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CrossChannel: Efficient and Scalable Cross-Chain
Transactions Through Cross-and-Off-Blockchain

Micropayment Channel
Xinyi Luo, Kaiping Xue, Senior Member, IEEE, Qibin Sun, Fellow, IEEE, Jun Lu

Abstract—The surge in blockchain-based cryptocurrencies has
created a pressing need for Cross-Chain Transaction (CCTx)
solutions. Existing solutions either lack sufficient security, like
centralized exchanges, or suffer from poor efficiency and scala-
bility, such as atomic swaps. Inspired by the success of the Light-
ning Network in accelerating Bitcoin transactions, we propose
CrossChannel that establishes cross-and-off-chain micropayment
channels to achieve efficient and scalable CCTx. Specifically,
we analyze the challenges of extending one-chain channels to
cross-chain scenarios caused by the separation of blockchains. To
overcome these challenges, we employ the chain relay mechanism
to synchronize channel-related information across blockchains
and construct the channel management protocol on this ba-
sis, ensuring the same security level as one-chain channels in
cross-chain settings. We prototype CrossChannel between two
Ethereum testnets, comparing its transaction efficiency and costs
with a typical HTLC-swap scheme. Results demonstrate the
significant advancements in efficiency and scalability offered
by CrossChannel. Even with channels closing after just 20
transactions, CrossChannel exhibits a fivefold capacity increase
for handling CCTxs compared to HTLC swaps.

Index Terms—blockchain, cross-chain transaction, payment
channel, scalability, off-chain payment

I. INTRODUCTION

The emergence of blockchain-based cryptocurrencies has
emphasized the need for Cross-Chain Transactions (CCTx)
[1]. For instance, if Alice exclusively holds bitcoins but
needs to pay Bob in ethers, a Bitcoin-to-Ethereum transaction
becomes necessary. CCTx has garnered significant attention
and research efforts from academia and industry alike. Ini-
tially, centralized exchanges were commonly utilized, where
a trusted intermediary facilitated cryptocurrency exchanges.
However, these centralized exchanges are susceptible to theft
of traders’ funds [2], [3]. For example, Mt. Gox, formerly
one of the leading global bitcoin exchanges, announced the
disappearance of approximately 850, 000 bitcoins valued at
around $480 million at that time, believed to be stolen,
ultimately resulting in bankruptcy [2].

Given the growing concerns surrounding centralized ex-
changes, researchers are exploring decentralized solutions for
CCTx to address the vulnerabilities introduced by trusted
intermediaries. One of the most well-known solutions is the
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atomic swap scheme, which is based on Hash Timelock
Contracts (HTLC) [4]–[6]. HTLC allows a user to lock assets
in a contract, and another user can withdraw those assets by
providing the required secret. If the secret is not provided
within a specified time limit, the original user can withdraw
their assets. For instance, Alice on the Bitcoin blockchain
and Bob on the Ethereum blockchain can conduct an HTLC-
swap with the assistance of Carol, who has accounts on both
blockchains and may be malicious. The HTLC-swap typically
involves at least four steps. First, Alice locks her bitcoins in the
HTLCBTC . Then, Carol locks her ethers in the HTLCETH .
Next, Bob submits a secret to HTLCETH to acquire the
locked ethers. Finally, Carol submits the secret to HTLCBTC

to withdraw the locked bitcoins.
The process of atomic swaps is lengthy. It involves multiple

rounds of confirmations on different blockchains, significantly
slowing down transaction processing. Furthermore, these mul-
tiple confirmations result in users having to pay transaction
fees to blockchain miners multiple times. Additionally, users
are required to pay fees to the intermediary, such as Carol,
making CCTx extremely costly. While there are alternative so-
lutions, such as notarized atomic swaps [7], [8] and sidechains
[9]–[11], the issues of low efficiency and high expenses persist.
Taking into account these challenges and drawing inspiration
from the success of the Lightning Network [12] in facilitating
Bitcoin transactions, we propose the establishment of cross-
and-off-chain payment channels.

The core concept of the Lightning Network is to allow two
users to create an off-chain payment channel by locking assets
on the blockchain. Subsequently, they can conduct transactions
without directly broadcasting them to the blockchain. Instead,
they sign their balance as a payment proof for each transaction.
Let’s consider an example where Alice locks x assets and Bob
locks y assets, resulting in an initial balance of (x, y). And
after the nth payment, their balance becomes (xn, yn). If they
choose to close the channel at this point, either user can submit
(xn, yn) along with the two signatures to the blockchain.
The blockchain miners verify the correctness of the balance,
ensuring that the total balance xn+yn equals x+y, and verify
the correctness of the signatures. If both valid, the locked
assets will be transferred to the respective users based on the
balance. In the event that an outdated balance is submitted, the
payment channel provides a dispute mechanism that allows the
other participant to present a more recent one. By utilizing
off-chain payment channels, only two transactions (one for
channel creation and another for channel closing) are required
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to support numerous payments. This significantly increases the
overall transaction throughput and allows users to benefit from
lower transaction fees.

Extending a one-chain payment channel to cross-chain
scenarios presents several security issues, referred to as the
“colluded deception” and “inability to dispute”. First, neither
blockchain can verify the total locked balance since users can
only lock assets on their respective blockchains independently.
This creates an opportunity for collusion between the two
users, allowing them to deceive the blockchains regarding the
balance. Consequently, they can acquire more assets during
channel closure than the amount they have actually locked.
Second, even if one user is honest, the channel may still be
insecure due to the lack of dispute capability. This is because a
user cannot send transactions without an account, thus cannot
dispute. Therefore, if a user attempts to close the channel
with an outdated balance, the blockchain cannot identify the
problem through notifications from the other user.

Both the aforementioned issues, including colluded decep-
tion and inability to dispute, arise due to the separation of
blockchains. To address these challenges, we employ a chain
relay mechanism to synchronize channel-related information
across blockchains. The chain relay serves two primary pur-
poses. First, it synchronizes channel snapshots during channel
creation, enabling the two blockchains to maintain a consistent
view of the channel, particularly with respect to confirming
the total locked balance. Second, it synchronizes balance
proofs and disputes submitted by users during channel closure,
thereby facilitating mutual supervision among users. In addi-
tion to the security concerns, the cross-chain channel also faces
the issue of asset availability. For instance, if the settled assets
exceed the locked assets, there may not be sufficient assets
available for settlement. To mitigate this problem, we propose
the adoption of a bank-based asset management mechanism.
In summary, the primary contributions of this work are as
follows:

• We propose utilizing off-chain payment channels to facil-
itate cross-chain transactions. To address the security and
availability challenges caused by the separation between
blockchains, we introduce a chain relay protocol and a
bank-based asset management mechanism. As a result,
we present CrossChannel that enables two users on differ-
ent blockchains to establish an off-chain payment channel
for conducting fast and cheap cross-chain payments.

• To ensure the efficiency and security of the chain relay,
we design the channel snapshot mechanism that contains
all channel-related information within a short content,
acting as the relayed content. In addition, we employ
a Proof-of-Stake (PoS) consensus protocol adopted by
relayers, guaranteeing the correctness of chain relay.

• We prove that the cross-chain channel achieves the same
security level as that of one-chain channels. Besides,
we prototype CrossChannel between two Ethereum-based
testnets to evaluate its practical overhead. We use the
queuing theorem to systematically analyze CrossChan-
nel’s performance and compare it with the basic HTLC-
swap scheme. Results show that, even when each channel
undertakes only 20 transactions, CrossChannel still real-

izes a fivefold performance compared to HTLC swap.
The rest of this paper is organized as follows. Section II

presents the related work. Section III introduces the prelimi-
naries of blockchains. In Section IV, we first show our insights
of establishing cross-chain payment channels, analyzing the
issues and solving ideas (IV-A). On this basis, Section IV-B
to IV-D describe the system model, security assumptions,
and design goals respectively. Section V elaborates the pro-
posed solution by three steps, i.e., defining the channel data
structure and snapshot mechanism (V-A), introducing channel
management protocol (V-B), and explaining the chain relay
mechanism (V-C). Sections VI and VII give the security and
performance analysis. Section VIII concludes the paper.

II. RELATED WORK

A classic solution for Cross-Chain Transactions (CCTx) is
the atomic swap scheme based on the Hash Timelock Contract
(HTLC). The process of HTLC swaps can be summarized as
follows. When Alice on blockchain A needs to pay Bob on
blockchain B, she finds another user, Carol, who has accounts
on both blockchains. Then it takes at least four steps to com-
plete the payment: Alice locks x coinA in HTLC on blockchain
A, Carol locks y coinB in HTLC on blockchain B, Bob
withdraws the y coinB from HTLC on blockchain B, and Carol
withdraws the x coinA from HTLC on blockchain A. It was
first introduced in [13] and formalized in [4]. Subsequently,
researchers optimized HTLC swaps in terms of efficiency
[14], security [5], [6], and usability in scriptless blockchains
[15]. While these cryptographic-based atomic swaps provide
sufficient security, they also have some notable flaws, such as
high latency, frequent interactions, and expensive transaction
fees. As a result, HTLC atomic swaps are not efficient and
economic when being put into practical use.

