
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024 3597

Volume-Hiding Range Searchable Symmetric
Encryption for Large-Scale Datasets

Feng Liu , Kaiping Xue , Senior Member, IEEE, Jinjiang Yang , Jing Zhang , Zixuan Huang ,
Jian Li , Senior Member, IEEE, and David S.L. Wei , Senior Member, IEEE

Abstract—Searchable Symmetric Encryption (SSE) is a valuable
cryptographic tool that allows a client to retrieve its outsourced
data from an untrusted server via keyword search. Initially, SSE
research primarily focused on the efficiency-security trade-off.
However, in recent years, attention has shifted towards range
queries instead of exact keyword searches, resulting in significant
developments in the SSE field. Despite the advancements in SSE
schemes supporting range queries, many are susceptible to leakage-
abuse attacks due to volumetric profile leakage. Although several
schemes exist to prevent volume leakage, these solutions prove
inefficient when dealing with large-scale datasets. In this article, we
highlight the efficiency-security trade-off for range queries in SSE.
Subsequently, we propose a volume-hiding range SSE scheme that
ensures efficient operations on extensive datasets. Leveraging the
order-weighted inverted index and bitmap structure, our scheme
achieves high search efficiency while maintaining the confidential-
ity of the volumetric profile. To facilitate searching within large-
scale datasets, we introduce a partitioning strategy that divides a
broad range into disjoint partitions and stores the information in
a local binary tree. Through an analysis of the leakage function,
we demonstrate the security of our proposed scheme within the
ideal/real model simulation paradigm. Our experimental results
further validate the practicality of our scheme with real-life large-
scale datasets.

Index Terms—Searchable symmetric encryption, range query,
volume-pattern leakage, large-scale datasets.

I. INTRODUCTION

IN THE past decade, driven by the rapid advancements in
cloud computing and network technologies, an increasing

number of individuals and organizations have shown a will-
ingness to outsource their data to public cloud services. These

Manuscript received 13 December 2022; revised 21 August 2023; accepted
12 November 2023. Date of publication 21 November 2023; date of current
version 11 July 2024. This work was supported in part by the National Natural
Science Foundation of China under Grant 61972371, in part by the Youth
Innovation Promotion Association of the Chinese Academy of Sciences (CAS)
under Grant Y202093, and in part by Anhui Province Key Technologies Research
& Development Program under Grant 2022a05020050. (Corresponding author:
Kaiping Xue.)

Feng Liu, Kaiping Xue, Jinjiang Yang, and Jian Li are with the School of
Cyber Science and Technology, University of Science and Technology of China,
Hefei 230027, China (e-mail: lf2020@mail.ustc.edu.cn; kpxue@ustc.edu.cn;
xiaohjy@mail.ustc.edu.cn; lijian9@ustc.edu.cn).

Jing Zhang is with the Science Island Branch of Graduate School, University
of Science and Technology of China, Hefei 230031, China, and also with the
Institute of Space Integrated Ground Network, Hefei 230088, China (e-mail:
zhangjing2021@mail.ustc.edu.cn).

Zixuan Huang is with the Institute of Space Integrated Ground Network, Hefei
230088, China (e-mail: 420650892@qq.com).

David S.L. Wei is with the Department of Computer and Information Science,
Fordham University, Bronx, NY 10458 USA (e-mail: wei@cis.fordham.edu).

Digital Object Identifier 10.1109/TDSC.2023.3335304

cloud services offer a stable storage environment, enabling
clients to access their outsourced data conveniently over the
Internet, anytime and from anywhere. Given the data’s relo-
cation to the cloud, a primary concern for clients revolves
around data privacy, especially when the outsourced data in-
cludes sensitive information. A straightforward approach to
counter data leakage is to encrypt all data before outsourc-
ing. However, traditional symmetric encryption methods like
AES come at the cost of data searchability. To surmount this
challenge, a cryptographic concept called Searchable Symmet-
ric Encryption (SSE) was introduced [1], [2]. SSE enables
clients to privatize their data during outsourcing while main-
taining the capability to search encrypted data. This dual func-
tionality aims to address the trade-off between security and
searchability.

A general SSE scheme is designed for keyword-based search
over encrypted documents. Since then, a considerable amount
of research has emerged on this subject, raising issues related to
rich queries, such as Boolean queries [3], [4], [5], fuzzy keyword
queries [6], [7], [8], and range queries [9], [10], [11], [12], [13],
[14]. In this article, we mainly focus on the range queries in SSE.
Following the typical range SSE schemes [10], [12], a common
approach is to transform a range query into a keyword-based
search. More specifically, the scheme by Demertzis et al. [10]
applies range covering techniques to reduce a range query to
a multi-keyword search. Another scheme by Wang et al. [12]
further reduces a range query to a two-keyword search by
designing an order-weighted inverted index.

Regardless of keyword-based search or range query, to assure
high search efficiency, an SSE scheme needs to construct a
specific index, such as an inverted index, and normally leaks
some information called leakage profiles [15], [16], [17]. The
leakage profiles can be categorized into three types: search-
pattern leakage (whether two search tokens are generated from
the same keyword), access-pattern leakage (which identifiers
are associated with the search token), and volume-pattern leak-
age (the size of identifiers for the search token). In the early
stages of research, it was considered acceptable to leak these
patterns. However, recent studies [17], [18], [19], [20], [21],
[22] have shown that the server can reconstruct the database
by relying solely on volume-pattern leakage, especially in the
case of range queries. In other words, compared to general
SSE (which only supports keyword search), range SSE is more
vulnerable to volume-leakage attacks. This is mainly due to the
fact that volume information can reflect the size of the queried

1545-5971 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0002-4079-8662
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0009-0009-2592-4481
https://orcid.org/0009-0004-1479-3803
https://orcid.org/0009-0004-6497-8988
https://orcid.org/0000-0002-6979-4510
https://orcid.org/0000-0002-3839-5576
mailto:lf2020@mail.ustc.edu.cn
mailto:kpxue@ustc.edu.cn
mailto:xiaohjy@mail.ustc.edu.cn
mailto:lijian9@ustc.edu.cn
mailto:zhangjing2021@mail.ustc.edu.cn
mailto:420650892@qq.com
mailto:wei@cis.fordham.edu

3598 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Fig. 1. Example of volume leakage in range SSE.

range to some extent, and the volume for a range can be regarded
as the sum of volume for its subranges.

As a concrete example in Fig. 1, three range queries Q1, Q2

and Q3 are issued by the client. After executing the search
algorithm, the server can observe the number of records (i.e.,
volume pattern) corresponding to each range query. According
to the volume patterns, the server can infer that the relations
among these ranges’ sizes may be |Q1| < |Q3| < |Q2|. More-
over, because the volume corresponding toQ2 is equal to the sum
volume corresponding to Q1 and Q3, the server can further infer
that the relations among these ranges may be Q2 = Q1 ∪Q3.
Once the server observes enough volume patterns, it can attempt
to reconstruct the whole dataset by leveraging existing attack
algorithms [17], [18], [19], [20].

