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Abstract—With the popularity of group data sharing in public cloud computing, the privacy and security of group sharing data have

become two major issues. The cloud provider cannot be treated as a trusted third party because of its semi-trust nature, and thus the

traditional security models cannot be straightforwardly generalized into cloud based group sharing frameworks. In this paper, we

propose a novel secure group sharing framework for public cloud, which can effectively take advantage of the cloud servers’ help but

have no sensitive data being exposed to attackers and the cloud provider. The framework combines proxy signature, enhanced TGDH

and proxy re-encryption together into a protocol. By applying the proxy signature technique, the group leader can effectively grant the

privilege of group management to one or more chosen group members. The enhanced TGDH scheme enables the group to negotiate

and update the group key pairs with the help of cloud servers, which does not require all of the group members been online all the time.

By adopting proxy re-encryption, most computationally intensive operations can be delegated to cloud servers without disclosing any

private information. Extensive security and performance analysis shows that our proposed scheme is highly efficient and satisfies the

security requirements for public cloud based secure group sharing.

Index Terms—Secure group sharing, forward secrecy, backward secrecy, public cloud computing, group key agreement
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1 INTRODUCTION

THE demand of outsourcing data has greatly increased in
the last decade. To satisfy the need for data storage and

high performance computation, many cloud computing ser-
vice providers have appeared, such as Amazon Simple Stor-
age Service (Amazon S3), Google App Engine, Microsoft
Azure, Dropbox and so on. There are two obvious advan-
tages to store data in cloud servers: 1) The data owners save
themselves out from the trouble of buying extra storage
servers and hiring server management engineers; 2) It is
easier for the data owner to share their data with intended
recipients when the data is stored in the cloud.

Despite of the above advantages of cloud storage, there
still remain various challenging obstacles, among which,
the privacy and security of users’ data have become two
major issues. Traditionally, the data owner stores his/her
data in the trusted servers, which are generally controlled
by a fully trusted administrator. However, the cloud is usu-
ally maintained and managed by a semi-trusted third party
(cloud provider). As a result, traditional security storage
technologies cannot be directly applied in the cloud storage
scenario. While it is desirable for the data owner to share
his/her private data with intended recipients, it presents an
even more challenging problem since we have to make sure
that except the intended recipients, nobody, including the
cloud providers, can obtain any useful information from the
encrypted data.

The conventional approach to address the above men-
tioned problem is to use cryptographic encryption mecha-
nisms, and store the encrypted data in the cloud.
Authorized users can download the encrypted files and
decrypt them with the given keys. But in this scenario, how
to distribute and update session keys is one of the most
important but hard problems. Digital Envelope [1] is used to
address this task in [2], [3]: the data is encrypted with a ran-
domly chosen session key by using symmetric encryption,
and then the session key is encrypted with the public key of
the specific user by using public-key encryption. For exam-
ple, we assume that the user A wants to securely send a file
F to the user B. First, The user A chooses a random session
key K, and uses a symmetric encryption algorithm (such as
DES and AES) to encrypt the file FILE: fFILEgK . Then
user A uses an asymmetric encryption algorithm (such as
RSA) to encrypt the session key K: EPuKB

ðKÞ (PuKB is B’s

public key). Here, EPuKB
ðKÞ is named as a digital envelope,

which can be transmitted in the open environment, and be
decrypted only by the user B. However, in normal ways, if
a file is shared to N specific authorized users, N digital
envelopes are required to be generated. Therefore, the com-
puting and communication overhead of generating digital
envelopes is OðNÞ for one file. Meanwhile, the computa-
tional complexity and communication overhead of session
key updating are both OðNÞ. Moreover, we assume that one
session key is required for each one sharing file. If the total
number of shared files is M for N specific recipients, the
overall overhead of digital envelope generation for all
shared files is as large as OðMNÞ.

There have been several other works [4], [5], [6], [7] on
the privacy preserving data sharing issue in cloud based
on various cryptographic tools, such as attribute based
encryption (ABE)[8], proxy re-encryption[9] , etc. Among
these existing schemes, in [4], Yu et al. have provided a
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fine-grained and scalable solution. The efficiency of Yu
et al.’s scheme [4] relies on that there is high attribute vari-
ability between different files and high attribute variability
between different users. The efficiency of the schemes in
[5] and [6] depends on the assumption that cloud servers
must be absolutely trusted. Otherwise, cloud servers can
launch the collusion attack with some curious leaving
group members. [7] has tried to realize an ABE and proxy
re-encryption based data sharing scheme in mobile devi-
ces, which also has the problem mentioned in [5], [6].

With the development of cloud services and social net-
works, a group can be easily organized between some peo-
ple over Internet due to the same interests, so that group
applications with the aid of cloud servers become possible
and attract more and more attentions [10], [11], [12]. Some
Internet companies, such as Facebook, Dropbox, and Ten-
cent, have provided their own group applications. Taking
Fig. 1 for example, the normal group application scenario in
cloud can be described as follows: The group leader opens
up a sharing area in the cloud to form a group application.
Then, he/she grants the group members the right to imple-
ment data management. All the data in this group are avail-
able to all the group members, while they remain private
towards the outsiders of the group including the cloud pro-
vider. The group leader can authorize some specific group
members to help with the management of the group, and
this privilege can also be revoked by the group leader.
When a member leaves the group, he/she will lose the abil-
ity to download and read the shared data again.

Our framework in this paper aims to reduce the overhead
for the involved parties, while alleviating the trustiness
dependence of the semi-trusted cloud provider. Addition-
ally, there is another crucial design request in this scenario:
any group member, including the group leader, can be tem-
porary offline and become online again at any time.