Beyond HTLC-based approaches, other CCTx constructions
have emerged, seeking improved efficiency and security. For
instance, Interledger [7] utilizes notary nodes running PBFT
consensus to validate lock/withdraw processes. Tesseract [8]
leverages trusted execution environments for enhanced privacy
and throughput. While advancing performance in various
ways, these approaches have yet to achieve a step-change
in scalability. Additionally, sidechains [9]–[11], [16], [17]
connecting two ledgers through coin locking/burning and
reissuance represent an important CCTx paradigm. However,
these constructions cannot provide solutions for classic CCTx,
i.e., transactions between users on different blockchains.

Despite all the efforts, existing CCTx solutions still lack
the efficiency required for practical use, mainly due to cross-
chain synchronization demands. To solve the issue, we turn to
off-chain payment channels as a potential solution. Off-chain
payment channels are proposed by the Lightning Network
[12] to address the scalability problem of Bitcoin. Since then,
researchers have conducted many studies on enhancing privacy
[18]–[20] and performance [21], [22] of payment channels.
With off-chain payment channels, users can complete transac-
tions through the channel without notifying the blockchains
for each transaction. Instead, multiple transactions can be
submitted with just one confirmation, significantly improving
scalability and reducing the burden on the blockchain.
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Several studies have tried to improve the scalability of
CCTx utilizing off-chain payment channels. For instance,
the Arwen protocol [23] designs a cryptocurrency exchange
protocol for users to exchange assets. Arwen sets a centralized
exchange for each blockchain. When a user needs to exchange
assets between two blockchains, he/she can establish an off-
chain payment channel with a centralized exchange on either
blockchain. The payment channel records the balance of both
assets simultaneously. In [24], a cryptocurrency exchange
protocol is proposed based on the Lightning Network. Unlike
Arwen, this protocol constructs a pair of payment channels
on two blockchains for one exchange and does not need a
centralized exchange. In conclusion, those existing studies
only provide solutions for cross-chain exchanges where a
user has accounts on both blockchains. Thus, establishing off-
chain payment channels between two users located on different
blockchains remains unsolved.

III. PRELIMINARIES

A. Off-Chain Payment Channel

To improve efficiency of blockchain transactions, Poon et
al. [12] proposed the Lightning Network, which introduces the
concept of off-chain payment channels and implements it on
Bitcoin. Subsequently, the Raiden Network [25] implements
payment channels on Ethereum. We take the Raiden Network
as an example to introduce the off-chain payment channel,
because it is implemented based on smart contracts and is
easier to understand. Notably, both the Lightning Network and
Raiden Network share the same underlying principles. How-
ever, since Bitcoin only supports simple scripts, the specific
implementation of the Lightning Network is more complex.

Fig. 1(a) shows an example of a payment channel. Assuming
Alice and Bob decide to create a payment channel, they need
to lock some assets in the Channel Management Contract
(CMC). Subsequently, they can conduct off-chain payments.
For each payment, they sign the up-to-date balance to generate
a balance proof. In the given example, the balance proof for the
first payment is denoted as π1 = (⟨3, 3⟩, σA, σB). When either
user decides to close the channel, he/she is supposed to submit
the final balance proof to the CMC. The CMC verifies the two
signatures and checks if the total balance equals the locked
amount. If everything is valid, the CMC transfers the locked
assets to Alice and Bob according to the balance. However,
a challenge arises as the CMC lacks a means to validate the
freshness of the balance proof. In the given example, Alice
may submit π1 to close the channel because her balance in
π1 is larger than that in π2. Therefore, the payment channel
provides a dispute mechanism by waiting for a certain time
period to allow Bob to submit a fresher balance proof.

The security of a payment channel relies on several as-
pects, namely balance proofs, the fixed balance, and dispute
mechanism. First, after each payment, both users sign the up-
to-date balance to form the balance proof, ensuring the non-
repudiation of off-chain payments. Second, the total balance
in the channel is fixed, guaranteeing that when the channel is
closed, the assets transferred to the users are equivalent to their
initial locked amount. Lastly, the dispute mechanism prevents

dishonest users from submitting outdated balances. As a result,
once an off-chain payment is conducted, the blockchain will
accept it when the channel is closed.

B. Chain Relay

Chain relay is an important technology that enables
blockchain interoperability. It was first proposed as BTC
relay [26], which records Bitcoin block headers in Ethereum,
allowing users to verify Bitcoin transactions on Ethereum. The
main concept behind chain relay is to design succinct proofs
for the information that needs to be verified and select a group
of relayers to upload these proofs to the targeted blockchain.
There are three key aspects to consider in chain relay:

• Proofs: The design of the proof depends on the specific
content that needs to be verified. It is crucial for the proof
to be succinct in order to minimize the overhead on the
blockchains when conducting chain relay. For instance,
Westerkamp et al. [27] proposed a batch-aggregating
zero-knowledge proof-based relay system, which signifi-
cantly reduces the size of proofs compared to BTC relay.

• Correctness: Correctness is a vital aspect of chain relay,
ensuring that only valid proofs are relayed. This is typi-
cally achieved by employing consensus protocols among
the relayers, similar to how blockchain miners operate.

• Incentives: Incentives play a crucial role in encouraging
desirable behavior from relayers and ensuring the healthy
operation of chain relay. Essentially, relayers who provide
correct proofs are rewarded, while those who engage in
malicious activities should face appropriate penalties.

C. PoS Consensus

There are several essential and frequently-used consensus
mechanisms, such as Proof-of-Work (PoW) [28], Proof-of-
Stake (PoS) [29], Delegated Proof-of-Stake (DPoS) [30], Prac-
tical Byzantine Fault Tolerance (PBFT) [31], and so on.

Among them, PoW requires massive computational costs,
which can be extremely expensive. PBFT requires additional
incentive methods to award honest nodes or identify and
punish malicious nodes. On the other hand, both PoS and
DPoS assign an attribute called “stake” to each node, which
can be leveraged for incentives. For example, the Ouroboros
[29] protocol randomly selects a node to act as the leader
for generating a new block. The probability of a node being
selected is proportional to its stake, implying that the reward
for generating blocks is related to the stake. DPoS [30] enables
a node to delegate its stake to another node, allowing it to
not directly participate in the consensus. Instead, the delegate
acquires the delegated stake and has a stronger impact on block
generation. The delegate mechanism reduces consensus costs
by reducing the number of nodes that practically participate in
the consensus. For the same purpose, Ethereum [32] adopts the
committee mechanism, which requires a blockchain node to
deposit 32 Ethers to become a validator and participate in the
block generation process. If a validator is discovered to be ma-
licious, it will lose all the deposited Ethers. During consensus,
a group of validators is selected to form the committee, and
a leader is randomly chosen from the committee to generate
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a new block, while other nodes in the committee vote on the
block to validate it. Considering the incentive ability of PoS,
we adopt the PoS consensus for chain relay.

IV. OVERVIEW OF CROSS-CHAIN PAYMENT CHANNEL

In this section, we first demonstrate the issues of ex-
tending one-chain payment channels to cross-chain scenarios.
We conclude three key issues and introduce our main idea
to solve them (IV-A). Next, we present the system model
(IV-B), security assumptions (IV-C), and design goals (IV-D)
of CrossChannel.

A. Insights and Challenges

Intuitively, to establish a cross-chain payment channel, the
Contract Management Contract (CMC) is divided into two
parts, separately deployed on the two blockchains, denoted
as CMCA and CMCB , as depicted in Fig. 1(b). Accordingly,
Alice and Bob lock their assets to CMCA and CMCB respec-
tively to create a payment channel. They can then conduct
off-chain payments and, finally, submit the balance proof to
the two CMCs to close the channel. However, there are several
issues that make the channel insecure or unavailable.

• Issue 1: colluded deception. During channel creation,
CMCs cannot verify the assets locked in each other.
Consequently, they cannot confirm the total balance in
the channel. This creates an opportunity for the two users
to generate balance proofs in which their total balance
exceeds their locked amount. As a result, their settled
assets end up being more than the locked assets. We refer
to this issue as the colluded deception issue, as the two
users collude to deceive assets from blockchains.

• Issue 2: inability to dispute. Even if the balance is correct,
the security of the channel is compromised because
dispute becomes impossible. This is because Bob cannot
invoke CMCA due to a lack of an account on blockchain
A. As a result, when Alice submits an old balance proof,
CMCA can only settle Alice accordingly.

• Issue 3: inability to settle. In the given case depicted in
Fig. 1(b), CMCB cannot settle Bob because Bob locked
only 2 coinB , while he should receive 5. On the contrary,
several coinA remain in CMCA.

Overall, issues 1 and 2 arise due to the separation of
blockchains, while issue 3 is caused by the transfer of assets
among blockchains. To solve these issues, we leverage chain
relay technology to synchronize key information between the
two CMCs. This enables balance confirmation and cross-chain
dispute resolution, addressing issues 1 and 2. Additionally,
we address issue 3 by designing a bank-based settlement
mechanism. When CMC closes a channel in which the user
corresponding to the current blockchain is the payer, the
redundant assets will be transferred to the bank. Those assets
can be used to settle other channels where the user on the
current blockchain is the payee. To ensure asset availability of
the bank, relayers are required to deposit some assets when
registering, and the deposit is leveraged as reserves.

