/her own t1 and t2 to compute K ′
x = (h

kAidi β
x )t1 and

K ′′
x = (hα

x )t2 . In this way, colluded with other users, the
malicious user can easily obtain additional access privilege that
he/she is not supposed to have. However, because b and gb are
kept secure, and there is gb(t1+t2) in K ′

x and g−b(t1+t2) in K ′′
x ,

malicious users find no way to realize the above mentioned
malicious action.

C. No Ultra Vires for AA

As AAs cannot be fully trusted, it’s possible that two or
more AAs collude with each other to gain more information
in the system. If two AAs collude to respectively generate
intermediate keys for the same user at the same time, they can
have the same t1 and t2. We assume that these two colluded
AAs are AAi1 with Aidi1 and AAi2 with Aidi2, and the user
is U j with the identity Uid j . In STEP 3 of the procedure of
key generation and distribution, if AAi1 is chosen, the secret
key can be computed as follows:

K1 = gα · ga(kAidi1 βt1+αt2), (7a)

L1 = gkAidi1 βt1+αt2, (7b)

∀x ∈ Sj , K Kx1 = h
kAidi1 βt1+αt2
x , (7c)
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and if AAi2 is chosen, the secret key can be computed as
follows:

K2 = gα · ga(kAidi2 βt1+αt2), (8a)

L2 = gkAidi2 βt1+αt2, (8b)

∀x ∈ Sj , K Kx2 = h
kAidi2 βt1+αt2
x , (8c)

If CA has no verification to check whether T S is in an
allowed time interval, meanwhile, t1 and t2 are different and
haven’t yet been reused in the same time, these two secret
keys can both be issued. Combining these two secret keys
using the division operation, AAi1 and AAi2 can collude to
obtain as follows:

K1/K2 = ga(kAidi1 −kAidi2 )βt1, (9a)

L1/L2 = g(kAidi1 −kAidi2 )βt1, (9b)

∀x ∈ Sj , K Kx1/K Kx2 = h
(kAidi1 −kAidi2 )βt1
x , (9c)

Furthermore, based on Equation 9b and Equation 7b, the
colluded AAs can compute gα as follows:

(
L1/ (L1/L2)

kAidi1
kAidi1

−kAidi2

) 1
t2

.

Based on the above method, colluded AAs can obtain gα. Also,
based on similar methods, colluded AAs can obtain gaβ , gaα,
hα

x and hβ
x (∀x ∈ S). Now the malicious AA can masquerade

as another AA with a random private key k, and issues any
key for a user with any attribute set. Thus, the two colluded
AAs can illegally obtain CA’s privilege. However, based on
the analysis above, if CA maintains the state of used t1 and
t2 for the same user in a given time interval, the secret keys
from different AAs will have different t1 and t2, and the above
attack method can be thwarted.

D. Assurance of AAs’ Auditablity

In the heterogeneous single-CA/multi-AAs framework, we
must ensure that each AA can be audited so that when a
user’s abnormal behavior happens, we can trace which AA
has verified this user’s legitimacy and issued intermediate key
for him/her. In our scheme, we enforce this assurance by the
construction of the intermediate key. For user U j , when he/she
is legitimacy verified by an AA(e.g., AAi with the identity

Aidi ), the intermediate key {Kx = h
kAidi t1
x , Jx = ht2

x }∀x∈S j

contains both attributes that AAi has verified and AAi ’s identity
implicitly. Here, kAidi is a private key securely owned by AAi ,
and other AAs can only generate this intermediate key with
his/her own private key.

To generate a secret key, using Aidi as an index to get
the public key P K Aidi , CA generates K and L to match the
K ′

x , x ∈ Sj , where K ′
x = K β

x · gb(t1+t2), x ∈ Sj . Thus,
the issued secret key implicitly contains AAi ’s private key
kAidi , which can be regarded as a signature when CA conducts
auditing.

If AAi tries to get rid of the responsibility by sending
Aid j , i �= j to CA, the CA will generate K and L of
SK according to the elements associated with P K Aid j . The
generated K and L are related to kAid j , but K ′

x , which is

generated on the intermediate key, is related to kAidi . The
secret key made by their combination cannot be used to
decrypt any ciphertexts, unless AAi knows kAid j and generates
an intermediate key with kAid j . Unless AA j is compromised,
the private key kAid j would not be leaked to AAi . Therefore,
no AA can evade its responsibility by faking to be someone
else.