Recently, the range SSE scheme by Zuo et al. [13] uninten-
tionally prevent volume-pattern leakage by adopting the bitmap
index structure. But Wang and Chow [14] argued that the bitmap
index structure has inherent limitations when applying it to a
large-scale dataset. Besides, according to the research [10], the
Best Range Cover (BRC) technique employed in [13] would
lead to extra leakage. In fact, how to support large-scale datasets
is another important issue in range SSE. No matter the order-
weighted inverted index or the range covering technique, there
always exists at least one keyword which contains the whole
records. This would result in low efficiency on index generating
or a high burden on storage. A trivial approach to support
large-scale datasets is taking each value as a keyword instead
of adopting particular transforming techniques. But this method
would cause significant inefficiency in search due to a huge
number of search tokens (cf., Range SSE-I [12]). All these
factors thus lead to the following question: Can we design a
range SSE to prevent volume-leakage attacks while keeping high
security and search efficiency on large-scale datasets?

In this article, we design a novel inverted index by utilizing
the advantages of the order-weighted inverted index [12] and
bitmap index [13]. Inspired by the idea of “searching locally”
in [23], we construct a local search tree for retrieving docu-
ment identifiers locally to prevent extra leakage. For supporting
large-scale datasets, we adopt the partitioning strategy to split
the whole range into disjoint subranges. In this way, we build a
volume-hiding range SSE scheme (named VH-RSSE) with the
optimal trade-off between search efficiency and storage over-
head. Specifically, our proposed scheme VH-RSSE achieves the
optimal size of query tokens (i.e., O(1)) for any range queries,
and O(m) storage overhead on the server’s side, where m is

the number of keywords in the datasets. The comparison of
VH-RSSE with prior arts is given in Table I. Our contributions
are listed as follows.
� We design a novel index, referred to as the order-

accumulated inverted index, by combining the order-
weighted inverted index and bitmap index. Our proposed
order-accumulated index achieves the optimal size of query
tokens (i.e., O(1)) and can also hide the volume pattern,
thereby avoiding volume-leakage attacks.

� To further support large-scale datasets, we split the whole
range into disjoint partitions, and design a local search
tree to store the partition information. By leveraging the
advantage of the local search tree, the client only needs to
send at most two search tokens for any range query and
retrieve document identifiers locally, which significantly
decreases the storage overhead on the server’s side.

� Based on the leakage function and the simulation
paradigm, we provide formal security proof of our
proposed scheme. Besides, we apply real-world datasets
to our experiments and conduct comprehensive analyses in
terms of computation and storage overhead. By comparing
to the state-of-the-art works, we claim that our proposed
VH-RSSE is more secure and efficient, especially on
large-scale datasets.

The rest of this article is organized as follows. Section II
introduces the related work. The problem statement is given
in Section III. In Section IV, we describe the SSE scheme
and related index structures. Section V illustrates our proposed
schemes in detail. Then, we give a formal security analysis and
performance evaluation in Sections VI and VII, respectively.
Finally, we conclude this article in Section VIII.

II. RELATED WORK

Secure range query has attracted extensive attention in the
database research domain, and it can be achieved straightfor-
wardly with the aid of Order Preserving Encryption (OPE) [24],
e.g., CryptDB [25]. Due to the property of preserving the order
for encrypted values, the schemes based on OPE have high com-
patibility with existing database management systems. However
the security of OPE is still debatable, an attacker can easily
launch an inference attack through the leakage of order informa-
tion [26], [27]. To provide a stronger privacy assurance for range
queries, some studies [28], [29] adopt a two-server architecture
and choose the Paillier cryptosystem instead of OPE. Although
these schemes can achieve higher search efficiency and stronger
privacy assurance compared with the scheme based on OPE, the
assumption that two servers are required to be non-colluding
seems too strong. Intuitively, no one can assure that two servers
will never collude in practice [30].

Another line of secure range query is to utilize SSE for a
better balance between privacy protection and search efficiency.
The concept of SSE was first introduced by Song, Wagner, and
Perrig [1] in 2000. To formalize the security definitions and
fulfill the practical requirement, Curtmola et al. [2] presented the
semantic security definitions of SSE and adopted an inverted-
index structure to improve keyword search efficiency. After that,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: VOLUME-HIDING RANGE SEARCHABLE SYMMETRIC ENCRYPTION FOR LARGE-SCALE DATASETS 3599

TABLE I
COMPARISON WITH PRIOR ARTS

a series of studies have begun to concentrate on providing richer
search functionality, such as Boolean queries [3], [4], [5], fuzzy
queries [6], [7], [8], and range queries [9], [10], [11], [12], [13],
[14]. As one of the most well-known SSE schemes with support
for Boolean queries, OXT protocol [3] first achieves multiple
keyword conjunctive queries in sublinear time. Later, Faber
et al. [9] further extended OXT protocol to support range queries.
The core idea is to convert a range query into disjunctions of
exact keywords, and then invoke OXT protocol to execute mul-
tiple keywords. A similar method is also conducted in research
by Demertzis et al. [10], but Demertzis et al. argued that OXT
protocol is not suitable for handling keyword disjunctive queries
since the search time is linear with the number of documents. In
addition, they formalize range queries in the context of SSE [10]
and also propose numerous range SSE schemes with various
trade-offs between efficiency and security. Different from the
above two schemes, the research [12] achieves efficient range
queries by constructing an order-weighted inverted index instead
of the original inverted index.

Nevertheless, to balance efficiency and privacy, all the above
SSE schemes need to reveal some information about the query
and the corresponding response, which are usually called leak-
age profiles [15], [16], [17]. The leakage profiles can be cate-
gorized into three types: search-pattern leakage, access-pattern
leakage, and volume-pattern leakage. Recent studies [17], [18],
[19], [20], [21], [22] emphasize that current range SSE schemes
are vulnerable to attacks based on volume-pattern leakage. Al-
though Zuo et al. [13] proposed a dynamic range SSE scheme
that can inherently avoid leaking the volume pattern due to
the natural property of bitmap structure. However, Wang and
Chow [14] pointed out that the bitmap structure adopted in [13]
restricts the size of files, which would lead to impracticality for
large-scale datasets.

A naïve method to resist volume-leakage attacks is adopting
padding countermeasures in general SSE schemes [31], [32],
[33]. However, the padding strategies cannot be directly inte-
grated in the range SSE schemes, especially when the dataset’s
size is very large. The reason is that, in the existing range SSE
schemes [9], [10], [11], [12], [13], [14], there always exists
at least one keyword which is mapped to the total documents
in the dataset. Therefore, directly applying padding strategies
(i.e., each keyword contains the same size of corresponding

documents) will result in too much storage overhead. One recent
line of works [34], [35], [36] has focused on the design of
volume-hiding encrypted multi-maps that can provide better
storage overhead than the naïve padding method. Unfortunately,
Ando and George [36] argued that the length of each encrypted
response produced by a minimally-leaking encrypted multi-map
scheme must be at least the maximum response length. That is
to say, when applying volume-hiding encrypted multi-maps into
existing range SSE schemes, the response length must be at least
as long as the number of the whole documents.

In a relatively recent work [37], Ren et al. designed a hy-
brid index framework to eliminate volume-pattern leakage for
range queries by utilizing the Trusted Execution Environment
(TEE) such as an SGX-enabled storage server. Like many other
TEE-assisted applications (e.g., [38]), these schemes are vul-
nerable to side-channel attacks [39]. So far, there still lacks
a volume-hiding range SSE scheme that supports large-scale
datasets without relying on TEE.