To apply chain relay appropriately and securely, we design a
channel snapshot mechanism that compresses all information

CMC
Create Channel:

• Alice locks 4 Acoins

• Bob locks 2 Acoins

pay 1 Acoin

𝜋1: ( 3,3 , 𝜎𝐴, 𝜎𝐵)

pay 2 Acoins

𝜋2: ( 1,5 , 𝜎𝐴, 𝜎𝐵)

CMC
Close Channel:

• Request: Alice inputs 𝜋1
• Validate: verify 𝜎𝐴, 𝜎𝐵
• Dispute: wait for Bob to 

dispute by inputting 𝜋2
• Settle: transfer Alice 7 

Acoins, Bob 8 Acoins

Alice Bob

Blockchain A

𝜋0: ( 4,2 , 𝜎𝐴, 𝜎𝐵)

(a) one-chain channel

CMCA

Create Channel:

• Alice locks 4 𝑐𝑜𝑖𝑛𝐴

CMCB

Create Channel:

• Bob locks 2 𝑐𝑜𝑖𝑛𝐵

Alice Bob

Alice pays 1 𝑐𝑜𝑖𝑛𝐴, Bob receives 1 𝑐𝑜𝑖𝑛𝐵

𝜋1: ( 3,3 , 𝜎𝐴, 𝜎𝐵)

Alice pays 1 𝑐𝑜𝑖𝑛𝐴, Bob receives 1 𝑐𝑜𝑖𝑛𝐵

𝜋2: ( 2,5 , 𝜎𝐴, 𝜎𝐵)

Blockchain A Blockchain B

CMCA

Close Channel:

• Request: Alice inputs 𝜋1
• Validate: verify 𝜎𝐴
• Dispute: cannot dispute

• Settle: transfer Alice 3 
𝑐𝑜𝑖𝑛𝐴

CMCB

Close Channel:

• Request: Bob inputs 𝜋2
• Validate: verify 𝜎𝐵
• Dispute: cannot dispute

• Settle: transfer Bob 5 
𝑐𝑜𝑖𝑛𝐵 failed

𝜋0: ( 4,2 , 𝜎𝐴, 𝜎𝐵)

Issue 2: inability to dispute. Issue 3: inability to settle. 

Issue 1: 
colluded deception. 

(b) cross-chain channel

Fig. 1: Intuition of cross-chain payment channel.

related to a channel into a concise snapshot, which is the
content to be relayed. Then, we adopt the Proof-of-Stake
(PoS) consensus algorithm among relayers. The PoS consensus
is supported by a stake-based incentive framework, ensuring
security and liveness of the relay process.

B. System Model

Combining the solutions for the three issues, we propose
the CrossChannel protocol that enables users on different
blockchains to establish secure cross-chain payment channels.
Fig. 2 illustrates the overall system model of CrossChannel.
Regardless of the specifics of the underlying blockchains,
CrossChannel consists of two types of entities: users with a
significant demand for cross-chain micropayments and relay-
ers who contribute to the chain relay process to earn rewards.

DPCA DPCB
BRCA BRCB

relayers𝐵→𝐴

CMCA CMCB

settle channel

upload snpB→𝐴

settle channel

Blockchain A Blockchain B

userA userB

register

collect 
channel

snapshots
(snp)

send snpA→𝐵

get snpB→𝐴

upload snpA→𝐵

relayers𝐴→𝐵

create/close create/close
cross-and-off-

blockchain 
micropayment 

channel

register

send snpB→𝐴

get snpA→𝐵

Fig. 2: The system model of CrossChannel.

• Users belong to different blockchains and do not have
accounts on others’ blockchains due to a lack of permis-
sion, capability, or willingness. This leads to a demand
for cross-chain transactions. Users are willing to pay fees
to create an off-chain payment channel, enabling them to
conduct fast and cost-effective cross-chain transactions.

• Relayers are blockchain users who contribute to the chain
relay process to earn rewards. For example, a user of
blockchain A who has access to blockchain B can register
as a relayerB→A by depositing some assets on blockchain
A. The superscript indicates the destination of the relayer,
and a relayerB→A collects the required relay contents on
blockchain B and records them on blockchain A. Notably,
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having access to blockchain B does not require having an
account on blockchain B; it only requires the ability to
read blocks on blockchain B.

Each blockchain provides three functionalities to facilitate
the entities finishing their tasks. The three functionalities
are implemented via smart contracts, including the Channel
Management Contract (CMC), Bridge Contract (BRC), and
Deposit Contract (DPC). Among them, the CMC manages
channel creation and closure procedures, maintaining the
channel-related information. The two CMCs related to the
same channel ensure their consistency with the help of BRCs.
The BRC synchronizes channel snapshots between the related
CMCs through chain relay. It utilizes a Proof-of-Stake (PoS)
consensus mechanism to validate the correctness of relayed
contents submitted by relayers. Finally, the DPC serves as the
bank used for channel settlement.

C. Security Assumptions

There are three factors that can impact security: the under-
lying blockchains, the channel management protocol, and the
chain relay mechanism. First, since the proposed CrossChan-
nel protocol does not focus on the underlying blockchains, we
assume they are secure. Additionally, exchange rates between
blockchains are publicly acknowledged. Second, regarding the
channel management protocol, as discussed in Section IV-A,
there are two potential malicious behaviors of channel users,
including colluding to attack the blockchains (issue 1 of
Section IV-A) or engaging in a mutual attack against each
other (issue 2 of Section IV-A).

Finally, concerning the chain relay mechanism, there are
two potential negative behaviors that relayers may exhibit: lazy
relayers, who participate in the relay process less frequently,
and cautious relayers, who are hesitant to leave their assets
in the DPC, which may negatively impact the availability
of the bank-based settlement mechanism. We assume that
the majority of relayers are profit-driven and rational. They
participate in the process to earn rewards and will take actions
that benefit themselves the most. Additionally, a minority
of relayers may collude with malicious users, attempting to
include incorrect channel information in the relay contents.
This could potentially facilitate attacks by users. We assume
that the proportion of malicious relayers is denoted by ρ, and
ρ must be less than 1

2 . If ρ reaches 1
2 , the security of the

proposed scheme is compromised.

D. Design Goals

The primary purpose of CrossChannel is to propose a secure
cross-chain payment channel protocol that enables users to
conduct fast and cost-effective cross-chain transactions. This
primary goal can be divided into two steps. First, assum-
ing the existence of a reliable chain relay mechanism that
synchronizes channel snapshots among blockchains, our aim
is to design a secure channel management protocol that can
effectively address the three issues discussed in Section IV-A.

Second, we aim to design the chain relay mechanism
required by the channel management protocol. To achieve

this, it is crucial to adopt an appropriate consensus mecha-
nism among the relayers, ensuring the correctness of relayed
contents with the existence of a certain proportion (ρ) of
malicious relayers. Besides, a proper incentive mechanism
is required to ensure the security and liveness of the relay
process. According to [33], an incentive mechanism should
adhere to several principles: a) Effectiveness: It should ac-
curately identify honest relayers, rewarding them for their
honesty, while also penalizing malicious ones. Additionally,
it should be able to prevent rational relayers from being lazy
or cautious. b) Sustainability: The mechanism should prevent
any imbalances among system participants, such as resource
monopolies, ensuring the long-term operation of the system.
c) Fairness: The incentive mechanism should be executed
reliably, without the possibility of manipulation.

V. PROPOSED SOLUTION

This section describe the CrossChannel protocol with four
steps. First, Section V-A defines the Channel data structure
and introduce the channel snapshot. Section V-B illustrates the
lifecycle of a cross-chain channel, including channel creation,
off-chain payment, and channel closure. In this part, the details
of the chain relay protocol are omitted and abstracted as two
interfaces, RelayReq and RelayGet which can be invoked by
CMC. Then, Section V-C provides a detailed description of
the chain relay protocol. Finally, Section V-D explains how to
extend CrossChannel to contractless blockchains.

A. Definition of the Channel

Before introducing the CrossChannel protocol, we first
define the data structure of a cross-chain payment channel,
denoted as Channel. As shown in Fig. 3, a Channel consists
of two parts: channel info and channel snp.

• channel info represents the basic information of the chan-
nel, including the blockchains (chainpair=(A,B)), the
addresses of the two users (addrpair=(addrA1 , addr

B
2 )),

the initial balances locked by the users (balpair=(x, y)),
the exchange rate between the blockchains (γ), and the
dispute time τd. This information is provided by the user
when requesting to create the channel.

• channel snp is the snapshot of a channel and contains
the channel identifier cid and the channel state state. cid
serves as a unique identifier for the channel, which is
the hash of channel info. state is used to indicate the
different stages in the lifecycle of a channel. There are
four possible states, namely init, activated, preclosed[bp],
and closed[bp]. The explanations of these states are
provided below.

When intending to create a channel, users should negotiate
the parameters of channel info and submit the same informa-
tion to their respective CMCs. They should also lock assets
according to the balpair, e.g., UA

1 should lock x coinA to
CMCA. CMCA and CMCB should separately check the locked
assets of UA

1 and UB
2 , and initiate the channel with state

init only when the assets are correctly locked. Next, the two
CMCs can exchange their channel snp through chain relay
(i.e., BRC) to ensure consistency and decide whether to create
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chainpair

addrpair

balpair

𝛾

𝜏𝑑

A unique identifier to identify the channel. It is the hash of channel_info , 
i.e., cid = Hash 𝐴 𝐵 addr1

𝐴 addr2
𝐵 𝑥 𝑦 𝛾 𝜏𝑑 .

The two blockchains of the channel, e.g.,  chainpair = 𝐴, 𝐵 . 

The addresses of the two users, e.g., addrpair = (addr1
𝐴, addr2

𝐵).

The two users' locked assets, e.g., balpair = (𝑥, 𝑦).

The current exchange rate between the blockchains, i.e., 1 coin𝐴 = 𝛾 coin𝐵. 