VII. PERFORMANCE ANALYSIS

As we have mentioned, in reality, the tedious procedure of
user legitimacy verification is much more complicated than
secret key generation. In our scheme, the load of legitimacy
verification is shared among multiple AAs, while a much
lighter computational task is assigned to the single CA. Thus,
the efficiency of key distribution is improved. More Specifi-
cally, multiple AAs are standby for the legitimacy verification
in the system. When there is a key request, an idle AA is
selected by a scheduling algorithm to perform the verification
and other AAs are standby to serve the subsequent user
requests.

We give the theoretical performance analysis as the follow-
ing steps. Firstly, we model our system in queueing theory,
and then we analyze the state probabilities to obtain the
two important factors, the mean failure probability and the
average waiting time for users. Finally, to show the signifi-
cant performance improvement of our proposed RAAC, we
compares it with single-AA system. It’s important to note that,
the comparison between RAAC and multi-authority systems
[11], [31] is similar, since each authority independently man-
ages a disjoint attribute subset. When a user requests secret
keys with regard to one certain attribute subset, he/she has to
go to the only and exclusive authority that issues secret keys
with that attribute subset. The queue condition is just the same
as the one in single- authority schemes.

A. Modeling in Queuing Theory

For simplicity, we assume there is a central coordinator
which assigns users’ key requests to AAs. The coordinator
maintains each AA’s state with the boolean value of 0/1, where
state 0 indicates that the AA is available to conduct verification,
and state 1 indicates the AA is occupied and is not available
right now. Each time the coordinator assigns a key request to
an AA with the state 0. If all AAs are busy, the new users
who are requesting the secret keys will wait in a queue to be
served. The coordinator can adopt First Come First Service
(FCFS) algorithm to serve the arriving users.

It’s important to note that some other strategies can also be
adopted in our architecture, such as a user arriving at a nearest
AA according to his/her knowledge and decision. Thus, each
AA may separately maintain a queue of its own. However,
this model may not achieve load balance as some AAs may
be unoccupied while other AAs are always busy in serving
users’ requests. Therefore, we introduce a central coordinator
and adopt a single arrival queue as our strategy. The queueing
model of our system is shown in Fig. 3, and can be treated as
a Markov process.
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Fig. 3. The queue model with single-CA/multi-AAs.

Fig. 4. M/M/C/N/∞ state transition diagram.

The central coordinator is deployed at the entrance of the
system to monitor each AA’s state (occupied/unoccupied) and
assign each arriving users to an unoccupied AA. Furthermore,
we model our system as follows. On AAs’ side, the queueing
model can be described as M/M/C/N/∞, where C is the
number of AAs, N is the capacity of our system and N =
C + K (K is the queue length that indicates the maximum
number of the queued users.). Here, the first M describes that
arrivals of key requests follow a Poisson process in the system,
and the second M means the verification service times are
exponentially distributed. ∞ means the source of key requests
is infinite.

When there are N users in the system, other new arrivals
of users’ requests will be rejected. This property can ensure
that a user will not wait in the queue for an irrationally long
time. On CA’s side, the queueing model can be described as
M/M/1.

The following assumptions are made to describe our system.

1) Assumption 1. The instant user request arrival event
constitutes a stationary Poisson process with the
parameter λ.

2) Assumption 2. For each AA, the service time of different
individual users are independent and identically distrib-
uted exponential random variables, in which the mean
value is 1/μ1.

3) Assumption 3. For CA, the service time of individ-
ual users are independent and identically distributed
exponential random variables, in which the mean value
is 1/μ2.

B. State Probabilities

AAs’ side is the most influential part of our
system’s performance, so we mainly analyze its state
probabilities.