III. PRELIMINARIES

A. SSE Scheme Syntax

In a typical SSE scheme, a client can outsource its encrypted
documents to an untrustworthy cloud server preserving with key-
word searchability. Following the definitions in [3], [10], each
document has a unique identifier (denoted by ind) and contains
a set of keywords (denoted by W). Assuming that the number
of total documents is d, we use a database DB = (indi,Wi)

d
i=1

to represent the list of identifier-keywords pairs. We denote the
document identifiers that contain the keyword w byDB(w). The
client first encrypts DB and then uploads the encrypted database
EDB to the cloud server. The search protocol is executed between
the client and cloud server, where the client first obtains the
search token according to the search keyword, then the cloud
server uses the search token to retrieve encrypted document
identifiers from EDB. In general, an SSE scheme contains the
following five algorithms:
� K ← Setup(1λ): is a probabilistic algorithm run by the

client. Given a security parameter λ, this algorithm outputs
a secret key K.

� EDB← BuildIndex(K,DB): is a probabilistic algorithm
run by the client. Upon inputting a database DB and the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

3600 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Fig. 2. Example of order-weighted inverted index.

secret key K, this algorithm outputs an encrypted database
EDB.

� st← TokenGen(K,w): is a deterministic algorithm run
by the client. Upon inputting a search keyword w and the
secret key K, this algorithm outputs a search token st.

� RS ← Search(st,EDB): is a deterministic algorithm run
by the server. For a search token st and the encrypted
databaseEDB, this algorithm outputs a set of search results
RS.

� I ← Dec(K,RS): is a deterministic algorithm run by the
client. For the secret key K and the search result RS, this
algorithm outputs a set of document index I .

We say that an SSE scheme is correct if for any K output
by Setup(1λ), given any DB, after running EDB← IndexBuild
(K,DB), st← TokenGen(K,w), RS ← Search(st,EDB),
and I ← Dec(K,RS), the set I contains the same document
identifiers as that in DB(w). To improve the search efficiency,
a common approach is to use the inverted index as the EDB’s
structure, where each (encrypted) keyword is regarded as an
index and mapped to a set of (encrypted) document identifiers.

In the context of range SSE, the syntax definition is
slightly different. For the sake of simplicity, many studies
(e.g., [10], [12], [13]) only consider single-dimensional
range queries, because the multi-dimensional range queries
can be reduced to several independent single-dimensional
range queries. Following this assumption, each document
is characterized by an attribute (e.g., age), whose value
v is regarded as the document’s keyword. That is,
DB = (indi, wi)

d
i=1 and W =

⋃d
i=1{wi} = {v1, v2, . . . , vm},

where v1 < v2 < . . . < vm, m is the number of distinct values
in DB. Since each document only corresponds to one keyword,
it is clear to infer that m ≤ d. The range query is denoted by
Q = [v�, vr], where �, r ∈ {1, 2, . . . ,m} and � ≤ r. Therefore,
the corresponding inverted index I can be parsed as (vi, Ii)mi=1,
where Ii = DB(vi) is the set of identifiers containing vi.

B. Order-Weighted Inverted Index

As a special construction of the inverted index, the order-
weighted inverted index is originally designed for range queries
in [12]. An example of order-weighted inverted index is shown
in Fig. 2.

At a high level, given an inverted index I = (vi, Ii)
m
i=1, the

order-weighted inverted index can be represented as (vi, I∗i)
m
i=1,

Fig. 3. Example of the bitmap index.

where I∗i =
⋃i

j=1{Ij} means the collection of identifiers con-
taining values no greater than vi. Each document identifier in
order-weighted inverted index is attached with a weight infor-
mation (e.g., indi||ωi, where ωi is indi’s weight). The weight
information represents the number of occurrences of the corre-
sponding document identifier. This structure has the benefit in
reducing the size of search tokens (token size is O(1)). That is
to say, for any range query Q = [v�, vr], the client only needs
to generate two search tokens: one is for v�−1, and the other is
for vr. The search result can be calculated by I∗r\I∗�−1. For more
details of the order-weighted inverted index, we refer the readers
to [12].

C. Bitmap Index

Bitmap index has been widely used to represent document
identifiers in several SSE schemes [11], [13], [40], [41], [42].
As illustrated in Fig. 3, assume that there are 8 documents, then
we can set a bit string bs with length 8. Consider an inverted
index (vi, Ii)

m
i=1, we can use a bit string bs to represent Ii. That

is, if there exists document identifier indj in Ii, we set the jth
bit of bs to 1. Otherwise, it is set to 0.

This index is usually encrypted by an additively homomorphic
encryption scheme so that the server can update the bit string in
the ciphertext domain. Since for each keyword vi, the length of
bs is identical, which implies that the bitmap index can inherently
prevent the volume-pattern leakage.

IV. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Definition

In our model, there are two participants, i.e., a client and a
cloud server (as shown in Fig. 1). The client first outsources
its encrypted documents to the cloud server. Then the client can
generate search tokens to retrieve the documents from the server.
From the view of the client, the cloud server is considered to be
honest-but-curious, which means the cloud server will execute
the protocol honestly, but it will also try to infer what range the
client is searching for or what identifiers have been retrieved by
leveraging the leakage profile. Assuming that d is the number
of documents, we use DB = (indi,wi)

d
i=1 to represent the list

of identifier-keywords pairs. Following the range SSE syntax,
each document contains a unique identifier ind and a distinct
value v ∈ {v1, v2, . . . , vm}, where m is the number of distinct
values in DB. The collection of all keywords is denoted by

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: VOLUME-HIDING RANGE SEARCHABLE SYMMETRIC ENCRYPTION FOR LARGE-SCALE DATASETS 3601

TABLE II
NOTATIONS

W =
⋃d

i=1 wi = {v1, v2, . . . , vm}. Notations used in this article
are given in Table II.

B. Design Goal

Our goal is to design a volume-hiding range SSE scheme
which can support efficient operations on large-scale datasets.
Despite the bitmap index can prevent volume-pattern leakage
due to its inherent property, it also has limitations when the
number of documents is large, especially in the case of range
SSE. Our design aims to resolve the issue of the trade-off
between privacy preservation and large-scale dataset support.
In particular, the following objectives should be achieved:
� Privacy Preservation: Our design aims to protect query

privacy (i.e., what range the client is searching for) and
data privacy (i.e., what data is being retrieved for each
query) from the cloud server. Considering that the cloud
server would launch volume-leakage attacks to infer the
query privacy and data privacy, we need to hide the volume
pattern to avoid these leakage-abuse attacks.

� Large-Scale Dataset Support: Our design should be highly
scalable in terms of supporting large documents. In addi-
tion, no matter how large the dataset is, or what range is
queried, the protocol should maintain high efficiency on
both the client’s side and the server’s side.

C. Security of Range SSE

Similar to the previous studies [10], [12], [13], we define a
leakage function L to depict the information which would be
learned by the cloud server. The rigorous definition of leakage
functionL is given in Section VI. Based on the leakage function,
the security of our proposed scheme can be formalized by the
simulation paradigm [2] (also referred to as the ideal/real model).
That is to say, for a range scheme Π, the behavior in the real

world is essentially the same as the protocol in Π. While in the
ideal world, the behavior is simulated by a simulator S which
exploits the leakage information (i.e., the outputs of L) as the
input. Intuitively, to prove thatΠ is secure, we only need to prove
that for every probabilistic polynomial time (PPT) adversaryA,
the probability to distinguish these two worlds is negligible.