Main contribution of this paper can be summarized as
follows: 1) The proposed scheme supports the updating of
the group key pair whenever group members’ joining or
leaving happens, which transfers most of the computational
complexity and communication overhead to cloud servers
without leaking the privacy. 2) Privilege of group manage-
ment can be granted to any specific group member, which
can be revoked at any time. 3) Enhanced on the original
Tree-Based Group Diffie-Hellman (TGDH), with the help of

cloud servers, the proposed scheme enables the group to
negotiate and update the group key pairs even though not
all of the group members are online together. Any offline
group member can launch group key synchronization when
he/she becomes online again in the next time.

The rest of this paper is organized as follows. In Section 2,
we discuss the system models of our proposed scheme: net-
work model and security model. Section 3 reviews some
related technique preliminaries. Section 4 presents our
dynamic secure group sharing framework in public clouds.
In Section 5, we give security and performance analysis.
Finally, we briefly discuss related work in Section 6, and
conclude this paper in Section 7.

2 SYSTEM MODELS

2.1 Network Model

Network model in this paper is shown in Fig. 1, where the
group membership can change over time: each group mem-
ber except the group leader can leave or apply to join the
group at his/her will. Moreover, each group member in the
group can be temporary offline and become online again at
any time. Regardless of whether everyone is online or off-
line, the group can negotiate a group key pair (the group
public key and the group private key) with the help of cloud
servers. This group key pair is used to protect the data
shared in the group. Group members’ leaving and joining
can launch key updating process. Temporary offline group
members should be also considered in protocol design.
When these group members become online again, they
should implement key synchronizing to compute to get the
current key pair.

Meanwhile, cloud servers have powerful computing and
storing capability to help with the group key maintaining
process, but cannot leak private information of the group,
including data, group members’ security parameter infor-
mation and so on. When a member leaves the group, he/
she will lose the ability to download and read the shared
data ever again, which is called backward secrecy in cloud
based group sharing. To the data shared before the revoked
member’s leaving, cloud servers can copy them, or the leav-
ing member can download the encrypted data and related
digital envelopes before his/her leaving. So wholly prevent-
ing leaving member from download and read the data
shared before his/her leaving cannot be achieved. Actually,
we introduce challenge-response based access policy, which
can effectively prevent the leaving member from download
the shared data, if cloud servers are semi-trusted. Different
from group communication in traditional ways [13], [14],
[15], [16], [17], [18], [19], [20], [21], forward secrecy is rede-
fined in secure cloud sharing, which means that newly join-
ing group members can decrypt and read all the shared files
now and before.

There are three kinds of users in cloud based group shar-
ing applications:

1) Group Leader (GL in short). There is only one group
Leader for a group, who is the group creator and the
top level group administrator. He/she buys or
obtains storage and computing resource from the
cloud provider. GL can authorize specific group

Fig. 1. An example of cloud based group sharing scenario.
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members to manage the group, and this privilege of
management can also be revoked by GL. GL provides
initial group security parameters for all group mem-
bers in the group.

2) Group Administrator (GA in short, described as GAi,
i ¼ 1; 2; . . . ;m). There are 0, 1, or more authorized
group administrators in a group. They can maintain
group membership, and acts as sponsors to imple-
ment group key updating. Their privilege of man-
agement can be revoked by the group leader at any
time. They also have all the functions of basic group
members, such as uploading and downloading.

3) Group Member (GM in short, Described as Mj,
j ¼ 1; 2; . . . ; n). Each group member can implement
file download and upload operations in the authenti-
cated group. Each GM can get some related public
information from cloud servers and compute the
specific set of security parameters, such as group key
pair.

Here, GL 2 {GA} � {GM},m < n.

2.2 Security Model

In this work, we just consider the cloud provider is semi-
trusted: honest but curious, which means that cloud servers
would follow our proposed protocol in general, but would
try to find out as much secret information as possible based
on each group member’s inputs. In general, we assume
cloud servers are interested in data contents and group
member’s security information rather than other secret
information. Cloud servers might collude with some mali-
cious members for the purpose of getting data contents and
group members’ private information.

Our scheme should satisfy the security requirements of
backward secrecy and forward secrecy. The former one
ensures that the revoked user cannot decrypted new
ciphertexts. The later one ensures that the newly joined
user can also access and decrypt the previously published
data. This two security requirements are usually used in
some cloud based data sharing scenarios, such as [4], [5],
[7], [22], [23], [24], [25].

A potential adversary may be a former group member or
any one out of the group. We assume that an adversary can
be a passive attacker who could be a man-in-the-middle to
monitor the communications among the group members
and cloud servers. A former group member can collude
with cloud servers and try to access data contents shared in
his/her former group. An active adversary is able to imper-
sonate an legitimate group member to gain some right.

In general, we say that our scheme is secure if no adver-
sary can succeedwith any possible attacksmentioned above.

3 TECHNIQUE PRELIMINARIES

3.1 Proxy Signature

Proxy signature [26], [27] is a signature scheme, in which an
original signer can delegate his/her signing capability to a
proxy signer, and then the proxy signer generates a signa-
ture on behalf of the original signer. From a proxy signature,
a verifier can be convinced of the original signer’s agree-
ment on the signed message. Researchers have proposed 3
kinds of proxy signature algorithms: full delegation, partial

delegation and partial delegation by warrant. The former two
are eliminated by partial delegation with warrant [28], which
is proved to be more secure and practical, so we also use
partial delegation with warrant in our protocol design.