The state transition of the queueing model with multiple
AAs is shown in Fig. 4. Arrivals occur at rate λ according to
a Poisson process and move the process from state i to i + 1.
For each AA, the service time of different individual users are
independent, and follow negative exponential distribution with

parameter μ1. Therefore we can get:

λn =
{

λ, n ∈ [0, N − 1]
0, n ≥ N

(10)

and

μ1n =
{

nμ1, n ∈ [0, C)

Cμ1, n ∈ [C, N − 1] (11)

Since our queueing system is Markovian, the state probabil-
ities can be described by a set of Chapman-Kolmogorov differ-
ence equations in the steady state using standard techniques.
Let ρ = λ/(μ1) and ρC = ρ/C , we obtain the steady-state
probability distribution as follows:

pn =

⎧
⎪⎨

⎪⎩

ρn

n! p0, n ∈ [0, C)

ρn

C!Cn−C
p0, n ∈ [C, N]

(12)

where

p0 =
(

C−1∑

n=0

ρn

n! + CC

C!
N−1∑

n=C

ρn
C

)−1

(13)

Then we can get the mean queue length at multi-AAs’ side
as:

Lq =
N+C−1∑

j=C

( j − C)p j

=
N+C−1∑

j=C

j · p j −
N+C−1∑

j=C

C · p j

=
N+C−1∑

j=0

j · p j −
C−1∑

j=0

j · p j −
N+C−1∑

j=C

C · p j

= L −
C−1∑

j=0

j · p j − C · (1 −
C−1∑

j=0

p j )

= L − C −
C−1∑

j=0

( j − C) · p j

= L − C − p0 ·
C−1∑

j=0

( j − C) · ρn

j ! (14)

Meanwhile, because the system can only accommodate N
users at anytime, we can compute the effective arrival rate as
follows:

λe f f = λ(1 − pN ) (15)

By Little’s law, we can compute the average sojourn time
and the average waiting time for users at multi-AAs’ side as
follows:

W = L/λe, Wq = Lq/λe = W − 1/μ1 (16)

To sum up with the average waiting time at the single-CA’s
side, the average waiting time W ′

q of users is:

W ′
q = Wq +

λe f f
μ2

μ2 · (1 − λe f f
μ2

)
(17)
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Fig. 5. The failure rate in RAAC with μ1 = 20/min, μ2 = 200/min and
K = 30.

Fig. 6. The average waiting time in RAAC with μ1 = 20/min, μ2 =
200/min and K = 30.

C. Numerical Evaluation

As we described above, when the queue model with multi-
AAs is filled with N users, which means that K users are
waiting in the queue and all C AAs are occupied, the newly
arriving users are rejected. This means those new users would
fail to get the secret keys. We analyze the probability of
failure to show how to lower this failure rate with more AAs.
Meanwhile, we analyze the average waiting time W ′

q of users
in our system.

Based on the emulation of the scheme in [18], the average
time of generating a secret key for an attribute is about
35ms (on 64-bit AMD 3.7 GHz workstation). Furthermore,
we assume that users possess 10 attributes on average and
the verification takes tenfold amount of time of that of the
key generation. The parameters are set as: μ1 = 20/min,
μ2 = 200/min, and K = 30. The performance analysis in
terms of the average failure rate and the average waiting time
is shown in Fig. 5 and Fig. 6, respectively.

Fig. 5 shows the failure rate versus the arrival rate and
the number of AAs. From Fig. 5, we can see that when the
average failure rate of single-authority scheme is less than 5%,
it can only support an arrival rate of less than 20/min. With
increasing the number of AAs, the system can greatly increase
its service capacity with the support of a greater arrival rate
at the same failure rate. If we employ 7 AAs, the system can
support the arrival rate of up to 150/min, with the failure rate
of less than 5%. It is easy to infer that we can build our

TABLE I

STORAGE OVERHEAD

system based on the observation of key request rate, and then
use an appropriate number of AAs to provide high equality
service.

Fig. 6 shows the average waiting time versus the arrival
rate and the number of AAs when μ1 = 20/min, μ2 =
200/min, K = 30. From the figure, we can see that the
average waiting time increases rapidly with the increase of
arrival rate when the arrival rates are low. But later the average
waiting time will become steady because newly arrival users
will be rejected by the system due to the limit length of
waiting queue. More specifically, with single AA, the average
waiting time increases rapidly and reaches 1.5 min, which is
unbearable.