We use RealΠA and IdealΠA,S to denote two security games
in real world and ideal world, respectively. The definitions of
RealΠA and IdealΠA,S are described as follows.
� RealΠA: Upon inputting a security parameter λ, the chal-

lenger invokes Setup(λ) to generate a secret key K. For a
database DB provided by the adversary A, the challenger
returns EDB← IndexBuild(K,DB) toA. Then adversary
A sends a polynomial number of range queries to the
challenger. For each range queryQ, the challenger returns a
corresponding search tokens list ST. Eventually,A outputs
a bit b ∈ {0, 1} as the result of the game.

� IdealΠA,S : For a database DB provided by the adversary
A, the simulator S returns EDB by exploiting the leakage
function L(DB). Then adversary A sends a polynomial
number of range queries to S . For each range query Q, the
simulator S returns a corresponding search tokens list ST
by exploiting the leakage function L(Q,DB). Eventually,
A outputs a bit b ∈ {0, 1} as the result of the game.

Definition 1 (Security of Range SSE): For a range SSE
scheme Π and the security games described above, the scheme
is L-adaptively-secure if for any probabilistic polynomial time
(PPT) adversary A, there is a PPT simulator S such that

|Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1]| ≤ negl(λ), (1)

where negl(λ) is a negligible function.

V. THE PROPOSED SCHEME

A. Overview

In our system, the client first partition the range [v1, vm] into
disjoint subranges. For each subrange, we utilize a bitmap index
to represent the document identifiers, and ensure that the number
of documents in each subrange could not exceed the bit string’s
length. We also use a collection C to record the subranges’ in-
formation. For example, assuming C = {C(1), C(2), . . .}, C(i)

records the ith subrange’s information. The information includes
the subrange’s boundary values (denoted by [C

(i)
min, C

(i)
max]), the

volume information within the subrange (denoted by C
(i)
info),

and the distinct values within the subrange (denoted by C
(i)
v).

According to collection C, the client can build a binary
tree BT for local search. As shown in Algorithm 1, for each
node N , we use [Nmin, Nmax] to represent the boundary of
the range associated with N , where Nmin = N.leftmin and
Nmax = N.rightmax. After building the local search tree BT,
the client begins to construct an order-accumulated inverted
index for each subrange. A concrete example of the order-
accumulated inverted index is given in Fig. 4. The idea behind
our proposed order-accumulated inverted index is from the fact
that each document is characterized by only a keyword value in
the range query scenario. Compared to the original order-weight

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

3602 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Algorithm 1: Local Binary Tree.

inverted index, we remove the redundant weight information and
use the bitmaps to represent the document identifiers, so that the
volume pattern of each keyword can be hidden. After that, the
client encrypts the order-accumulated inverted indexes as EDB
and sends it to the server.

To search the documents in a range Q = [v�, vr], the client
first performs the local search based on BT (cf., Algorithm 1). If
a node ofBT precisely matches the queried range, then the client
can directly obtain the bitmap index locally without interacting
with the server. Otherwise, the client needs to generate a search
token(s) list ST and send ST to the server.

Upon receiving ST, the server starts to execute the search
algorithm with each token in ST and returns the final results to
the client. Finally, the client decrypts the final results and obtains
the bitmap index from BT. The whole procedure is depicted in

Fig. 4. Example of our order-accumulated inverted index structure.

Fig. 5. Overview of VH-RSSE.

Algorithm 2: Setup.

Fig. 5. More specifically, we divide the whole procedure into
three phases: Setup, Building, and Search.

B. Setup Phase

In this phase, the client first initializes the secret key K and
the bitmap’s lengthL according to the security parameter λ (e.g.,
80 bits) and the max volume V of database DB. In our system,
we require that L is not less than λ or V , i.e., L ≥ max{λ,V}.
Afterward, the client generates two hash functions H1, H2, a
secure Pseudorandom Function (PRF) F , an empty map EDB
and a binary tree BT. Note that EDB is an inverted index where
we use a bitmap to represent the document identifiers, and the
binary tree BT stores the range information. The procedure is
described in Algorithm 2.

C. Building Phase

ForDB = (indi,wi)
d
i=1, the client first parses it as an inverted

index I = (vi, Ii)
m
i=1. As we explained in Section IV, in the case

of a range query, each document identifier corresponds to only
a single keyword, and each keyword w has a distinct value v.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: VOLUME-HIDING RANGE SEARCHABLE SYMMETRIC ENCRYPTION FOR LARGE-SCALE DATASETS 3603

Algorithm 3: BuildIndex.

Afterward, the client begins by partitioning the range [v1, vm]
into disjoint subranges and stores them in a collection C. Then,
based on C, the client can build BT and EDB. Finally, the client
retainsBT locally and sendsEDB to the cloud server. To alleviate
the storage burden, we assert that the client only needs to store
an offset value and the size of document identifiers for each
collection C. This is due to the fact that the bitmap’s non-zero
entries are consecutive in our proposed order-accumulated in-
verted index. Therefore, the client can reconstruct the bitmap
using the offset value and the size of document identifiers. The
details of the procedure are shown in Algorithm 3.

D. Search Phase

For a range query Q = [v�, vr], the client first obtains a
subrange set Cs via local search tree BT. If v� and vr are exactly
the low and high bounds of Cs, then the client can generate the
bitmaps within the range Q locally. Otherwise, the client needs
to generate the search tokens and send them to the cloud server.
Upon receiving the search tokens list ST, the server retrieves all
encrypted bitmap index e corresponding to ST and sends search
results to the client. Finally, the client decrypts the search result
and restores all plain bitmap index via Cs. The details of the
procedure is shown in Algorithm 4.

Algorithm 4: Search.

E. Discussions

Like many other SSE schemes [3], [4], [5] that focus on the
search document index, our design only retrieves the bitmap
index corresponding to the documents that match the queried
range. This model is also deemed as structure-only SSE [43],

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

3604 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

which means the process of document retrieval is left out. This is
because the client can retrieve the corresponding documents by
PIR or ORAM techniques, after obtaining the document index.
In our proposed VH-RSSE, in order to retrieve the documents,
we need to establish a connection between the bitmap and the
positions of documents stored on the server. For a bitmap bs
with an offset value ϕ, assume that the ith bit of bs corresponds
to indj , we only need to set the position of document indj as
P(Kp, i+ ϕ) in the setup phase, where P is a pseudorandom
permutation. In this way, the client can calculate the positions of
documents according to the bitmap index, and further retrieve
the documents from the server.