The dispute time consulted by the two users. 

channel_info: the basic information of a channel, including: 

state The channel state: init, activated, preclose[bp], and closed[bp]. 

𝐢𝐧𝐢𝐭

𝐚𝐜𝐭𝐢𝐯𝐚𝐭𝐞𝐝

𝐩𝐫𝐞𝐜𝐥𝐨𝐬𝐞[𝐛𝐩]

𝐜𝐥𝐨𝐬𝐞𝐝[𝐛𝐩]

The local user has requested for channel creation and locked the 
initial balance, and is waiting for confirmation from the other CMC.

The channel has been successfully created, users can conduct off-
chain payments through it.

The local user has submitted a balance proof bp as a request for 
closing the channel, and is waiting for response from the other CMC.

The channel has been successfully closed with a balance proof bp. 

cid

Channel

channel_snp: the snapshot of the channel, including:

Fig. 3: The cross-channel, denoted as Channel.

the channel. If they acquire a channel snp with the same cid
and state init, they can adjust the state to activated, denoting
the success of channel creation. However, if users submit
different channel info or lock incorrect assets, both CMCs
will not receive the required channel snp and will refuse to
create the channel. Thus, either both CMCs refuse to create
the channel or create an activated channel with consistency.

When a user, e.g., UA
1 , submits an effective balance proof

to close the channel, CMCA changes the state to preclose[bp]
and relays it to CMCB . Subsequently, UB

2 can acquire bp from
CMCB and submit a dispute bp′ if it is outdated. If no effective
dispute is submitted, CMCB directly closes the channel with
bp and changes the state to close[bp]; otherwise, it sets the state
as preclose[bp′]. When the channel snp is relayed to CMCA,
CMCA acts according to the contained state. In conclusion,
there are three possible results of channel closure: a) both
CMCs refuse the request and the states remain activated; b)
both CMCs close the channel with bp; and c) both CMCs
close the channel with bp′. For more details on the channel
management protocol, please refer to Section V-B.

B. Channel Management Protocol

The lifecycle of a payment channel consists of three phases:
channel creation, off-chain payment, and channel closure.
Among them, the channel creation and channel closure phases
are managed by the channel management protocol, imple-
mented by the CMC. Users invoke CMCs to create a channel.
Then they can conduct off-chain payments through the chan-
nel, and finally close it by invoking CMCs. Fig. 4 depicts the
lifecycle of a channel, and the detailed explanations are given
below.

1) (Phase 1) Channel Creation: Channel creation process
consists of two stages: create request (CreateRequest ①) and
channel match (CreateRequest ②). Suppose two users, UA

1 on
BCA and UB

2 on BCB , decide to create a cross-chain payment
channel to support their cross-chain transactions. First, during
the create request stage, both users invoke the CMC on their
respective blockchains to request channel creation. Taking UA

1

as an example, he/she invokes CreateRequest in CMCA,

locking initial assets and inputting channel info. Then, CMCA

checks if the locked amount matches the value of x in
balpair and verifies the correctness of the exchange rate (γ).
If everything is valid, it computes cid and sets state to init.
CMCA then invokes RelayReq of BRCA to relay channel snp
to CMCB . For clarity, we denote the channel snp generated
by CMCA as snpA1 , and the channel snp generated by CMCB

as snpB2 .
Subsequently, CMCA enters the channel match stage. After

waiting for some time (according to the chain relay frequency),
it invokes RelayGet(cid) of BRCA to obtain snpB2 . If UB

2 has
successfully invoked CreateRequest of BRCB with consistent
channel info, snpA1 will be equal to snpB2 , and CMCA can set
state to activated, indicating the successful creation of the
channel. Otherwise, the creation fails because the two users
did not provide matching information.

2) (Phase 2) Off-chain Payment: After the creation of a
payment channel, UA

1 and UB
2 have the ability to conduct off-

chain payments by generating balance proofs. These balance
proofs, similar to those used in single-chain payment channels,
consist of the current balance and the signatures of both users.
Furthermore, a txid is included, serving as a sequence number
for the transaction and aiding in establishing the order of the
balance proofs.

When UA
1 and UB

2 successfully create a payment channel,
they generate a bp for the initial balance with txid = 0, i.e.,

bp0 ← ⟨cid, 0, (addrA1 , addr
B
2 ), (x, y), (σ

A
1 , σ

B
2 )⟩.

Suppose that after the i-th payment, the balances of UA
1 and

UB
2 are xi and yi separately. Given that at the (i+1)-th

payment, UA
1 pays m coinA to UB

2 . Since the exchange rate
is γ, after the payment, the balances change to xi+1=xi−m,
yi+1=yi+γm. Thus, the balance proof is

bpi+1 ← ⟨cid, i+1, addrA1 , addr
B
2 , (xi+1, yi+1), (σ

A
1 , σ

B
2 )⟩.

3) (Phase 3) Channel Closure: Either user of the chan-
nel can request to close it by submitting the latest balance
proof to CMC. The channel closure procedure consists of
two functions: CloseRequest invoked by the requester and
CloseDispute invoked by another user to dispute. Given that
UA
1 is the requester, and UB

2 is the disputer, they take three
or four steps to close the channel, as follows.

First (CloseRequest ①), to close the channel, UA
1 invokes

CloseRequest (cid, bp) in CMCA. Then, CMCA verifies two
items: a) whether the balance obeys the exchange rate, i.e.,
δx = γδy , where δx and δy are the variation of the two
users balances; and b) the validity of σA

1 . If both are cor-
rect, CMCA then sets state to preclose[bp]. Then, it relays
snp=⟨cid, preclose[bp]⟩ to CMCB . Notably, the verification
of the two signatures is separately taken by the two CMCs.
This is because different blockchains may adopt different
cryptographic suites, and consortium blockchains may deploy
their own Public Key Infrastructure (PKI). Therefore, verifying
UB
2 ’s signature in CMCA may be unavailable or insecure.
Second (CloseDispute ②), UB

2 acquires snpA1 from BRCB

and checks whether bp is the latest one. If it is, UB
2 in-

vokes CloseDispute in CMCB inputting nothing; otherwise,
he/she invokes it inputting a new balance proof bp′. Upon
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Blockchain A Blockchain B

Blockchain BBlockchain A

(Phase 1) Channel Creation

(Phase 2) Off-chain Payment

𝐛𝐩𝟏, 𝐛𝐩𝟐, … , 𝐛𝐩𝒏

(Phase 3) Channel Closure

BRCA

RelayReq(snp1
𝐴)

snp2
𝐵 ←RelayGet(cid)

BRCB

RelayReq(snp2
𝐵)

snp1
𝐴 ←RelayGet(cid)

CMCB.CreateRequest(channel_info)

𝑼𝟏
𝑨 invokes CMCA.CreateRequest(channel_info) 𝑼𝟐

𝑩 invokes CMCB.CreateRequest(channel_info)

① require: 𝑥 coin𝐴 are locked, 𝛾 is correct
compute cid ← Hash(channel_info)
Channel ← channel_info, cid, state = init
relay snp1

𝐴 = ⟨cid, init ⟩

② if timeout or snp2
𝐵 ≠ cid, init do

create failed, delete Channel
else do

state ← activated

CMCA.CreateRequest(channel_info)

① require: 𝑦 coin𝐵 are locked, 𝛾 is correct
compute cid ← Hash(channel_info)
Channel ← channel_info, cid, state = init
relay snp2

𝐵 = ⟨cid, init ⟩

② if timeout or snp1
𝐴 ≠ cid, init do

create failed, delete Channel
else do

state ← activated

𝑼𝟏
𝑨 invokes CMCA.CloseRequest(𝐜𝐢𝐝, 𝐛𝐩)

BRCA

RelayReq(snp1
𝐴)

snp2
𝐵 ←RelayGet(cid)

① require bp: 𝜎1
𝐴 is valid, bal𝐴 − 𝑥 = 𝛾(bal𝐵 − 𝑦)

state ← preclose[bp]
relay snp1

𝐴 ← ⟨cid, preclose[bp]⟩

③ switch(snp2
𝐵):

case 1:snp2
𝐵 = cid, activated do

state ← activated
case 2:snp2

𝐵 = cid, closed[bp] do

Settle(cid, bp)

case 3:snp2
𝐵 = cid, preclose[bp′] do

if bp′. 𝜎1
𝐴 invalid do

Settle(cid, bp), relay snp1
𝐴 = cid, closed[bp]

else do

Settle(cid, bp′), relay snp1
𝐴 = cid, closed[bp′]

CMCA.CloseRequest(𝐜𝐢𝐝, 𝐛𝐩)

RelayReq(snp1
𝐴)

𝑼𝟐
𝑩 invokes CMCB.CloseDispute(cid [, bp'])

BRCB

snp1
𝐴 ←RelayGet(cid)

RelayReq(snp2
𝐵)

② if bp. 𝜎2
𝐵 invalid do  

relay snp2
𝐵 = cid, activated

else if  there's no effective bp′ do

Settle(cid, bp)

relay snp2
𝐵 = cid, closed[bp]

else do

state ← preclose bp′
relay snp2

𝐵 = cid, preclose[bp′]

CMCA.CloseDispute(𝐜𝐢𝐝, 𝐛𝐩′)

④ switch(snp1
𝐴):

case 1:snp1
𝐴 = ⟨cid, closed[bp]⟩ do

Settle(cid, bp)

case 2:snp1
𝐴 = ⟨cid, closed[bp′]⟩ do

Settle(cid, bp′)

snp1
𝐴 ←RelayGet(cid)

Fig. 4: Life cycle of a cross-channel.