Whereas, with 7 AAs, the average waiting time is about
15s. Moreover, from Fig. 5, with the arrival rate less than
150, the failure rate is less than 5%. Although using more
working AAs brings larger configuration cost, by combining
the failure rate and the average waiting time, we can assure
that the configuration of multiple AAs can provide secret
key generation service with high quality as well as low
cost.

D. Storage, Communication and Computation
Overhead Analysis

In this section, we conduct performance analysis in terms
of storage, communication and computation overhead in each
process, among our proposed RAAC, Waters’ scheme [22],
DAC-MACS [11] and TMACS [15]. Waters’ scheme involves
only one AA in charge of key generation and distribution. In
DAC-MACS, each of the multiple AAs manages a disjoint
attribute set, and in TMACS, all AAs manage the universal
attribute set as our RAAC.

For clarity of description, we have the following definitions:
Let |p| be the size of element in the groups with prime order
p, and U be the number of attributes. Nu denotes the number
of users in the system. NUid denotes the average number of
attributes owned by users, and Nc denotes the average number
of attributes inside ciphertexts. Let NA be the number of AAs.
|Cu | denotes the average size of a user’s certificate, and |Ca|
denotes the average size of an AA’s certificate. In addition, for
DAC-MACS, UAidi (

∑NA
i=1 UAidi = U) denotes the number

of attributes the AA (with the Aidi ) manages, and NUid,Aidi

(NUid,Aidi ≤ NUid ) means the average number of attributes
the user has in AA with the Aidi . kmax denotes that the user
may have attribute sets from at most kmax (kmax ≤ NA) AAs
on average. NA,c denotes the average number of AAs related
to ciphertexts.
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TABLE II

COMMUNICATION OVERHEAD

TABLE III

COMPUTATION OVERHEAD

1) Storage Overhead: The storage overhead analysis on
each entity is shown in TABLE I. Compared with other
schemes, in RAAC, CA has an extra overhead of 2NA|p|,
which is caused by the storage of public keys P K Aid and
Aid of each AA. That extra storage is used for key generation
and auditing. Since NA will not be very large, the additional
cost is affordable. From the perspective of AA, TMACS and
RAAC both store one more certificate than Waters’ scheme,
since TMACS and RAAC explicitly take the distribution of
AA’s certificate into account when AA registers at CA. To
be noted, for a fair comparison, we do not count in the
storage of attribute version keys in DAC-MACS. In RAAC,
each user’s storage overhead is larger, mainly because the
user needs to store a copy of K ′

x for potential auditing. The
additional storage will not consume too much, thus we think
it is acceptable for users.

2) Communication Overhead: Table II shows compari-
son result about communication overhead on CA, each AA,
owner, and user of RAAC, Waters’ scheme, DAC-MACS
and TMACS. During System Initialization phase, all multi-
authority schemes introduce more communication overhead
in CA, but it is a necessary sacrifice for AA’s registration.
Besides the registration overhead, RAAC does not introduce
much extra cost, compared with other multi-authority schemes.
In Key Generation&Distribution phase of RAAC, the commu-
nication overhead on CA and AA is obviously larger than others
due to the fact that CA must participate in the key generation
and AA must communicate with CA. The extra overhead is
introduced to guarantee the auditability of AAs, which is worth.
Furthermore, from the view of users, RAAC gets a better
performance than TMACS in Key Generation&Distribution
phase because the latter one enforces users to communicate
with t authorities. Our RAAC also shows an advantage over
DAC-MACS in Encryption and Decryption phase, because the
ciphertext length of RAAC is smaller.

3) Computation Overhead: The computation overhead is
analyzed as shown in Table III. As we have mentioned in
Section VII-D2, in System Initialization phase, multi-authority
settings inevitably introduce some overhead for AA registra-
tion, which is acceptable. In Key Generation&Distribution
phase, after receiving secret keys from AAs, users in TMACS
and RAAC need to recompute their secret keys to decrypt.
However, the recomputation can be done once and then users
can store them. To decrypt a ciphertext, RAAC is as efficient
as Waters’ scheme. In Decryption phase, it seems that DAC-
MACS is more efficient for users. However, the reason is that
DAC-MACS adopts the outsourcing technique to let the cloud
server do most decryption for users. If we look at the total
computation overhead of the cloud server and the user, RAAC
is at least as efficient as DAC-MACS.