Let A be an original signer who has an authentic key
pair (PrKA and PuKA), and B be a proxy signer who has an
authentic key pair (PrKB and PuKB). Letmw be A’s warrant
information for the delegation, which has semantic means
including the original signer’s identity, some information
about the proxy signer (for example the identity), period of
delegation validity, the qualification of messages on which
the proxy signer can sign, etc. Let dA ¼ SignðPrKA;mwÞ be
A’s signature on the warrant mw using his/her private key
PrKA. A transmits dA to the proxy signer B. Then partial
delegation with warrant based proxy signature scheme is
described as follows:

� (Proxy signature key generation) PKG is a proxy sig-
nature key generating algorithm that takes original
signer’s signature dA and proxy signer’s private
key PrKB as inputs, and outputs a proxy signature
key pair (PPrKB, PPuKB). It is executed by the
proxy signer:

ðPPrKB; PPuKBÞ  PKGðdA; PrKBÞ: (1)

� (Proxy signing) PS is a proxy signing algorithm that
takes proxy signature private key PPrKB and mes-
sage m as inputs, and outputs proxy signature dP . It
is executed by the proxy signer B:

dP  PSðm;PPrKBÞ: (2)

� (Proxy signature verifying) PSV is a proxy signature
verifying algorithm that takes (dP , m, mw, PuKA,
PuKB) as inputs, and outputs either accept or reject.
It is executed by any verifier:

PSVðdP ;m;mw; PuKA; PuKBÞ ¼? accep or reject: (3)

Till now, a lot of partial delegation with warrant based
proxy signature schemes are proposed, for example in [29],
[30], [31]. In our scheme we use the algorithm examples in
[27], [28] to grant the group administration privilege to the
specific group members. However, actually we only use the
basic concept of proxy signature described here. Other
newly proposed reasonable group signature schemes can
also be used in our protocol.

3.2 TGDH Based Group Key Agreement

The TGDH protocol in [19] uses an adaptation of binary key
trees in the context of fully distributed group key agreement
based on Decisional Diffie-Hellman problem [32]. Let p and
q be two prime numbers which satisfy the condition qjp� 1
and the size of p and q are large enough so that solving the
discrete logarithm problem in G is infeasible computational,
where G is a subgroup with order q of a finite field Z�p . Let g
be a generator of G. The binary key tree in TGDH protocol
is organized in the following manner: each node hl; vi is

XUE AND HONG: A DYNAMIC SECURE GROUP SHARING FRAMEWORK IN PUBLIC CLOUD COMPUTING 461



associated with a secret key Khl;vi and the corresponding

blinded key BKhl;vi ¼ gKhl;vimod p. Each secret key Khl;vi of
the internal node hl; vi is the Deffie-Hellman exchanged key
between its two child nodes and can be computed
recursively as follows:

Khl;vi ¼ BKhlþ1;2vþ1i
Khlþ1;2vi mod p

¼ BKhlþ1;2vi
Khlþ1;2vþ1i mod p

¼ gKhlþ1;2viKhlþ1;2vþ1i mod p:

(4)

The key pair at the root node (Kh0;0i and BKh0;0i) is the
established group key pair (group public key PuKG and
group private key PrKG) shared by all group members:
PuKG ¼ Kh0;0i and PrKG ¼ BKh0;0i. Each group member is

associated with a leaf node, whose security key is randomly
and securely chosen.

Based on the TGDH protocol, Each group member Mi at
the leaf node hl; vi knows all publicly shared blinded keys
of sibling nodes of all nodes in the path from hl; vi to h0; 0i
and can compute all secret keys of nodes in the path. For
example in Fig. 2, M2 knows his/her secret key Kh3;1i and
the blinded keys broadcasted by other group members:
BKh3;0i, BKh2;1i, BKh1;1i. Therefore, M2 can compute the key

pairs of nodes h2; 0i, h1; 0i and h0; 0i.
There are five basic operations in TGDH: Join, Leave,

Merge, Partition and Key-refresh. From [19] we know that:

1) A joining operation requires two rounds (broadcast)
with two messages. The number of modular expo-
nentiations is Oð2h� 2Þ and Oðh� 1Þ(h ¼ dlogðnÞe),
where Oð2h� 2Þ modular exponentiations are
needed by the sponsor to compute h� 1 security
keys Ks and blinded keys BKs, and Oðh� 1Þ modu-
lar exponentiations are needed by each other mem-
ber to compute related updated key in his/her path
from its associated node to the root node.

2) A leaving operation requires one round with one
message. The number of modular exponentiation
needed are also Oð2h� 2Þ and Oðh� 1Þ.

There have been a lot of work to enhance the robustness
of TGDH [33], [34], [35], including how to keep the stability
when frequently joining and leaving, overhead optimiza-
tion when more than one group members joining or leaving
at the same time, and so on. However, all of these schemes
do not consider how to do key negotiation when not all the
group members online together at the same time. The
assumption that all group members should be online
together cannot be guaranteed in the cloud environment,
which makes that the traditional TGDH is not suitable. This

paper will put forward an improved scheme to deal with
this problem.

3.3 Proxy Re-Encryption

Proxy re-encryption [9], [36], [37] is an cryptographic primi-
tive in which one person (Take the user A for example)
allows a semi-trusted proxy to re-encrypt his/her message
that will be sent to another designated person (Take the
user B for example). A should generate a proxy re-encryp-
tion key rkPuKA!PuKB

by combining his/her secret key with

B’s public key. This re-encryption key is used by the proxy
as input of the re-encryption function, which is executed to
convert a ciphertext encrypted under A’s public key (PuKA)
into another ciphertext that can be decrypted by B’s private
key (PrKB). Except for converting, the proxy cannot see the
underlying data contents.

Proxy re-encryption is extensively used to provide
ciphertext updating in cloud environment. By this way,
most computational intensive operations of ciphertext
updating can be transferred to cloud servers, without reveal
any content of ciphertext to them. This paper is not the first
to introduce proxy re-encryption into cloud based data
sharing. A lot of works [4], [6], [7], [38] rely on proxy re-
encryption to re-encrypt digital envelopes or shared data in
cloud servers. Please refer to [9], [36], [37] for more details
of proxy re-encryption schemes.

4 OUR PROPOSED SCHEME

This section first gives an overview of our proposed scheme,
then describes the scheme in detail which mainly consists of
five phases: Group Initialization, Group Administration Privi-
lege Management, Group Member Leaving and Joining (includ-
ing Group Member Leaving, Group Member Joining and Group
Administrator Leaving), Key Synchronizing, and Data Sharing
Management.