CloseDispute being invoked, CMCB verifies two items: 1)
the validity of σB

2 in bp, and 2) the effectiveness of bp′. The
verification of bp′ is similar to CMCA’s verification of bp,
except that bp′ should have a large txid compared to bp,
indicating its fresher. To conclude, there are three possible
verification results, leading to three state values of snpB2 which
will be relayed to CMCA.

• Case 1: σB
2 of bp is invalid, indicating that UA

1 submitted
an invalid bp. In this case, the request should be rejected.
Whatever UB

2 inputs, state remains activated.
• Case 2: UB

2 does not submit an effective dispute. In this
case, CMCB invokes Settle(cid, bp) to close the channel.
As a result, state is changed to closed[bp].

• Case 3: UB
2 submits an effective dispute. In this case,

CMCB sets state to preclose[bp′].

Third (CloseRequest ③), after CloseDispute returns a
snpB2 , CMCA can determine the final result of channel closure.
According to the three possible state values of snpB2 , CMCA

takes different actions, as follows:

• Case 1: activated. This implies that CMCB rejected the
request, thus, CMCA reverses the state to activated.

• Case 2: closed[bp]. This implies that CMCB closes the
channel with bp. In response, CMCA also closes the
channel with bp.

• Case 3: preclose[bp′]. This implies that UB
2 submits an

effective dispute bp′. Then, CMCA verifies σA
1 of bp′.

If it is valid, CMCA closes the channel based on bp′;
otherwise, it closes the channel based on bp.

For case 1 and case 2, CMCA has no need to relay its
snapshot, since they can reach consistency immediately. As
a result, they take three steps to close the channel or reject

the request. However, for case 3, CMCA should relay the
snapshot so that CMCB can determine which balance proof
should be used to close the channel, based on CMCA’s choice
(CloseDispute ④). In this case, they take four steps to close
the channel.

C. Chain Relay Protocol

The chain relay protocol is used to synchronize channel-
related information, i.e., the channel snapshot, consisting of
cid, state, and bp, between blockchains when creating and
closing payment channels. Fig. 5 illustrates the workflow
of relayersA→B in relaying snpA→B from blockchain A to
blockchain B. Recall that CMCA invokes the RelayReq in-
terface to send snpA→B to BRCA. Upon receiving snpA→B ,
BRCA temporarily stores them. Subsequently, relayersA→B

can retrieve all the stored snpA→B through the Collect in-
terface, packaging them into a set denoted as recordA→B .
They then execute the relay consensus protocol, generate an
aggregated signature (σ), and utilize the Upload interface to
submit the record and signature to BRCB . BRCB can verify
the validity of recordA→B based on σ. At this point, the relay
process is completed, and CMCB can invoke the RelayGet
interface of BRCB to retrieve the required snp.

As Fig. 5 shows, there are four main functions in a BRC:
RecordVerification that verifies the records uploaded by
relayers, CommitteeSelection and LeaderSelection that are
used to determine the relayers participating in the current relay
process, and StakeUpdate that computes stakes for relayers.
The detailed descriptions are given below.

1) Relay Consensus: Relayers execute a Proof-of-Stake
(PoS) consensus protocol to validate the relayed records. In
this PoS consensus, time is divided into slots, and multiple
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CMCA

BRCB

RelayReq(snp𝐴→𝐵)

Collect()

Relay Consensus

CMCB

BRCB

RelayGet(snp𝐴→𝐵)

Committee
Selection

Upload(record𝐴→𝐵 , 𝜎)

snp𝐴→𝐵

snp𝐴→𝐵

record𝐴→𝐵 record𝐴→𝐵 , 𝜎

Blockchain A Blockchain B

Stake
Update

Record
Verification Leader

Selection
store snp𝐴→𝐵

temporarily

Fig. 5: Workflow of relaying channel snp.

slots make up an epoch. Algorithm 1 shows the relay consen-
sus process of relayersA→B relaying channel snapshots from
blockchain A to blockchain B. Explanations are as follows.

• Committee selection (line 2). At the beginning of each
epoch j, all relayers are randomly divided into different
groups. The group with the highest sum of stakes will
then become the committee for epoch j, denoted as Cj .
This process is executed by the CommitteeSelection
function in BRCB .

• Leader selection (line 4). For each slot t in epoch j,
a leader lt is randomly selected from the committee
Cj in proportion to their stakes. For a relayer ri with
stake si, the probability of being selected as the leader
is pi = si∑n

i=1 si
. We use a guaranteed-output delivery

coin tossing protocol to implement the leader selection
process. Let p̂i = si/Σ

n
k=isk. All relayers sequentially

flip a p̂-biased coin in the order of r1, ..., rn. The first
relayer who obtains a result of 1 is selected as the leader,
and the process terminates. It’s worth noting that p̂n = 1,
ensuring the selection of a unique leader. This process is
executed by the LeaderSelection function in BRCB .

• Record consensus (line 5-18). The leader lt invokes the
Collect interface in BRCA to collect all the snapshots
generated by CMCA that should be relayed to CMCB .
For clarity, we denote the results as recordA→B

t . Each
remaining relayer in the committee also invoke the
Collect interface to acquire the snapshots, thus verifying
whether li includes all snapshots in the generated record.
If the record is valid, the relayer signs it and sending
the signature to lt. Subsequently, lt can generate an
aggregated signature σ when receiving signatures from
more than 2

3 of the relayers. Next, lt invokes the Upload

interface to submit (recordA→B
t , σ) to BRCB . BRCB can

verify the validity of the submitted record by checking
whether σ is generated by the current committee.

2) Stake and Incentive: The primary goal of the incentive
mechanism is to determine how to compute stake leveraged
by the PoS consensus. As discussed in Section IV-D, the
incentive framework should satisfy three principles: effective-
ness, sustainability, and fairness. Among them, fairness can
be easily guaranteed by leveraging smart contracts to execute
the incentive mechanism. Additionally, to achieve effective-
ness and sustainability, the incentive framework utilizes three
mechanisms: reputation, deposit, and stake consumption.

• Reputation. Reputation reflects a relayer’s behavior. Upon
registration, each relayer is assigned an initial reputation

Algorithm 1: Relay consensus of relayersA→B

1 for each epoch j do
2 Cj ← committee selection;
3 for each slot t do
4 lt ← leader selection;

// record consensus

5 recordA→B
t ← BRCA.Collect();

6 σl ← Sign(prklt , recordt);
7 σ̂.append(σl);
8 for each relayer ri in Cj do
9 if verify (recordt, σl) success then

10 σi ← Sign(prkri , recordt);
11 σ̂.append(σi);
12 end
13 end
14 if |σ̂| > 2

3n then
15 σ ← aggregate signatures in σ̂;
16 BRCB .Upload(recordA→B

t , asig);
17 end
18 end
19 end

score (r0). Then, it increases by δ+r when the relayer
generates or votes for a correct record and decreases by
δ−r if the record or vote is incorrect. Additionally, for a
lazy relayer who does not participate in the consensus
process, its reputation remains unchanged.

• Deposit. Relayers are required to deposit a fixed amount
of assets, denoted by d0, to the DPC when they register.
If a relayer is selected as the leader to generate a record,
it can receive rewards, denoted by δd. The rewards
are added to its deposit and temporarily stored in the
DPC. Subsequently, the relayer can withdraw its rewards.
Relayers with different levels of cautiousness may choose
to withdraw rewards at different frequencies, and the
incentive goal is to encourage relayers to leave more
assets on the DPC. This is important to guarantee asset
availability when settling channels.

• Stake consumption. To achieve sustainability, the trend
of stake variation should be relatively stable. In addition
to using a logarithmic function to control the rate of
change, we employ a stake consumption mechanism. This
mechanism requires the leader to consume some stakes,
i.e., to decrease the stake value, to generate the record
and earn the reward. With this approach, we can ensure
that the stake value fluctuates around the initial value,
thus achieving sustainability.

Considering the above designs, the equation to compute the
stake is defined as

s = log(1 + αd+ βr − ηl). (1)

Here, d and r respectively represent the value of deposit and
reputation, l is the time the relayer has acted as the leader.
Notably, d, r, and l should be normalized as they may have
different dimensions. Additionally, the three parameters, in-
cluding α, β, η, are used to achieve sustainability. We quantify
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sustainability by the difference between the initial stake and
the average value during long-term operation. Specifically, let
N denote the total number of relayers in the system, T denote
the number of epochs considered as long-term, and sij denote
the stake of relayer i after epoch j. The difference value (δs)
can then be calculated as:

δs = Avgi∈[1,N ](Avgj∈[1,T ](sij))−Avgi∈[1,N ](si0). (2)

The closer δs is to 0, the stronger the sustainability is guar-
anteed. On this basis, the specific value of the parameters
can be determined based on heuristic algorithms, and further
discussion on specific results can be found in Section VI-B.

D. Extension to Contractless Blockchains

The proposed CrossChannel protocol is implemented using
smart contracts. However, some blockchains, such as Bitcoin,
only support simple scripts, precluding deployment of Cross-
Channel. Nevertheless, enabling complex smart contracts on
such contractless blockchains remains an active research area,
with emerging solutions facilitating CrossChannel deployment.