Then we need to discuss the strength of VH-RSSE when
applied to large-scale datasets. As we mentioned earlier, no
matter the BRC technique applied in [10], [13] or the order-
weighted inverted index utilized in [12], there always exists a
keyword containing the whole document identifiers. To address
this issue, in our proposed scheme, we design a hybrid index
structure called order-accumulated inverted index by combining
the bitmap index and order-weighted inverted index. Through
integrating the partitioning strategy, each keyword in EDB cor-
responds to a bit string with a constant size, where the size
depends on the partitioning strategy and is far smaller than the
size in Zuo et al.’s scheme [13]. Concretely, our proposed scheme
requires that each bit string’s length L ≥ max{|DB(w)|, ∀w ∈
W}, while Zuo et al.’s scheme requires that each bit string’s
length L′ ≥∑ |DB(w)|, ∀w ∈W. Although Zuo et al. also
mentioned that they can divide a large bit string into several
shorter ones by taking the method in [40], the size of total bit
strings for each keyword has no changes.

From the aspect of index storage overhead, it is easy to find
that the size of EDB only depends on the length of the bitmap
and the number of keywords, which implies that the number
of document identifiers will have little impact on it. The token
generation time is O(log |C|), i.e., the height of the local search
tree BT. For any range query, the number of search tokens is at
most 2. Since the search complexity is directly correlated with
the number of search tokens, we claim that VH-RSSE achieves
high search efficiency.

Our proposed scheme can also be extended to support dy-
namic datasets by employing the idea from existing dynamic
SSE schemes (such as [44], [45], [46]). Taking the idea of [46]
as an example, we only need to make slight changes to our
proposed scheme for supporting dynamic updates, where the
procedure for updating and searching is shown in Fig. 6. In
the setup phase, the client needs to additionally initialize an
empty map Σ, a hash function H3 and a pseudorandom per-
mutation P . The empty map Σ is used to store the states
for each keyword, and P is used to establish a connection
between every two states. For each keyword v, Σ[v] records
a tuple (stc, c), where c is a counter to record the number of
updates and stc is the state. In each state stc, the client needs
to generate a random kc+1 to calculate the next state, namely,
stc+1 ← P (kc+1, stc). The bit string bs corresponding to stc+1

is encrypted as ec ← bs⊕H1(K1, v||c+ 1). Then the client just
setEDB[H2(K2, st||stc+1)] := (kc+1||ec+1)⊕H3(st||stc+1).
As for the search phase, the server only needs to take st||stc+1

Fig. 6. Extension of VH-RSSE to support dynamic updates.

as the input, and obtain the previous state by computing stc ←
P−1(kc+1, stc+1). After retrieving [e1, e2, . . . , ec+1], the server
just needs to return the final result RS = e1 ⊕ e2 ⊕ . . .⊕ ec+1.
One of the main challenges in dynamic SSE is preserving for-
ward privacy, which means the newly added documents cannot
be matched by the previous search tokens. In this extended
version, the newly added document in state stc+1 cannot be
matched by the previous search tokens because the server can-
not calculate Pkc+1

(stc) without the knowledge of kc+1 in
probabilistic polynomial time. Since our purpose is to design
a volume-hiding range SSE for large-scale datasets, here we
omit a full analysis of dynamic updates for brevity.

VI. SECURITY ANALYSIS

A. Leakage Function

As we mentioned in Section IV, the security of our proposed
scheme is defined on the basis of the leakage function. Therefore,
before analyzing the security, we need to discuss the leakage
function first. In particular, the leakage function of VH-RSSE
is defined by L = {LIndex,LQuery}, where LIndex represents the
leakage information from the procedure of building index and
LQuery represents the leakage information from the procedure of
querying. According to the output of building index, the server
only knows the number of keywords, i.e., m. For a range query
Q, the server only knows the size of ST rather than the size of
the matched identifiers. Thus, we useμ(Q) = |ST| to denote the
token size pattern of Q. The definitions of LIndex and LQuery are
described as follows:
� LIndex(DB) = (m),
� LQuery(EDB, Q) = (μ(Q)).
Note that the token size pattern would reveal the information

that whether a range query contains the minimal or maximal
value of a subrange when the token size is 1. We argue that
this leakage is acceptable and can be eliminated by randomly
generating a “fake” token for the minimal (or maximal) value in
each subrange.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: VOLUME-HIDING RANGE SEARCHABLE SYMMETRIC ENCRYPTION FOR LARGE-SCALE DATASETS 3605

B. Security Proof

Based on the leakage function, we now analyze the security
of our VH-RSSE (denoted by RSSE hereafter for brevity).

Theorem 1: Let L = {LIndex,LQuery} be the leakage func-
tion defined in Section VI-A, our proposed scheme RSSE =
(Setup,BuildIndex, Search) is L-adaptively-secure, assuming
that H1 and H2 are two random oracles [47], and F is a secure
PRF.

Proof: Similar to the proof in the previous works [12], [13],
we define several games G0, G1, G2, G3, G4 from RealRSSEA
to IdealRSSEA,S . According to the definition in Section IV, we
need to proveRealRSSEA and IdealRSSEA,S are indistinguishable. A
common approach is to prove that every two consecutive games
from RealRSSEA to IdealRSSEA,S are indistinguishable.

Game G0: G0 straightforwardly performs our proposed
scheme. Namely,G0 is the same as the experiment inRealRSSEA .
Thus, we have

Pr[G0 = 1] = Pr[RealRSSEA (λ) = 1]. (2)

GameG1: InG1, we replaceK1||K2 ← F (K, v)by choosing
K1 and K2 at random and using a map K to store the pair
(v,K1||K2). More specifically, given an input v, if there exists
an entry v in map K, the corresponding K1||K2 is returned;
otherwise, a random K1||K2 is returned and stored with the
value v in K. We denote this process by K1||K2 ← K(v) for
simplicity.

Assuming that there is a PPT adversaryA1 that can distinguish
between G0 and G1, then we can construct another PPT ad-
versary B1 to distinguish K1||K2 ← F (K, v) from the random
selection K1||K2 ← K(v). Since F is a secure PRF, we have

Pr[G1 = 1]− Pr[G0 = 1] ≤ AdvprfF,B1(λ), (3)

where AdvprfF,B1(λ) is a negligible function that represents the
advantage for the adversary B1 to distinguish F from a truly
random function.

Game G2: We replace the hash function H1 by a random
oracle H1 such that bs′ ← H1(K1, vi). Since the length of bs′

is L, the probability of a correct guess for bs′ by the adversary
is 1/2L. According to the assumption of random oracle, if the
adversaryA issues polynomial number p(λ) of queries, then we
have

Pr[G2 = 1]− Pr[G1 = 1] ≤ p(λ)/2L. (4)

Game G3: Similarly, we replace the hash function H2 by a
random oracle H2 such that st← H2(K2, vi). As the length
of search token st is λ, the probability of a correct guess for
search token st by the adversary is also 1/2λ. According to
the assumption of random oracle, if the adversary A issues
polynomial number p(λ) of queries, then we have

Pr[G3 = 1]− Pr[G2 = 1] ≤ p(λ)/2λ. (5)

Game G4: We replace e← bs⊕H1(K1, vi) by just setting
e← H1(K1, vi) in the building phase. According to the assump-
tion of random oracle and the definition of perfectly secret [47],
if the adversary A issues polynomial number p(λ) of queries,

Algorithm 5: Simulator S .

then we have

Pr[G4 = 1]− Pr[G3 = 1] ≤ p(λ)/2L. (6)

Simulator S: Now we construct the simulator S =
{S.Setup,S.BuildIndex,S.Search}. Here we use a map V to
store the pair (Q, {vi}μ(Q)

i=1), which is similar to the map K. The
details of the algorithm is described in Algorithm 5.