4.1 Overview

Obtaining storage and computing resource from the cloud
provider, the group leader GL implements the phase of
Group Initialization to initialize a binary tree and some
related security information of the group. Then GL can uni-
cast the private key of each leaf node to the associated group
member under the protection of encryption and signature.
With the help of cloud servers’ storage, each member can
compute the group private key PrKG.

Relying on the proxy signature, the phase of Group
Administration Privilege Management can help GL grant
the group administration privilege to some specific
group members.

Furthermore, we divide the phase of Group Member Leav-
ing and Joining into three possible sub-phases: Group Member
Joining, Group Member Leaving and Group Administrator Leav-
ing. Through the sub-phase of Group Member Joining, a
group administrator and the new joining group member
interact with each other to update security information of
the group, including the group key pair PrKG and PuKG.
Forward Secrecy should be guaranteed when a group mem-
ber joins, which ensures that the newly joined user can also
access and decrypt the previously published data. There-
fore, all the old digital envelopes used to protect session

Fig. 2. A TGDH key Tree with six nodes.
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keys, which are generated to encrypted previously pub-
lished data don’t need to be updated. When a group mem-
ber leaves, his/her associated node is mandated by a group
administrator. In the sub-phase of Group Member Leaving,
the group administrator GA launches enhanced TGDH
based group key updating and then generates a proxy re-
encryption key from the version of group public key used
in the existing digital envelopes to the new updated version.
Different from a general group member, a group adminis-
trator usually mandates more than one leaf node, and he/
she knows all the secret keys of these leaf nodes. Therefore,
when a group administrator leaves, another GA or GL
should mandate all these leaf nodes, change the security
keys, and update security information of the group includ-
ing the group private key. The proxy re-encryption imple-
mentation is like that used in the sub-phase of Group
Member Leaving. With the algorithm of proxy re-encryption,
cloud servers can update all existing digital envelopes to be
encrypted under the new updated group public key.

Key Synchronizing is a key part of enhanced TGDH in our
scheme. With the help of cloud servers, it makes temporar-
ily offline group members can compute the current agreed
group private key and other security information which
needs to be synchronized.

The phase of Data Sharing Management describes the
method how to securely upload and download file in the
group. Furthermore, we detailed describe all these phases
in the following sections.

4.2 Group Initialization

After obtaining storage and computing resource from the
cloud provider, GL generates a shortest binary tree with n
leaf nodes, where n is the number of group members
(including GL itself) in the initial group. Each node of this
binary tree can only have either zero (as a leaf node) or two
child nodes, which means a node with one child is not
allowed. Each one of these n leaf node is associated with
one different group member.

GL chooses a randomnumber for each leaf node, and uses
it to generate a secret key for the associated group member.
Then, GL follows Eq. (4) to compute the secret keys and the
blinded keys for each node in the binary tree. GL initializes
the version of each node to “0”. The version is designed to
determine whether key synchronizing is needed, which we
will discuss in Section 4.7. Fig. 3 gives the pseudo-code about
the group initialization. For each group member Mi, GL
encrypts IndexMi

, KMi
and a timestamp value T with

PuKMi
: mw!Mi

 EPuKMi
ðIndexMi

jjKMi
jjT Þ, where IndexMi

is the index which represents group member’s associated
node position in the binary tree),KMi

is the secret key of the

leaf node associating withMi, PuKMi
isMi’s public key, and

T is a timestamp value represent the current time. Then GL
signs mw!Mi

with its private key PrKGL: dPGL
 

Signðmw!Mi
; PrKGL; T Þ. Finally, for each group memberMi,

GL unicasts fmw!Mi
; dPGL

g toMi.

After receiving the message from GL, each group mem-
ber Mi can verify timeliness of the received message and
signature validation, and then get his/her security key KMi

and the index of its associated node IndexMi
.

We assume that there is an authenticated channel between
GL and cloud servers. After the above operation, GL
uploads the binary tree structure and related information
into the cloud. For each node, its blinded key and node ver-
sion are included. Moreover, for each leaf node, The identity
and the public key of its associated group member are fur-
ther included.

AfterMi sends a request including the index of its associ-
ated node to cloud servers, cloud servers reply the blinded
keys of all sibling nodes of every node in the path fromMi’s
associated leaf node to the root node (We specially define
that the root node’s sibling node is itself.). After that, follow-
ing Eq. (4), the group member Mi can compute all secret
keys and blinded keys of every node in the path, finally
reaching the root node. The secret key of the root node is
the group private key PrKG, and the blinded key of the root
node is the group public key PuKG.

Take M2 in Fig. 2 for example. After receiving M2’s
request which contains the index of M2’s associated node
(h3; 1i), Cloud servers find out sibling nodes of all nodes in
the path from the node h3; 1i to the root node h0; 0i, and
return the blinded keys of them: BKh3;0i, BKh2;1i, BKh1;1i
and BKh0;0i. After receiving these blinded keys,Mi can com-

pute Kh3;1i, Kh2;0i, Kh1;0i, Kh0;0i and BKh3;1i, BKh2;0i, BKh1;0i,
BKh0;0i. Here, Kh0;0i and BKh0;0i are the current group pri-

vate key PrKG and group public key PuKG.

4.3 Group Administration Privilege Management

GAs can help the group leader GL manage the group,
including accepting new group member’s joining request,
assisting group members to join the group and handling
members’ leaving event. GL can authorize and revoke the
administration privilege to/from some specific group mem-
bers by his/her will. When GL authorizes a group member

Fig. 3. Pseudo-code of group initialization process.
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GMj to be an GA, GL first sets the combination of some
semantic information such as Mj’s identity IDMj

, the start-

ing time, period of validity and the qualification of signing,
etc. as the warrant information (mwMj

) for the delegation to

Mj. Following the process described in Section 3.1, Mj

obtains a pair of proxy signature keys PPrKMj
and

PPuKMj
. After that, Mj can be verified by any other person

only if he/she knows GL’s public key. If a signature signed
by Mj over specific data has passed the verification, Mj can
be considered as a legitimate proxy signer delegated by GL,
and the verified data can be accepted by the verifier.