Several solutions exist, including side-chain execution, en-
clave execution, and off-chain execution. For instance, Root-
stock (RSK) [34] establishes a sidechain that enables smart
contracts for Bitcoin, allowing deploying the CrossChannel
protocol on the sidechain. Enclave execution solutions, includ-
ing Fastkiten [35] and Bitcointracts [36], leverage the trusted
execution environment (TEE) technology to execute contracts,
supporting arbitrary complex contracts. Off-chain execution,
exemplified by Arbitrum [37] and BitML [38], allows an
executor group to execute contracts off-chain, and adopt the
multi-authentication mechanism to enable blockchain nodes to
validate the off-chain execution results. That is, all executors
collectively sign the result, and other blockchain nodes con-
sider a result with enough signatures as valid.

While employing different techniques, all of the aforemen-
tioned solutions enable the execution of complex contracts on
existing contractless blockchains, thus facilitating the exten-
sion of CrossChannel to contractless blockchains.

VI. SECURITY ANALYSIS

Our main idea is to realize the security of one-chain
payment channels in cross-chain scenarios. Since the protocol
adopts chain relay to realize security of cross-chain payment
channel, we analyze CrossChannel’s security from two as-
pects. First, the channel is secure if the chain relay is secure
(VI-A). Second, the chain relay is secure (VI-B). In addition
to security of the channel, in cross-chain scenarios, the ex-
change rate between blockchains also effects the correctness
of payments, and we finally discuss the issue (VI-C).

A. Security of the Channel Management Protocol

In CrossChannel, each channel is maintained by two CMCs,
i.e., CMCA and CMCB , and our primary goal is to ensure the
consistency between them (Theorem 1). With consistency, the
cross-chain channel is then equivalent to an one-chain channel,
and the security can be proved similarly (Theorem 2).

Theorem 1. Consistency. The two CMCs maintain the same
Channel for the same cross-chain channel. If one CMC (e.g.,
CMCA) makes any change on Channel, the relative CMC
(CMCB) will also change to the same value or let CMCA

revert back to the previous value.

Proof. As depicted in Fig. 3, a Channel consists of the
channel info and channel snp formed by cid and state. All
items of channel info are immutable, and are compressed
in cid. Therefore, if two Channel have the same cid, they
must have the same channel info. Thus, the consistency of
channel info is easily guaranteed, and our main purpose is to
analyze the consistency of state.

There are four potential channel states: init, activated,
preclosed[bp], and closed[bp]. Additionally, there exists a
special state wherein the channel does not exist. For clarity, we
use i, a, pbp, and cbp to represent the four states respectively,
and employ to indicate the inexistence of the channel.
Notably, if two CMCs have the same state p or c but with
deferring bp parameters, they are inconsistent. To prove the
consistency, we utilize the state pair notation to represent the
channel state that maintained separately by each CMC, taking
the form of (stateA, stateB).

Fig. 6 demonstrates the state transition diagram, where
each node represents a state pair, and the edge shows users’
operation and required time. Initially, both CMCs are . When
a user, suppose UA

1 , invokes CreateRequest, the state pair
changes to (i, ). If UB

2 invokes CreateRequest in CMCB ,
the relayed snapshot snpB2 will have the same cid with that in
CMCA. As a result, CMCA changes state to a. Otherwise, it
reverts to . Since the process is symmetric between CMCA

and CMCB , they will both reach a or revert to . When the
state pair reach (a, a), the two users can conduct off-chain
payments through the activated channel.

When a user decides to close the channel, recall the four
steps of channel closing (Section V-B3), the state transitions
are divided to four steps accordingly. First, when a user,
e.g., UA

1 , invokes CloseRequest in CMCA, the state pair
changes to (pbp, a), and the snapshot will be relayed to CMCB .
Then, CMCB takes corresponding actions and changes stateB ,
leading to three potential stateB , including a, cbp, and pbp

′
.

Subsequently, stateB is relayed to CMCA, and CMCA takes
actions accordingly. For stateB equals a or cbp, CMCA reverts
to a or close the channel with bp, and the closure process
is finished. Otherwise, if stateB is pbp

′
, the fourth step is

required to help CMCB determine which balance proof should
be used to close the channel. In conclusion, the channel closure
process has three results: both revert to a, both close the
channel with bp, or both close the channel with bp′. Thus,
consistency is guaranteed.

Theorem 2. Correctness. The channel only closes with the
correct balance proof which satisfies three requirements: ①
it has two signatures from the two users; ② its total balance
equals to the initial locked assets when creating the channel;
③ it is the last balance proof of the channel.

Proof. Requirement ① is easily satisfied because signatures
are directly verified by the blockchains. Requirement ② and
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Fig. 6: Transition diagram of the state pair.

③ are corresponding to the colluded attack and mutual attack
of users (see Section IV-C), respectively. If two users collude
to generate a balance proof in which the total balance exceeds
their locked assets, CMCs can detect the issue since they
confirmed the initial assets during channel creation. Besides,
if one user submitted an outdated balance proof to close the
channel, the other one can dispute from his/her CMC, and
Theorem 1 proves that as long as the dispute is valid, the
channel will close with it. Thus, correctness is guaranteed.

B. Security of the Chain Relay protocol
The primary security goal of the chain relay protocol is

to ensure the correct relay of all channel snp. We prove the
security from two aspects. First is the bootstrapping security,
which guarantees the secure deployment and bootstrap of the
chain relay protocol on a blockchain from the beginning.
Second is the long-term security, which refers to the sustained
healthy operation facilitated by the incentive mechanism.

Theorem 3. Bootstrapping security. The chain relay protocol
can be securely deployed and bootstrapped on a blockchain
when ρ < 1

2 , with the assistance of audit.

Proof. At the very beginning, a group of relayers initiate the
bridge contract (BRC) and lock their deposits. To bootstrap
the chain relay protocol, an arbitrary relayer invokes the
StakeUpdate function to assign initial stakes and invokes the
CommitteeSelection function to generate the first committee.
The selection of the first committee is purely random because
all relayers are assigned the same stake value initially.

As we discuss in Section IV-D, ρ relayers may be com-
promised by users and try to submit forged records. If there
are more than 2

3 malicious relayers in the committee, they can
manipulate BRC into accepting a forged record. We refer to
such a committee as a failed committee. Assuming there are
N relayers in total and the committee size is n, the probability
of selecting a failed committee, denoted as PfailComm, is

PfailComm =

[ n−⌊ 2n
3 ⌋∑

i=0

(
ρN

⌊ 2n3 ⌋+ i

)(
(1− ρ)N

⌊n3 ⌋ − i

)]/(
N

n

)
.

In addition, if the proportion of malicious relayers in the
committee is between 1

3 and 2
3 , no record will be accepted by

BRC since they cannot receive enough votes, whether correct
or error. This will lead to an empty slot, i.e., no valid record
is submitted to BRC. In such a case, BRC can launch a new
committee selection, and the snp that failed to be relayed will
be contained in the following relay record.

According to the general security assumption adopted by
Byzantine fault tolerance consensus algorithms, we focus on
the results when ρ = 1

3 . TABLE I shows the values of
PfailComm when N equals 500, 1000, and 2000, and n
equals 0.02N , 0.05N , and 0.1N , respectively. The results
demonstrate that PfailComm is a relatively small probability
but should not be considered negligible, especially when N
and n are small. This implies that there is a chance of selecting

TABLE I: VALUES OF PfailComm WHEN ρ = 1
3

PfailComm n = 0.02N n = 0.05N n = 0.1N

N = 500 0.02 2.6× 10−4 9.6× 10−8

N = 1000 6.9× 10−4 2.2× 10−7 2.1× 10−13

N = 2000 6.8× 10−6 9.8× 10−13 2.6× 10−25

a failed committee. However, this will not result in security
breaches because the relay process is designed to be auditable.
Specifically, relayers obtain the relay record from the Collect
interface, ensuring that all relayers can access the record. Thus,
if a failed committee submits an incorrect record to BRC,
other relayers can detect the error. They can then submit
evidence consisting of the correct record and an aggregated
signature generated by at least (1−ρ)N relayers. When BRC
receives a valid evidence, it replaces the incorrect record and
reduces the reputation of relayers who signed the incorrect
record. Therefore, when ρ = 1

3 , bootstrapping security can
be guaranteed with the assistance of audit. In fact, as long
as ρ < 1

2 , the audit process can perform well. To conclude,
bootstrapping security can be guaranteed with the assistance
of audit when ρ < 1

2 .

Theorem 4. Long-term security. The incentive framework
satisfies effectiveness, sustainability, and fairness, ensuring
that the relay protocol operates securely for the long-term.

Proof. As explained in Section IV-D, an incentive mechanism
should adhere to several principles including effectiveness,
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sustainability, and fairness. In the proposed scheme, fairness
is intuitively guaranteed since the incentive mechanism is
executed by smart contracts, which are safe from manipulation.
Effectiveness and sustainability are guaranteed by Eq. (1) and
Eq. (2). In Eq. (1), the deposit d and the reputation r are
positively correlated parameters. Thus, relayers with higher
deposits and reputations can obtain larger stakes, increasing
their chances of acting as the leader and earning rewards. On
the contrary, malicious relayers who sign incorrect records will
lose their reputations. When a relayer loses all its reputation
value, its deposit will be confiscated, creating a deterrent that
prevents relayers from engaging in malicious behavior. Thus,
effectiveness is guaranteed. Furthermore, once a relayer acts
as a leader, its stake will be reduced, preventing the relayer’s
stake from increasing indefinitely. Assisted by Eq. (2), the
difference in stake values among relayers after long-term
operation is limited to a small value, ensuring that all honest
relayers have the same expected state value and guaranteeing
sustainability.