Note that the simulator S takes λ and the leakage function
L = {LIndex,LQuery} as input, and returns a simulated EDB and
a simulated token listST to the adversaryA. Since the procedure
of constructing EDB is the same as that in game G4, then we
have

Pr[IdealRSSEA,S (λ) = 1] = Pr[G4 = 1]. (7)

By using the standard hybrid argument technique [47], it is
clear to see that

Pr[IdealRSSEA,S (λ) = 1]− Pr[RealRSSES (λ) = 1]

≤ AdvprfF,B1(λ) + p(λ)/2λ + 2p(λ)/2L

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

3606 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Fig. 7. Comparison of running time of generating index.

≤ AdvprfF,B1(λ) + 3p(λ)/2λ, (8)

which indicates that our proposed VH-RSSE is secure. �

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of VH-RSSE
from various aspects by comparing it with the recently proposed
schemes [12], [13]. All experiments are conducted on a computer
with an Intel Core i5-10400 CPU (4.30 GHz) and 16 GB RAM
running the Linux OS. We adopt the Python Crypto module
to implement the cryptographic operations, such as the hash
function and the PRFs. For the sake of simplicity, we simulate
the instances of the client and server on the same machine.

We choose Gowalla location checkin dataset1 as the test
dataset. Specifically, the Gowalla location checkin dataset con-
tains 6,442,892 entries, and each entry is recorded in the form
of (user, check-in time, latitude, longitude, location id). For
our experiments, we treat each entry as a document and the
value of latitude in each entry as the keyword,2 which is sim-
ilar to the experiment setting in [12]. In this way, we assign
each entry a unique document identifier and parse the whole
dataset as DB = (indi,wi)

|DB|
i=1 . The total number of documents

is 6,442,892 and the number of keywords is 335,362. Unless
otherwise stated, the default bitmap’s lenght L is set to 6,264.

As shown in Table I, FBDSSE-RQ [13] outperforms
SchemeA and SchemeB [11], and Range SSE-II [12] is a mod-
ified version of SSE-I [12]. Consequently, for our comparative
experiments, we only need to choose Range SSE-II [12] and
FBDSSE-RQ [13] to evaluate their performance in comparison
to our proposed VH-RSSE. To compare with these two schemes,
we generate several datasets with various sizes of documents and
keywords from the whole dataset. Note that the number of key-
words is denoted bym and the number of document identifiers is
denoted by d. We first compare the time of generating encrypted
index and local binary tree. The result is shown in Fig. 7. It
is clear to see that VH-RSSE and Range SSE-II [12] are more
efficient than FBDSSE-RQ [13] in generating index. This is be-
cause, in FBDSSE-RQ [13], the identifiers for each keyword are
disorganized, and the bit string’s length is extremely large, which
results in time-consuming computation in generating the bitmap

1http://snap.stanford.edu/data/loc-gowalla.html.
2All keyword values are rounded to 4 decimal places.

Fig. 8. Number of tokens for different range sizes.

index for each keyword. In contrast, both Range SSE-II [12] and
our VH-RSSE use a specially constructed inverted index, which
is more regular than the normal inverted index, thus leading to
efficiency. When the number of keywords is fixed to 4,096, the
running time of generating index grows linearly with the number
of documents except for VH-RSSE (see Fig. 7(a)). This is due
to the fact that the inverted index structure in our scheme only
depends on the number of keywords and the bitmap’s length.
We also observe that when the number of documents is fixed to
80,000, the running time of VH-RSSE grows much slower than
that of others (see Fig. 7(b)). The reason behind that is the height
of the local tree in VH-RSSE only depends on the number of
documents and the bitmap’s length.

As illustrated in Fig. 8, we compare the average number of
search tokens with respect to different range sizes. Here we set
the number of documents to d = 80, 000, and the number of
keywords to m = 4, 096. The range size represents the number
of distinct values within the range. Assume that the range size
is q, a straightforward solution is to transform each value into
a search token, where the number of search tokens is also q.
FBDSSE-RQ [13] adopts the BRC technique to reduce the
number of search tokens from q to O(log q). Benefiting from
the order-weighted inverted index, Range SSE-II [12] and VH-
RSSE have a smaller number of search tokens. To be specific,
the number of search tokens in Range SSE-II [12] is always 2,
and in our proposed scheme, the number of search tokens is even
smaller, which is at most 2.

As for the storage overhead, Table III lists the size of the
encrypted index (stored on the server’s side) and local binary
tree (stored on the client’s side) for each scheme. We can see
that when the number of keywords is fixed, the encrypted index
size increases linearly with the number of documents except
for VH-RSSE. In other words, we eliminate the impact of large
document identifiers by splitting the whole range into disjoint
subranges. In this way, each keyword in our inverted index only
needs to carry a small set of document identifiers within the
corresponding subrange. Therefore, the encrypted index size in
VH-RSSE is only related to the number of keywords. In addition,
we find that the encrypted index size in Range SSE-II [12] is
extremely huge, which will cause inefficiency when uploading
it to the server. In the comparison of the local binary tree, as

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: VOLUME-HIDING RANGE SEARCHABLE SYMMETRIC ENCRYPTION FOR LARGE-SCALE DATASETS 3607

TABLE III
COMPARISON OF STORAGE OVERHEAD

TABLE IV
PERFORMANCE OF VH-RSSE ON LARGE-SCALE DATASET

Fig. 9. Comparison of search time for different range sizes.

for VH-RSSE, since we only need to assign each subrange
collection to each leaf node, the the storage of local binary tree
in VH-RSSE is much lower than that in the other schemes.

We also evaluate the search time for the three schemes.
Considering that except for VH-RSSE, the other two schemes
are not suitable for large-scale datasets. Thus, we choose a
smaller dataset in this experiment, i.e., the number of keywords
is 4,096, and the number of documents is 80,000. According to
the results in Fig. 9, we find that all three range SSE schemes
have an efficient search time. Nevertheless, our proposed scheme
achieves the best performance among them.

To examine the performance of VH-RSSE on a large-scale
dataset, we also conduct additional experiments under a large-
scale dataset where the number of documents is set to 106 and
the number of keywords is set to 216. The results are shown
in Table IV and Fig. 10. We find that even in a dataset with
a million records, the computation time of generating index is
still efficient (around 7.09 s), and the storage overhead on the
server’s side (i.e., the size of EDB) is around 52 MB, which is
still small compared to the results of prior arts in Table III. As

Fig. 10. Search time of VH-RSSE on large-scale dataset.

for the search time, the results in Fig. 10 also demonstrate that
our proposed scheme remains highly efficient in search even the
range size is extremely large.

VIII. CONCLUSION

In this article, we proposed a novel range SSE scheme that
avoids volume-pattern leakage and supports efficient opera-
tions on large-scale datasets. By leveraging the order-weighted
inverted index and bitmap structure, we designed an order-
accumulated inverted index that provides optimal token size and
simultaneously conceals volume patterns. Through our parti-
tioning strategy, the proposed scheme achieves high efficiency
for range queries on large-scale datasets. Based on the leakage
function, we demonstrated the security of our scheme under the
ideal/real model simulation paradigm. Finally, we conducted
a series of experiments that highlight the practicality of our
proposed scheme compared to prior methods, especially for
large-scale datasets.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

3608 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

REFERENCES

[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. IEEE Symp. Secur. Privacy, 2000, pp. 44–55.