There are also possibly leaving events for GA. We will
describe the group member leaving and the group admin-
istrator leaving processes in Sections 4.5 and 4.6 respec-
tively. From these two sections, we can find that the
group administrator leaving process is more complex
than the group member leaving process. Based on this
reason, selecting group members to become group admin-
istrators should have the great probability to be online for
a long time.

4.4 Group Member Joining

When a group member joins, he/she sends a joining request
to one group administrator(taking GAj for example). GAj

handles this joining event as a sponsor. After verifying the
new joining group member’s legitimacy, GAj processes as
follows:

� GAj tries to find a leaf node which is mandated by
one of the group administrators: If so, the found
node is set as the associated one of the new joining
group member. If not, GAj finds the leaf node with
the smallest depth in the tree structure, and splits
this node to a parent node and two children nodes.
The left child is for existing group member associ-
ated to the found leaf node and the right one is for
the new joining group member.

Then, the new joining group member’s process is as
follows:

� Randomly select a security key.
� Get the blinded keys of all sibling nodes of every

node in the path from his/her associated node to the
root node from cloud servers.

� Compute new security keys and blinded keys of
each node in the path from his/her associated node
to the root node.

� Set the versions of his/her associated node and its
parent node to “0”. Add 1 to the version of each of
the other internal nodes in this path.

� Send all the blinded keys from his/her associated
node to the root node in this path to the GAj in an
authentication tunnel.

After receiving the above message from the new joining
group member, GAj uploads all these blinded keys in the
path to cloud servers. Cloud servers update the tree struc-
ture, and the blinded keys of every node in the path. Then
cloud servers set the versions of the new joining group
member’s associated node and its parent node to “0”, and
add 1 to the version of each other internal node in this path.

Group sharing applications often should have the prop-
erty of forward secrecy, which means that new joining
members can decrypt and read all the files even though
shared before. Therefore, in our scheme, when a group
member joins, the binary key tree and group key pair
should be updated, but all digital envelopes do not need to
be updated. The group administrator or the group leader as
a sponsor can securely send the old group private key

PrKDE
G (used to decrypt digital envelopes) to the new join-

ing member: EPuKNEW
G
ðPrKDE

G Þ. The sponsor also send

EPuKNEW
G
ðPrKDE

G Þ to cloud servers in an authentication tun-

nel, and then cloud servers store it. PrKDE
G and PuKDE

G are

used in digital envelopes. PrKNEW
G and PuKNEW

G are the

current new agreed key pair. EPuKNEW
G
ðPrKDE

G Þmakes every

group member, who knows PuKNEW
G , be able to still

securely get PrKDE
G . Those group members who become

offline to be online again can first compute to get PrKNEW
G

and then securely get PrKDE
G from EPuKNEW

G
ðPrKDE

G Þ. If a

group member needs to upload a file, he/she should still

use PuKDE
G to generate the relatedDE.

4.5 Group Member Leaving

When a group member leaves, in order to provide back-
ward secrecy, the group key pair should be updated, and
all digital envelopes related to the sharing data in this group
should be also updated and encrypted by the new group
public key. In our scheme, one GA should mandate leaving
group member’s position in the binary tree and act as a
sponsor to implement the group member leaving process.

Detailed pseudo-code of the group member leaving pro-
cess is shown in Fig. 4. Assume GAi is the current chosen
mandator and sponsor for this leaving event. GAi’s imple-
mentation process is further described as follows:

� If the sibling of the leaving group member’s associ-
ated node is also mandated by a GA, both these two
nodes (the leaving group member’s associated node
and its sibling) and their parent node should be
merged to one leaf node. GAi mandates this new leaf
node. Otherwise, if the sibling node is associated
with a group member, GA straightly mandates the
leaving group member’s associated leaf node.

� Randomly choose a new secret key K0 for the new
mandated node hi; ji, and then update secret keys
and blinded keys in the path from hi; ji to the root
node h0; 0i. The updated root security key and
blinded key are the new group private key (PrK0G)
and group public key (PuK0G).

� Add 1 to the version of each internal node in this
path(except hi; ji) and set the version of hi; ji to “0”.

Then, GAi computes the proxy re-encryption key and
then uploads the updated information into the cloud as
follows:

� GAi computes the proxy re-encryption key
rkPuKG!PuK0

G
.

� Assuming there are l nodes in the path from the
mandated nodehi; ji to the root node h0; 0i, the
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blinded keys can be named as BKl�1, BKl�2; . . . ;
BK0 (BK0 is the new group public key). GAi sends
Updating MjjdP jjPuKGAi

jjmwGAi
to cloud servers.

Updating M and dP can be computed as follows:

Updateing M ¼ hi; jijjljjBKl�1jjBKl�2jj
:::jjBK0jjrkPuKG!PuK0

G
jjT;

dP ¼ PSðHðUpdating MÞÞ;
(5)

where T is the timestamp, which can be used to
address the reply attack. PuKGAi

and mwGAi
can be

stored in cloud in advance, and thus only
Updating MjjdP should be sent.

After receiving the message, cloud servers first check
whether the timestamp T is within some allowed range
compared with the current time, check semantically legiti-
macy of mwMi

(for example, whether the current time is still

in the validity period ofmwMi
), and then verify:

PSVðdP ;Updateing M;mwMi
; PuKGL; PuKMi

Þ
¼? accept or reject:

(6)

If being “accept”, cloud servers store node mandating infor-
mation, update all blinded keys from hi; ji to h0; 0i, and add
1 to the version of each internal node in this path(except
hi; ji). Set the version of hi; ji as “0”.