To demonstrate long-term security, we simulate the long-
term operation of the relay process. To run the algorithm, we
first set the system parameters as follows: the total number
of relayers N=1000, the committee size n=50, the number
of slots in an epoch t=100, and the long-term operation
represented by T=10000 epochs. Second, for normalization,
we set δd=1 and δ+r =

1
n , ensuring that the increasing rate

of deposit and reputation is equal to that of l. Third, the
initial deposit and reputation are fixed at d0=r0=100, and the
withdrawal policy is set such that each relayer will withdraw
all rewards when they accumulate 1

2d0 rewards.

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

epoch, from 0 to 10000

Fig. 7: Variation trend of stake during 10000 epochs.

Based on the above settings, we determine the values of
parameters in Eq. (1) using a Particle Swarm Optimization
(PSO) algorithm, with the objective of minimizing δs in
Eq. (2). The PSO algorithm outputs (0.2, 0.4, 0.4) as a possible
solution of (α, β, η), with δs = 0.008. The corresponding
stake variation trend is shown in Fig. 7, showing that the stake
fluctuates between 4.1 and 4.4. This implies that the relayers’
stakes are basically stable, ensuring that all honest relayers,
whether new or old, have a similar chance to acquire rewards,
thus proving sustainability. It is easy to notice that the stake
will experience periodic drops, which are caused by relayers
withdrawing their rewards.

0

1

2

3

4

5

epoch, from 0 to 10000

perfect relayer
lazy relayer
cautious relayer

(a) variation trend of stake

0

200

400

600

800

1000

epoch, from 0 to 10000

perfect relayer
lazy relayer
cautious relayer

(b) variation trend of total reward

Fig. 8: Variation trend of relayer’s stake and total reward.

For effectiveness, we analyze the stake variation trend
for relayers who act differently. First, we analyze how the
incentive mechanism can prevent lazy relayers and cautious
relayers. We assume that a lazy relayer, when not selected
as a leader, has an 80% probability of not participating in
the consensus process. A cautious relayer will withdraw its
rewards every 1

10d0 rewards it receives. In contrast, a perfect
relayer will fully participate in the consensus process and only
withdraw its rewards after receiving 1

2d0 rewards. Based on
these assumptions, we evaluate the variation trend of stake
and total reward for the three types of relayers. The results
are shown in Fig. 8. From Fig. 8(a), we can see that if a
relayer is lazy, its stake will gradually decrease and stabilize
at a lower value, while the stakes of perfect relayers and
cautious relayers are relatively close. However, Fig. 8(b) shows
that cautious relayers earn fewer rewards compared to perfect
relayers, implying that the incentive mechanism encourages
relayers to leave more assets in DPC. In addition, lazy relayers
earn significantly fewer rewards. These results demonstrate
that the proposed incentive framework satisfies effectiveness
by preventing lazy relayers and cautious relayers.

C. Discussion of the Exchange Rate

The exchange rate is a crucial factor in cross-chain transac-
tions. There are several methods to obtain a publicly acknowl-
edged exchange rate, as mentioned in [39] and [40]. Therefore,
we assume the existence of a publicly acknowledged exchange
rate and require relayers to record it on-chain. For example,
they can periodically submit the current exchange rate in BRC.
To ensure correctness, they can leverage the relay consensus
to submit the exchange rate.

Malicious users may deliberately use the wrong exchange
rate to benefit themselves. For example, if γ(A,B) = 2 but the
user sets γ(A,B) = 3, they will gain an additional coinB after
paying one coinA through the cross-channel. However, this is
not feasible in the proposed scheme because the exchange rate
is publicly recorded on-chain. CMC will verify its correctness
when creating the channel and will check whether the change
of balance complies with this rate when closing the channel.

This solution eliminates the possible malicious acts of users
but also imposes a limitation on flexibility. All transactions
within a channel must adhere to the same exchange rate. If
the exchange rate undergoes significant changes, the channel
users may incur a loss. Nonetheless, we still believe that
establishing a cross-channel is more efficient and cost-effective
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for users who need to conduct a large number of micro cross-
chain transactions, especially when the exchange rate remains
relatively stable or changes infrequently.

VII. PERFORMANCE ANALYSIS

We develop a prototypical implementation between two
Ethereum test networks. For comparison, we also implement
the HTLC-based atomic swap scheme. To show the feasibility
of CrossChannel, i.e., we compare the two schemes in terms
of latency and expense. Results powerfully demonstrate that
CrossChannel makes excellent strides in the scalability and
affordability of cross-chain transactions.

A. Latency and Execution Cost

1) Minimum Latency: First, we analyze the transaction
process of HTLC swap and CrossChannel to compute their
minimum latency. We use block cost, which represents the
number of blocks needed to complete a transaction, to denote
the minimum latency. This is because the block generation
speed is relatively stable and considered a primary unit of
time. As shown in Fig. 9, each CCTx through HTLC swap
requires a total of four blocks. On the other hand, establish-
ing a cross-channel requires six blocks, with three on each
blockchain if the relay frequency equals the block generation
frequency. Since the establishment processes on the two chains
are concurrent, the overall time consumption for channel
establishment is thus three blocks’ generation time. Closing
a cross-channel requires seven blocks.

Fund(A, C)

Fund(C, B) Withdraw(B, C)

Withdraw(C, A)

CreateReq ()

CreateReq ()

Relay()

Relay()

Finished

Finished

CloseDispute()
CloseReq()

Relay()
Relay() Finished

Relay() Finished

HTLC Swap

CrossChannel

Blockchain A

Blockchain B

Fig. 9: Block cost of HTLC and CrossChannel.

It may seem that CrossChannel requires more than twice as
many blocks as HTLC swap. However, the HTLC-based CCTx
is independent, which means that each CCTx requires four
blocks separately. On the other hand, once a cross-channel is
established, the two users can freely conduct CCTxs through
the channel and off-chain, without incurring any additional
block cost. Therefore, as the number of CCTxs in a channel
increases, the average block cost per CCTx will continuously
decrease, as shown in Fig. 10. When considering the average
block cost, CrossChannel acquires better performance.

2) Execution Cost: The execution cost refers to the over-
head of invoking the related smart contracts and completing
specific functions. Ethereum provides a clear indicator for
execution cost, which is gas. The overhead of each operation in
Ethereum smart contracts is evaluated by a certain gas value.
After successfully invoking a contract, the gas consumption

0
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1 2 3 4 5 6 7 8 9 1011121314151617181920
Number of cross-chain transactions

HTLC Channel

Fig. 10: Block cost of HTLC swap and CrossChannel.

is recorded in the related transaction. Therefore, we evaluate
the gas consumption of both HTLC-swap and CrossChannel
to compare their execution cost.

TABLE II: MAIN STEP’S EXECUTION COST

Step
HTLC CrossChannel

Fund Withdraw CreateRequest CloseRequest CloseDispute

Gas 152,874 87,172 642,912 172,357 93,537
Ether 0.0084 0.0048 0.0371 0.0130 0.0069

TABLE III: PARTICIPANTS’ EXECUTION COST

Item
HTLC CrossChannel

sender recipient agent total user1 user2 total
Gas 152,874 87,172 240,046 480,092 815,269 736,449 1,551,718

Ether 0.0084 0.0048 0.0132 0.0264 0.0448 0.0405 0.0853

TABLE II shows the cost of key functions of HTLC
and CrossChannel. As depicted in Fig. 9, HTLC swap con-
sists of Fund and Withdraw, CrossChannel consists of
CreateRequest, CloseRequest, and CloseDispute. Based on
these results, we can acquire the cost of each participant and
the total cost. For HTLC swap, there are three participants
in a transaction, i.e., sender, recipient, and agent. First, the
sender invokes Fund in the HTLC contract provided by his/her
blockchain, and the agent then invokes Fund in the recipient’s
blockchain. Subsequently, the recipient invokes Withdraw in
the local blockchain, and the agent finally invokes Withdraw
in the sender’s blockchain to finish the swap. For Cross-
Channel, the two users execute the same process to create
the channel. When closing the channel, one user acts as the
closing requester and the other acts as the disputer, and we
denote them as user1 and user2, respectively. As we can see
in TABLE III, the total cost of CrossChannel is about three
times as much as that of HTLC swap.

3) Systematical Performance: Based on the above experi-
ments results, we systematically compare the performance of
the proposed CrossChannel to that of HTLC atomic swaps on
different transaction frequencies using a (M,M, 1) queuing
model, results are shown in Fig. 11. We regard the two
schemes as CCTx service providers and use an hour as the
time unit. Therefore, the average arrival rate λ is the number
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of CCTx per hour, and the average service duration 1/µ is
computed as follows.
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Fig. 11: Average queue length and wait time of HTLC swap
and CrossChannel.