[2] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmet-
ric encryption: Improved definitions and efficient constructions,” in Proc.
13th ACM Conf. Comput. Commun. Secur., 2006, pp. 79–88.

[3] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and
M. Steiner, “Highly-scalable searchable symmetric encryption with sup-
port for Boolean queries,” in Proc. 33rd Annu. Cryptol. Conf., Springer,
2013, pp. 353–373.

[4] S. Lai et al., “Result pattern hiding searchable encryption for conjunc-
tive queries,” in Proc. 25th ACM Conf. Comput. Commun. Secur., 2018,
pp. 745–762.

[5] S. Kamara and T. Moataz, “Boolean searchable symmetric encryption with
worst-case sub-linear complexity,” in Proc. 36th Annu. Int. Conf. Theory
Appl. Cryptographic Techn., Springer, 2017, pp. 94–124.

[6] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient
multi-keyword fuzzy search over encrypted outsourced data with accu-
racy improvement,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 12,
pp. 2706–2716, Dec. 2016.

[7] Z. Fu, L. Xia, X. Sun, A. X. Liu, and G. Xie, “Semantic-aware searching
over encrypted data for cloud computing,” IEEE Trans. Inf. Forensics
Secur., vol. 13, no. 9, pp. 2359–2371, Sep. 2018.

[8] L. Chen, Y. Xue, Y. Mu, L. Zeng, F. Rezaeibagha, and R. Deng, “CASE-
SSE: Context-aware semantically extensible searchable symmetric en-
cryption for encrypted cloud data,” IEEE Trans. Serv. Comput., vol. 16,
no. 2, pp. 1011–1022, Mar./Apr. 2023.

[9] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
“Rich queries on encrypted data: Beyond exact matches,” in Proc. 20th
Eur. Symp. Res. Comput. Secur., Springer, 2015, pp. 123–145.

[10] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and
M. Garofalakis, “Practical private range search revisited,” in Proc. Int.
Conf. Manage. Data, 2016, pp. 185–198.

[11] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic searchable
symmetric encryption schemes supporting range queries with forward
(and backward) security,” in Proc. 23rd Eur. Symp. Res. Comput. Secur.,
Springer, 2018, pp. 228–246.

[12] B. Wang and X. Fan, “Search ranges efficiently and compatibly as key-
words over encrypted data,” IEEE Trans. Dependable Secure Comput.,
vol. 15, no. 6, pp. 1027–1040, Nov./Dec. 2018.

[13] C. Zuo, S. Sun, J. K. Liu, J. Shao, J. Pieprzyk, and L. Xu, “Forward
and backward private DSSE for range queries,” IEEE Trans. Dependable
Secure Comput., vol. 19, no. 1, pp. 328–338, Jan./Feb. 2022.

[14] J. Wang and S. S. M. Chow, “Forward and backward-secure range-
searchable symmetric encryption,” in Proc. Privacy Enhancing Technol.,
vol. 2022, no. 1, pp. 28–48, 2022.

[15] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proc. 22nd ACM Conf. Comput. Com-
mun. Secur., 2015, pp. 668–679.

[16] S. Kamara, A. Kati, T. Moataz, T. Schneider, A. Treiber, and M. Yonli,
“SoK: Cryptanalysis of encrypted search with LEAKER–A framework for
LEakage AttacK Evaluation on Real-world data,” in Proc. IEEE 7th Eur.
Symp. Secur. Privacy, 2022, pp. 90–108.

[17] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “Response-
hiding encrypted ranges: Revisiting security via parametrized
leakage-abuse attacks,” in Proc. IEEE Symp. Secur. Privacy, 2021,
pp. 1502–1519.

[18] P. Grubbs, M.-S. Lacharite, B. Minaud, and K. G. Paterson, “Pump up
the volume: Practical database reconstruction from volume leakage on
range queries,” in Proc. 25th ACM Conf. Comput. Commun. Secur., 2018,
pp. 315–331.

[19] M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Improved reconstruction
attacks on encrypted data using range query leakage,” in Proc. IEEE Symp.
Secur. Privacy, 2018, pp. 297–314.

[20] Z. Gui, O. Johnson, and B. Warinschi, “Encrypted databases: New volume
attacks against range queries,” in Proc. 26th ACM Conf. Comput. Commun.
Secur., 2019, pp. 361–378.

[21] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shintre, “SEAL:
Attack mitigation for encrypted databases via adjustable leakage,” in Proc.
29th USENIX Secur. Symp., 2020, pp. 2433–2450.

[22] J. Ning et al., “LEAP: Leakage-abuse attack on efficiently deployable,
efficiently searchable encryption with partially known dataset,” in Proc.
28th ACM Conf. Comput. Commun. Secur., 2021, pp. 2307–2320.

[23] M. Xu, A. Namavari, D. Cash, and T. Ristenpart, “Searching encrypted
data with size-locked indexes,” in Proc. 30th USENIX Secur. Symp., 2021,
pp. 4025–4042.

[24] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in Proc. 28th Annu. Int. Conf. Theory Appl. Cryp-
tographic Techn., Springer, 2009, pp. 224–241.

[25] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query processing,”
in Proc. 23rd ACM Symp. Operating Syst. Princ., 2011, pp. 85–100.

[26] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proc. 22nd ACM Conf. Comput.
Commun. Secur., 2015, pp. 644–655.

[27] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart,
“Leakage-abuse attacks against order-revealing encryption,” in Proc. IEEE
Symp. Secur. Privacy, 2017, pp. 655–672.

[28] K. Xue, S. Li, J. Hong, Y. Xue, N. Yu, and P. Hong, “Two-cloud secure
database for numeric-related SQL range queries with privacy preserving,”
IEEE Trans. Inf. Forensics Secur., vol. 12, no. 7, pp. 1596–1608, Jul. 2017.

[29] K. Cheng et al., “Strongly secure and efficient range queries in cloud
databases under multiple keys,” in Proc. IEEE Int. Conf. Comput. Com-
mun., 2019, pp. 2494–2502.

[30] G. Xu, H. Li, S. Liu, M. Wen, and R. Lu, “Efficient and privacy-preserving
truth discovery in mobile crowd sensing systems,” IEEE Trans. Veh.
Technol., vol. 68, no. 4, pp. 3854–3865, Apr. 2019.

[31] L. Xu, X. Yuan, C. Wang, Q. Wang, and C. Xu, “Hardening database
padding for searchable encryption,” in Proc. IEEE Int. Conf. Comput.
Commun., 2019, pp. 2503–2511.

[32] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting leakage abuse
attacks,” in Proc. 27th Annu. Netw. Distrib. Syst. Secur. Symp., 2020.

[33] V. Vo, X. Yuan, S. Sun, J. K. Liu, S. Nepal, and C. Wang, “ShieldDB:
An encrypted document database with padding countermeasures,” IEEE
Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 4236–4252, Apr. 2023.

[34] S. Kamara and T. Moataz, “Computationally volume-hiding structured
encryption,” in Proc. 38th Annu. Int. Conf. Theory Appl. Cryptographic
Techn., Springer, 2019, pp. 183–213.