When there is a group member leaving from the group,
after group key pair (the group public key and the group pri-
vate key) is updated, an arbitrary group administratorGA or
the group leaderGL should act as a sponsor to re-compute a

proxy re-encryption key from the version of group public
key used in the existing digital envelopes (PuKG) to the new
updated version (PuK0G):rkPukG!PuK0

G
. With this proxy re-

encryption key, cloud servers can update all existing digital
envelopes to be encrypted under the new updated group
public key PuK0G. This method can delegatemost of the com-
putation intensive operations to cloud servers without dis-
closing the encrypted data contents and keys in all digital
envelopes. Meanwhile, the leaving group member loses the
privilege of downloading and decrypting group sharing
data from cloud servers.

4.6 Group Administrator Leaving

Usually each GA mandates more than one leaf node, and
he/she knows the secret keys of these leaf nodes. When an
GA leaves, another GA or GL should mandate these leaf
nodes and change the security keys instead of him/her. As
in Fig. 5, the new mandating GA or GL chooses a random
secret key for each of the leavingGA’s mandated leaf nodes,
and computes the secret keys and blinded keys of all node
in the path from each of these new mandated leaf node to
the root node. All the paths from each of these leaf nodes to
the root node form a sub-tree of the binary tree. Detailed
pseudo-code of group administrator leaving process is
shown in Fig. 5.

The mandating GA or GL first lists all internal nodes in
the subtree T 0 but whose siblings are not in T 0, and gets the

Fig. 5. Pseudo-code of group administrator leaving process.

Fig. 4. Pseudo-code of group member leaving process on mandating
GA’s side.
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blinded keys of their siblings in T from cloud servers. Tak-
ing Fig. 2 for example, we assume that h3; 0i and h2; 2i are
all mandated by an GA (GAi). When GAi leaves the group,
another GA(GAj) should mandate these two nodes h3; 0i,
h2; 2i and Mi’s associated node h3; 6i. All the paths for these
three nodes to the root node form a subtree T 0. To update
the key pairs in T 0, Mj lists all internal nodes in T 0 but
whose siblings are not in T 0, and gets the blinded keys of
their siblings in T from cloud servers.Mj chooses new secu-
rity keys for h3; 0i, h2; 2i and h3; 6i. Then Mj computes all
the security keys and blinded keys of the nodes in the sub-
tree T 0, and add 1 to the version of each internal node in T 0.

The updated security key of the root nodeKh0;0i is the new
group private key PrKNEW

G , and the updated blinded key of

the root node BKh0;0i is the new group public key PuKNEW
G .

Mj re-computes a proxy re-encryption key for group’s public

key from its used version in digital envelopes (PuKDE
G ) to the

updated version (PuKNEW
G ):rkPuKDE

G
!PuKNEW

G
. At last Mj

uploads new mandating information, all blinded keys in T 0,
and the proxy re-encryption key rkPuKDE

G
!PuKNEW

G
with proxy

signature. After passing proxy signature verification, cloud
servers update the new mandating information, the public
key of every node in T 0, and add 1 to the version of each inter-
nal node in T 0. After the above process, cloud servers re-com-
putes all the digital envelopes based on proxy re-encryption
using rkPuKDE

G
!PuKNEW

G
.

4.7 Key Synchronizing

When an offline member(taking Mi for example) becomes
online again, he/she should implement the key synchroniz-
ing process to get the current agreed group private key
PrKG and the current group private key used in DEs

(PrKDE
G ). Mi gives the index of his/her associated leaf node

and node version of every internal node in the path to cloud
servers. Cloud servers first get the right position according
to Mi’s given index. Because of the node joining process
with the possible node splitting scenario described in
Section 4.4, the position with the given index may not be a
leaf node. If this scenario happens, cloud severs search in
the direction of left down along the left subtree, until reach
a leaf node. This reached leaf node can be set asMi’s current
associated node. Cloud servers reply the blinded keys of all
siblings of every node in the path from Mi’s current associ-
ated leaf node to the root node. If the position with the given
index is a leaf node, for each inherent node of the path from
Ui’s associated node to the root node, cloud servers compare
its version with its given versions from Mi, until to a node
when inequality circumstance happens(assume the index of
this node is hi; ji). We can see that all the keys of the sub
binary tree with root hi; ji haven’t changed(except hi; ji).
Cloud servers reply the blinded keys of all sibling nodes of
every node in the path from the position with the index
hi; ji to the root node. From Eq. (4), the group member Mi

can compute security keys and blinded keys of every node
in the path. The security key of the root node is the group

private key PrKNEW
G , and the blinded key of the root node

is the group public key PuKNEW
G . Mi can verify whether the

computed group public key is equal to the received group

public key from cloud servers. Then, Mi decrypts

EPuKNEW
G
ðPrKDE

G Þ to get PrKDE
G . When uploading files, he/

she uses PuKDE
G to generate the related DEs. Meanwhile,

after downloading files, he/she uses PrKDE
G to decrypt the

related DE to get the encryption keys.

4.8 Data Sharing Management

Before uploading a file to cloud servers, the data owner
gives the semantic description of the file: DESCRIPTION ,
which is convenient for searching in the group. Then, the
data owner symmetrically encrypts the file with a randomly
chosen session key SK. Together with uploading the
encrypted sharing file, the data owner also uploads a digital
envelope EPuKDE

G
ðSKÞ (asymmetrically encrypt the session

key SK with the group public key PuKDE
G ), which is cur-

rently used inDE generation. Each file is stored in the cloud
as the format:

IDjjDESCRIPTION jjfFilegSK jjEPuKDE
G
ðSKÞ; (7)

where ID is a unique identifier for the file.
Group members online or ones from offline to online

should timely get the updated EPuKNEW
G
ðPrKDE

G Þ from cloud
servers to get the group private key used to decrypt

DEs:PrKDE
G . When a group member Mi requests to down-

load a file, he/she sends a request REQ to cloud servers.
Cloud servers respond with a random number NUM and a
signature:

NUM;SignðHðNUMjjREQÞ; PuKCSÞ; (8)

where NUM is a challenge code to Mi, and PuKCS is the
public key for cloud servers in the system. Mi first verifies
the signature. If passed, he/she uses the current agreed

group private key PrKNEW
G to sign NUM: d ¼ SignðNUMjj

TMi
; PrKNEW

G Þ, where TMi
is a timestamp value. Mi sends

d to cloud servers. Cloud servers verify the timeliness of
TMi

: whether the timestamp of the message is in a permit-

ted time window. Then, cloud servers use the current

agreed group public key PuKNEW
G to verify the signature.