VIII. DISCUSSION OF A HYBRID MODEL CONSTRUCTION

This paper has presented RAAC scheme based on a single-
authority algorithm, where the authority is replaced by one
CA and multiple AAs (we rename the combination as CA/AAs
unit). Practically, RAAC can also be built in many traditional
multi-authority settings, e.g., [11], [31], where the attribute
authorities (referred to as TAAs to distinguish AAs of tradi-
tional multi-authority settings from AAs in CA/AAs unit of
RAAC) manage disjoint attribute subsets. In what follows, we
show how our proposed scheme works with DAC-MACS [11].

At a high level, the CA/AAs unit acts as an individual TAA
to manage a disjoint attribute subsets. Besides, there is a
root central authority to play the role of CA in DAC-MACS
(denoted as RCA for distinction). Fig. 7 briefly depicts the
hybrid architecture. The secret key of user j from a certain
C A/AAs unit k (SK j,k) is:

K j,k = gαk · gau j · gat j,k/βk , L j,k = gβkt j,k , R j,k = gat j,k ,

∀xk ∈ Sj,k : K j,xk = gβkγk t j,k · H (xk)
γkβku j ,
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Fig. 7. A hybrid architecture.

where αk , βk and γk are master secret keys of CA. It is noted
that the components for decryption outsource and attribute
revocation, z j and vxk , respectively, are omitted in our discus-
sion. The remaining will discuss how we generate the same
secret key format as DAC-MACS with CA/AAs unit, while
preserve the auditability of AAs.

To output SK j,k , an AA in CA/AAs k generates an interme-
diate key as:

ICAidi ,Uid j ,k = {Kxk = h
kAidi t1
xk , Jxk = ht2

xk
}∀xk∈S j,k ,

where, hxk = g · H (xk)
u j acts the same role of hx in RAAC.

After receiving the intermediate key, CA computes:

∀xk ∈ Sj,k,

K ′
xk

=
(

h
kAidi θk t1
xk · gφk (t1+t2)

)γkβk
,

K ′′
xk

=
(

hϕk t2
xk

· H (xk)
u j

(
1−(kAidi θk t1+ϕk t2)

)
g−φk (t1+t2)

)γkβk
,

where, ϕk, θk and φk are the master secret keys maintained by
that CA in CA/AAs unit k). Then, the user recomputes secret
key for each attribute in the set:

∀xk ∈ Sj,k : K j,xk = K ′
xk

· K ′′
xk

= gβkγkdk · H (xk)
γkβku j .

where, dk = (kAidi θk t1 + ϕk t2), which acts as t j,k in DAC-
MACS. Other parts of secret key K j,k, L j,k, R j,k are computed
by CA in the same way as DAC-MACS does.

The above output SK j,k has the same format as DAC-
MACS, which shows the construction can realize a traditional
multi-authority structure. Furthermore, as g · H (xk)

u j plays
the same role as hx for every attribute x in CA’s management
domain, and L j,k plays the similar role of L in RAAC, the
Auditing&Tracing mechanism can be preserved.

IX. CONCLUSION

In this paper, we proposed a new framework, named
RAAC, to eliminate the single-point performance bottleneck
of the existing CP-ABE schemes. By effectively reformulating
CP-ABE cryptographic technique into our novel framework,
our proposed scheme provides a fine-grained, robust and effi-
cient access control with one-CA/multi-AAs for public cloud
storage. Our scheme employs multiple AAs to share the load

of the time-consuming legitimacy verification and standby for
serving new arrivals of users’ requests.

We also proposed an auditing method to trace an attribute
authority’s potential misbehavior. We conducted detailed secu-
rity and performance analysis to verify that our scheme is
secure and efficient. The security analysis shows that our
scheme could effectively resist to individual and colluded
malicious users, as well as the honest-but-curious cloud
servers. Besides, with the proposed auditing & tracing scheme,
no AA could deny its misbehaved key distribution. Further
performance analysis based on queuing theory showed the
superiority of our scheme over the traditional CP-ABE based
access control schemes for public cloud storage.
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