For the HTLC swap, a CCTx consists of two parallel
Fund-Withdraw pairs, one on each blockchain. The total
gas consumption of each pair is 240, 046, while the current
gas limitation of an Ethereum block is 15, 000, 000. Thus,
the transactions per block (TPB) of HTLC-swap CCTx is
62. Considering that the average block generation time is
13 seconds, the transactions per hour (TPH) of HTLC-swap
CCTx is then 17, 169. Similarly, the CrossChannel consists of
channel creation and channel closing, and the closing includes
close request and close dispute, and we use the average of
them as the closing overhead. Thus the total gas consumption
of an entire CCTx is 642, 912 + avg(172, 357, 93, 537) =
775, 859, then TPB and TPH are 19 and 5, 261 respectively.
However, in a practical blockchain, it is impossible that CCTx
occupies the entire block. Besides, for CrossChannel CCTx,
we should consider the proportion of off-chain transactions
because only creating or closing a channel will incur system
overhead. Hence, we assume that the proportion of CCTx to
all transactions is p, the proportion of off-chain transactions
is 1− ϵ, and the average service duration 1/µ is 17, 169p and
5, 261p separately for HTLC swap and CrossChannel. TABLE
IV shows a summary of the above computing process.

TABLE IV: SERVICE DURATION COMPUTATION

Params Steps Gas TPB TPH (1/µ)
HTLC fund & withdraw 240, 046 62 17169

Channel creation & closing 775, 859 19/ϵ 5261/ϵ

TABLE V: PERFORMANCE COMPARISON

Params and
Indicators

Length
Limitation p ϵ

Max Capacity
(CCTx per hour)

Max Waiting
Time (h)

HTLC 30 25% / 4155 0.007

Channel 30 25% 5% 24000 0.001

Based on the above results, we evaluate the systematical
performance of the two schemes. After conducting some
testing experiments, we set the range of average arrival rate
λ as [0, 25, 000] and p ∈ {5%, ..., 25%}. Additionally, ϵ
represents the average number of CCTx in each cross-channel.
We assume the number is 20, thus ϵ = 5%. We choose the
average queue length l and the average waiting time w as
the performance indexes, and results are shown as Fig. 11.
For clarity, we set the same coordinate intervals for HTLC-
swap and CrossChannel. From Fig. 11(a) and 11(b), we can
observe that when µ = 25% and the queuing length upper
bound is set as 30, HTLC-swap can handle up to 5, 000 CCTx
per hour, while CrossChannel approaches 25, 000. Moreover,
Fig. 11(c) and 11(d) demonstrate that the average waiting time
for each CCTx of CrossChannel is significantly lower than
that of HTLC swap. We provide a summary in TABLE V for
reference. In conclusion, when each channel consists of 20
transactions, CrossChannel has a fivefold transaction capacity
compared to the HTLC-swap. It should be noted that the
number of transactions in each channel may be much higher
than 20 in practice, leading to even better performance for
CrossChannel.

B. Transaction Expense

In addition to reducing the transaction latency, another
important advantage of establishing an off-chain payment
channel is reduction of the expenses. To evaluate how effective
CrossChannel could be in terms of expense, we compare the
total transaction expense of HTLC swap and CrossChannel,
including transaction fee and brokerage for the agent or
relayer. The results are shown as Fig. 12.
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Fig. 12: Expense and procedure rate of HTLC swap and
CrossChannel.

The transaction fee is the cost to invoke the related smart
contracts and is evaluated in gas in Ethereum. For clarity,
we convert gas to Ether according to the current gas fee,
i.e., 1 gas = 55 GWei. The brokerage is the fee paid to the
intermediary in HTLC swap and to relayers in CrossChannel,
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and we set the brokerage rage as 1%, that is, for each CCTx
of 1 Ether, a brokerage of 0.01 Ether is needed. Based on
the above settings, we evaluate the average expense of each
CCTX and the procedure rate. Fig. 12(a) and 12(b) are about
the expense. For HTLC swap, the transaction fee is constant,
but the brokerage changes with the amount of a single CCTx.
Therefore, we record the expense of each CCTx with different
amounts for a single CCTx. For CrossChannel, the transaction
fee is also constant. Still, the brokerage is difficult to directly
compute through the amount of a single CCTx, because the
inner-channel transactions do not cause blockchain overhead.
Therefore, we use the average on-chain transaction amount to
compute the brokerage and set it as 0.05 Ether by roughly
counting Ethereum transaction amounts. Thus, the brokerage
of CrossChannel is also constant and does not change with the
number of transactions in a channel. Based on the expense,
we compute the expense rate and the results are shown in Fig.
12(c) and Fig. 12(d). It is clear that, although the expense
of CrossChannel seems more than that of HTLC swap, the
expense rate of each transaction of CrossChannel is much
lower. Even when the average amount of a single CCTx is
up to 1 Ether, which is a large amount in the actual Ethereum,
the expense rate of HTLC swap is still much higher than that
of CrossChannel. To conclude, CrossChannel performs much
better than HTLC swap in transaction expense.

VIII. CONCLUSION

In this paper, we proposed CrossChannel, which enables
two non-interoperable users, where each individual only has
accounts on one chain, to establish a cross-and-off-chain
micropayment channel for fast and cost-effective cross-chain
transactions. Specifically, we analyzed the security and avail-
ability issues of extending the existing one-chain payment
channel protocol to cross-chain scenarios and leveraged the
chain relay protocol to solve them. Additionally, to ensure the
efficiency and security of chain relay, we proposed a channel
snapshot mechanism that packages all required information in
a concise snapshot, acting as the relay content. Furthermore,
we designed a proof-of-stake (PoS) consensus algorithm sup-
ported by an incentive mechanism, which is adopted among
relayers to ensure the correct relay of the snapshot.

To evaluate the security and effectiveness of the proposed
CrossChannel, we conducted comprehensive security and per-
formance analyses. In terms of security, we demonstrated that
CrossChannel meets the security requirements as an off-chain
payment channel and provided proof of both bootstrapping
and long-term security of the chain relay protocol. In terms
of performance, we implemented CrossChannel as a proto-
type between two Ethereum testnets and also implemented
the HTLC-swap scheme for comparison. We evaluated the
latency and transaction fee of both schemes, and the results
show that CrossChannel is significantly more scalable and
affordable than HTLC swap, providing strong evidence for
the effectiveness of our proposed CrossChannel.
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[36] K. Wüst, L. Diana, G. Kostiainen, S. Matetic, and S. Capkun, “Bitcon-
tracts: Supporting smart contracts in legacy blockchains,” in Proceed-
ings of the 2021 Network and Distributed System Security Symposium
(NDSS). NDSS, 2021, pp. 1–18.

[37] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten,
“Arbitrum: Scalable, private smart contracts,” in Proceedings of the
27th USENIX Security Symposium (USENIX Security). USENIX
Association, 2018, pp. 1353–1370.

[38] M. Bartoletti and R. Zunino, “BitML: A calculus for bitcoin smart
contracts,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2018, pp. 83–
100.

[39] X. Li and C. A. Wang, “The technology and economic determinants of
cryptocurrency exchange rates: The case of bitcoin,” Decision support
systems, vol. 95, pp. 49–60, 2017.

[40] T. Tarasova, O. Usatenko, A. Makurin, V. Ivanenko, and A. Cherchata,
“Accounting and features of mathematical modeling of the system to
forecast cryptocurrency exchange rate,” Accounting, vol. 6, no. 8, pp.
357–364, 2020.

Xinyi Luo received her B.S. degree in Information
Security from School of the Gifted Young, Univer-
sity of Science and Technology of China (USTC),
in 2020. She is currently working toward the Ph.D.
degree in Information Security with the School of
Cyber Science and Technology, USTC. Her research
interests include Blockchain, Network security and
Applied Cryptography.

Kaiping Xue (M’09-SM’15) received his bachelor’s
degree from the Department of Information Security,
University of Science and Technology of China
(USTC), in 2003 and received his doctor’s degree
from the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007. From
May 2012 to May 2013, he was a postdoctoral re-
searcher with the Department of Electrical and Com-
puter Engineering, University of Florida. Currently,
he is a Professor in the School of Cyber Science
and Technology, USTC. He is also the director of

Network and Information Center, USTC. His research interests include next-
generation Internet architecture design, transmission optimization and network
security. His work won best paper awards in IEEE MSN 2017 and IEEE
HotICN 2019, the Best Paper Honorable Mention in ACM CCS 2022, the Best
Paper Runner-Up Award in IEEE MASS 2018, and the best track paper in
MSN 2020. He serves on the Editorial Board of several journals, including the
IEEE Transactions on Dependable and Secure Computing (TDSC), the IEEE
Transactions on Wireless Communications (TWC), and the IEEE Transactions
on Network and Service Management (TNSM). He has also served as a (Lead)
Guest Editor for many reputed journals/magazines, including IEEE Journal on
Selected Areas in Communications (JSAC), IEEE Communications Magazine,
and IEEE Network. He is an IET Fellow and an IEEE Senior Member. He is
the corresponding author of this paper.

Qibin Sun (F’11) received the Ph.D. degree from
the Department of Electronic Engineering and In-
formation Science (EEIS), University of Science
and Technology of China (USTC), in 1997. He is
currently a professor in the School of Cyber Science
and Technology, USTC. His research interests in-
clude multimedia security, network intelligence and
security, and so on. He has published more than 120
papers in international journals and conferences. He
is a fellow of IEEE.

Jun Lu received his bachelor’s degree from south-
east university in 1985 and his master’s degree from
the Department of Electronic Engineering and Infor-
mation Science (EEIS), University of Science and
Technology of China (USTC), in 1988. Currently,
he is a professor in the School of Cyber Science
and Technology and the Department of EEIS, USTC.
His research interests include theoretical research
and system development in the field of integrated
electronic information systems, network and infor-
mation security. He is an Academician of the Chi-

nese Academy of Engineering (CAE).

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3411820

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 30,2024 at 15:39:52 UTC from IEEE Xplore.  Restrictions apply. 