If passed, they send the encrypted file and the specific
digital envelope(fFilegSK jjEPuKDE

G
ðSKÞ) to Mi. Mi first

uses PrKDE
G to get SK, and then decrypts fFilegSK to get

the request file.

5 SECURITY AND PERFORMANCE ANALYSIS

5.1 Security Analysis

� Certificateless Authentication. Based on proxy signa-
ture, GL can grant the privilege of group administra-
tion to some group members as GAs. As shown in
Eq. (6), GAi only needs to provide mwGAi

and
PuKGAi

, every one who knows GL’s public key can

verify whether GAi has got GL’s authorization.
Revoking pre-existing administration privilege
granting is also simple, which is like certificate revo-
cation list (CRL) mechanism used in Traditional
PKI [39], [40]. Cloud servers can maintain a public
stored privilege revocation list (PRL), which includes
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mwGAi
and/or PuKGAi

, when GAi’s management

privilege is revoked. Before verifying legitimacy
based on Eq. (6), the verifier can first search this PRL.

� Backward Secrecy When a Group Member Leaves. This is
provably secure based on the hard Decisional Bilin-
ear Diffie-Hellman problem [32]. When a group
member leaves, his/her position in the binary tree is
mandated by a group administrator or the group
leader GL. As illustrated in Fig. 6, a group member
only knowing the security key of one leaf node could
compute security keys of every node in the path
from the leaf node to the root node. Because of this
reason, the security key of the mandated node
should be changed after the group member’s leav-
ing. Following Eq. (4), in our scheme, the security
key and blinded key of each node in the path from
the mandated node to the root node can be updated,
so the group key pair is changed to a new one. Each
of the other group members keeps his/her own pre-
vious security key. By request to get required
changed blinded key from cloud servers. Following
Eq. (4), All these group members still in the group
can compute the current new group key pair.
Because leaving group member cannot know the
new security key of his/her previously associated
node and any other leaf nodes’ security key, he/she
cannot compute the updated group key pair.

� Backward Secrecy When a Group Administrator Leaves.
This is also provably secure based on the hard Deci-
sional Bilinear Diffie-Hellman problem [32]. When a
GA leaves, as described in Section 4.6, all his/her
mandated and associated nodes should be mandated
by another GA. In order to make the leaving GA com-
puting the final group key pair become impossible,
all security keys of these nodes should be changed
by the new mandator. After the group administrator
leaving process, following Eq. (4), all other group
members still in the group can compute the final
updated group key pair by requesting some neces-
sary updated blinded keys from cloud servers. How-
ever, the leaving GA cannot know any leaf node’s
security keys, so he/she cannot compute the
updated group key pair.

� Cloud Provider Cannot Compute the Group Private Key.
Although the cloud provider knows all the blinded
keys of every node in the binary tree, he/she cannot

know any leaf nodes’ security keys. Following
Eq. (4), he/she cannot compute the security keys of
any internal nodes and the root node, so he/she can-
not get the final group private key.

� Data Confidentiality. Just as in traditional ways, each
file shared in the group (FILE) is symmetric
encrypted with a session key (KEY ): fFILEgKEY

and KEY is asymmetric encrypted with the
receiver’s public keyPuK:EPuKðKEY Þ. Assume the
symmetric encryption algorithm and asymmetric
encryption algorithm are secure, e.g. separately
using AES and RSA. In our scheme, we design a
group key pair. KEY is encrypted with the group
public key PuKG. Now the security relies on PrKG’s
security, so the scheme should guarantee only
authenticated group members know the current
group private key. From the above analysis, we
know that only the group members who know the
security keys of any leaf nodes can finally compute
the group private key. Therefore, the security of
PrKG can be guaranteed. Also, when there’s a group
member leaving the group, PrKG can be timely
updated. Meanwhile cloud servers use re-encryption
to change the digital envelopes from being under
previous group public key to be under the new
group public key. Only current group members who
know the new group private key can decrypt the
download file.

5.2 Performance Analysis

We discuss computational complexity and communication
overhead in our scheme.

In the process of group initialization, the group leader GL
should give the definition of some necessary security
parameters. GL also initializes TGDH-based binary tree and
securely unicasts separate security keys to every group
members, which contains OðN log2NÞ times exponential
modular computation and OðNÞ times unicast communica-
tion. These operations are one-time activities which are only
implemented in the initialization stage.

For granting the privilege of group administration to a
specific group member, the group leader GL needs to create
the warrant information mw and signs it, then securely
transmits the signed mw to the specific group member.
These operations contain two times asymmetric encryption
and one time symmetric encryption.

When a group member leaving or joining the group, the
group leader GL or the specific group administrator who
acts as a sponsor chooses a new security key for leaving
group member’s or new joining group member’s associated
leaf node, computes other related security keys and blinded
keys, and then transmits all the computed blinded keys to
cloud servers. The transmitted message should contain a
proxy signature provide authentication. All these opera-
tions contain Oðlog2NÞ exponential modular computation,
one time proxy signing operation and one time communica-
tion. When there’s a group member leaving the group,
digital envelopes need to be updated based on proxy re-
encryption by cloud servers, which contains OðLÞ proxy re-
encryption computation(L is the number of sharing files in
the group). When there’s a group member joining the

Fig. 6. Path illustration from a leaf node to the root node.
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group, there is no need to update digital envelopes, and

only a encrypted EPuKNEW
G
ðPrKDE

G Þ should be computed,

which contains only Oð1Þ time encryption operation on the
side of the group leader or the group administrator who
acts as a sponsor.

When a group administrator (taking GAi for example)
leaves from the group, another GA (GAj) should mandate
GAi’s mandated leaf nodes. GAj chooses new security keys
for each of these leaf nodes, and computes security keys
and blinded keys of every node in the paths from each of
these leaf nodes to the root node. Then, he/she transmits
new mandating information, all blinded keys and the proxy
re-encryption key to cloud servers. The transmitted message
should contain a proxy signature to provide authentication.
All these operations contain l 2 ðOðlog2NÞ; OðNlog2NÞÞ
exponential modular computation, one time proxy signing
operation and one time communication. In our scheme, we
choose long-time online group members to become GA in
order to prevent frequently launch GA leaving process.

For key synchronization, the group member online or
becoming offline to be online again timely publicly gets
related blinded keys from cloud servers, and then com-
putes security keys and blinded keys of each node in the
path from his/her associated node to the root node. All
these operations contains Oðlog2NÞ exponential modular
computation and one time communication. Then the group

member decrypts EPuKNEW
G
ðPrKDE

G Þ to get PrKDE
G , which

contains one time exponential modular computation.
For uploading a file, the file owner needs to choose a ses-

sion key, encrypts the file, and generates a digital envelopes.
All these operations contain one symmetric encryption, one
time asymmetric encryption, and one time communication.
The complexity of symmetric encryption and communica-
tion is linear with the length of the file.

Before downloading a file, cloud servers should first ver-
ify whether the group member knows the current group pri-
vate key to provide authentication. In our scheme we use a
Challenge-Response game, containing two time communi-
cation and two times asymmetric encryption on download-
ing group member’s side. After the verification, the
downloading group member can get the file and the related
digital envelopes from cloud servers, then decrypt the digi-
tal envelopes to get the session key and decrypt the
encrypted file, which contains one time asymmetric encryp-
tion, one time symmetric encryption and one time commu-
nication to download the file. Here, the complexity of
symmetric encryption and communication is linear with the
length of the file.

6 RELATED WORK

In Yu et al.’s scheme [4], an encrypted file can be decrypted
by a user only if he/she has all of the file’s attributes. By
using proxy re-encryption, the computing complexity of
digital envelope generation for a session key of a sharing
file decreases to only Oð1Þ at the data owner’s side. For each
one-time session key, the data owner needs to compute
only one digital envelope by using his/her own public key.
Based on the proxy re-encryption algorithm, cloud servers
can compute digital envelopes for all intended recipient.

The efficiency of Yu et al.’s scheme [4] relies on that there is
high attribute variability between different files and high
attribute variability between different users. But in group
applications, different group members usually have same
or similar interests, and they usually have attributes in com-
mon between them. In the scenario of interest based group
sharing, if using Yu et al.’s scheme, the communication and
computing overhead of user revocation will be dependent
on the size of the group. The efficiency of the schemes in [5]
and [6] depends on the assumption that cloud servers must
be absolutely trusted. Otherwise, cloud servers can launch
the collusion attack with some curious leaving group mem-
bers. So, in order to protecting files from the prying eyes of
curious cloud servers and leaving group members, the data
owner needs to re-generate his key pairs and re-generate
N � 1 proxy-re-encryption keys when revoking a group
member. This computing overhead is very high for the data
owner, especially in the scenario of user joining and leaving
frequently in the group.

In traditional studies, the security of group communica-
tion applications can be ensured by group key agree-
ment [13], [14], [15], [16], [17], [18], [19], which can provide
both backward secrecy and forward secrecy [20], [21], which are
not totally the same as that defined in cloud based group
sharing [22], [23], [24], [25]. These schemes can be divided
into two categories: centralized [13], [14] and distributed
[15], [16], [17], [18], [19], all of which require all group mem-
bers to be online together during the protocol implementa-
tion. Unfortunately, it’s difficult to have such “online
together” guarantee in group applications in the cloud.
How to make sure that such group applications in the cloud
are secure and reliable remains a challenging problem.
From what we know, only the work in [41], [42] makes a
preliminary attempt, which provides a fully
distributed Tree-Based Group Diffie-Hellman [19] based
scheme. Although the scheme only requires asynchronous
communication channels, it still requires the group mem-
bers to participate in the process of protocol implementing
and receive some others’ sent messages when members’
joining and/or leaving. Meanwhile, if a group member act-
ing as a sponsor keeps in storing the private key of the
shadow node, when he/she leaves the group, it is hard to
keep backward secrecy in this scheme. Our work gives the
extension to it to make more operability when any member
online or offline at any time. In our scheme, based on cloud
servers’ help, Group members can implement key synchro-
nization when they become online in the next time. We
have also discussed the mode of security operations in
cloud-based group applications.

7 CONCLUSION

In this paper we proposed a dynamic secure group sharing
framework in public cloud computing environment. In our
proposed scheme, the management privilege can be granted
to some specific group members based on proxy signature
scheme, all the sharing files are secured stored in cloud
servers and all the session key are protected in the digital
envelopes. We use cloud servers’ aid based enhanced
TGDH scheme to dynamical updating group key pair when
there’re group members leaving or joining the group. Even

468 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2014



though not all the group members are online together, our
scheme can still do well. In order to providing forward
secrecy and backward secrecy, digital envelopes should be
updated based on proxy re-encryption, which can delegate
most of computing overhead to cloud servers without dis-
closing any security information. From the security and per-
formance analysis, the proposed scheme can achieve the
design goal, and keep a lower computational complexity
and communication overhead in each group members’ side.
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