[35] S. Patel, G. Persiano, K. Yeo, and M. Yung, “Mitigating leakage in secure
cloud-hosted data structures: Volume-hiding for multi-maps via hashing,”
in Proc. 26th ACM Conf. Comput. Commun. Secur., 2019, pp. 79–93.

[36] M. Ando and M. George, “On the cost of suppressing volume for encrypted
multi-maps,” in Proc. Privacy Enhancing Technol., vol. 2022, no. 4,
pp. 44–65, 2022.

[37] K. Ren et al., “HybrIDX: New hybrid index for volume-hiding range
queries in data outsourcing services,” in Proc. 40th Int. Conf. Distrib.
Comput. Syst., 2020, pp. 23–33.

[38] Y. Chen, Q. Zheng, Z. Yan, and D. Liu, “QShield: Protecting outsourced
cloud data queries with multi-user access control based on SGX,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 485–499, Feb. 2021.

[39] J. Gharehchamani, Y. Wang, D. Papadopoulos, M. Zhang, and R. Jalili,
“Multi-user dynamic searchable symmetric encryption with corrupted
participants,” IEEE Trans. Dependable Secure Comput., vol. 20, no. 1,
pp. 114–130, Jan./Feb. 2023.

[40] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic searchable
symmetric encryption with forward and stronger backward privacy,” in
Proc. 24th Eur. Symp. Res. Comput. Secur., Springer, 2019, pp. 283–303.

[41] J. Wang, R. Zhang, J. Li, Y. Xiao, and H. Ma, “SeUpdate: Secure encrypted
data update for multi-user environments,” IEEE Trans. Dependable Secure
Comput., vol. 19, no. 6, pp. 3592–3606, Nov./Dec. 2022.

[42] F. Li, J. Ma, Y. Miao, Q. Jiang, X. Liu, and K.-K. R. Choo, “Verifiable and
dynamic multi-keyword search over encrypted cloud data using bitmap,”
IEEE Trans. Cloud Comput., vol. 11, no. 1, pp. 336–348, First Quarter
2023.

[43] Z. Gui, K. G. Paterson, and S. Patranabis, “Rethinking searchable symmet-
ric encryption,” in Proc. IEEE Symp. Seucr. Privacy, 2023, pp. 485–502.

[44] R. Bost, “: Forward secure searchable encryption,” in Proc. 23rd ACM
Conf. Comput. Commun. Secur., 2016, pp. 1143–1154.

[45] M. Du, Q. Wang, M. He, and J. Weng, “Privacy-preserving indexing and
query processing for secure dynamic cloud storage,” IEEE Trans. Inf.
Forensics Secur., vol. 13, no. 9, pp. 2320–2332, Sep. 2018.

[46] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private search-
able symmetric encryption with optimized I/O efficiency,” IEEE Trans.
Dependable Secure Comput., vol. 17, no. 5, pp. 912–927, Sep./Oct. 2020.

[47] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently
searchable encryption,” in Proc. 27th Annu. Cryptol. Conf., Springer, 2007,
pp. 535–552.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: VOLUME-HIDING RANGE SEARCHABLE SYMMETRIC ENCRYPTION FOR LARGE-SCALE DATASETS 3609

Feng Liu received the master’s degree from the
Department of Computer Science and Engineer-
ing, Southern University of Science and Technology
(SUSTech), jointly with Harbin Institute of Tech-
nology (HIT), in 2019. He is currently working
toward the PhD degree with the School of Cyber
Science and Technology, University of Science and
Technology of China (USTC). From 2019 to 2020,
he was a research assistant with the Department
of Computer Science and Engineering, SUSTech.
His research interests include network security and
applied cryptography.

Kaiping Xue (Senior Member, IEEE) received the
bachelor’s degree from the Department of Informa-
tion Security, University of Science and Technology
of China (USTC), in 2003, and the doctor’s degree
from the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007. From
2012 to 2013, he was a postdoctoral researcher with
the Department of Electrical and Computer Engineer-
ing, University of Florida. Currently, he is a professor
with the School of Cyber Science and Technology,
USTC. He is also the director of Network and Infor-

mation Center, USTC. His research interests include next-generation Internet
architecture design, transmission optimization, and network security. He serves
on the editorial board of several journals, including IEEE Transactions on
Dependable and Secure Computing (TDSC), IEEE Transactions on Wireless
Communications (TWC), and IEEE Transactions on Network and Service Man-
agement (TNSM). He has also served as a (lead) guest editor for many reputed
journals/magazines, including IEEE Journal on Selected Areas in Communica-
tions (JSAC), IEEE Communications Magazine, and IEEE Network. He is an
IET fellow.

Jinjiang Yang received the BS degree in informa-
tion security from the School of Cyber Science and
Technology, University of Science and Technology of
China (USTC), in 2021. He is currently working to-
ward the graduate degree in information security with
the School of Cyber Science and Technology, USTC.
His research interests include network security and
applied cryptography.

Jing Zhang received the BS degree in electronic
information science and technology from the Hefei
University of Technology, China, in 2007, and the MS
degree in control theory and control engineering from
the Anhui University of Science and Technology,
Huainan, in 2010. He is currently working toward the
PhD degree with Science Island Branch, Graduate
School of USTC, Hefei. From 2017 to 2021, he was
a communication algorithm engineer with the 38th
Research Institute of China Electronics Technology
Group Corporation, Hefei. His research interests in-

clude space information networks, satellite communication system design, and
Ad-hoc networks.

Zixuan Huang received the bachelor’s degree in
electronic information science and technology from
the Hefei University of Technology, Hefei, China,
in 2016, and the MS degree in electrical and in-
formation engineering from the Harbin Institute of
Technology, Shenzhen, in 2019. From 2019 to 2021,
she was a communication algorithm engineer with
Huawei, ShenZhen and Shanghai. She is currently a
communication algorithm engineer with the Institute
of Space Integrated Ground Network, Hefei. Her re-
search interests include space information networks,

ERR control codes, and Ad-hoc networks.

Jian Li (Senior Member, IEEE) received the bach-
elor’s degree from the Department of Electronics
and Information Engineering, Anhui University, in
2015, and the doctor’s degree from the Department
of Electronic Engineering and Information Science
(EEIS), University of Science and Technology of
China (USTC), in 2020. From 2019 to 2020, he was a
visiting scholar with the Department of Electronic and
Computer Engineering, University of Florida. From
2020 to 2022, he was a post-doctoral researcher with
the School of Cyber Science and Technology, USTC.

He is currently an associate researcher with the School of Cyber Science and
Technology, USTC. He also serves as an editor of China Communications.
His research interests include wireless networks, next-generation Internet, and
quantum networks.

David S.L. Wei (Senior Member, IEEE) received
the PhD degree in computer and information science
from the University of Pennsylvania, in 1991. He is
currently a professor with the Computer and Infor-
mation Science Department, Fordham University. He
was a lead guest editor or a guest editor for several
special issues in IEEE Journal on Selected Areas in
Communications, IEEE Transactions on Cloud Com-
puting, and IEEE Transactions on Big Data. He also
served as an associate editor of IEEE Transactions
on Cloud Computing, 2014–2018, an editor of IEEE

Journal on Selected Areas in Communications for the Series on Network
Softwarization & Enablers, 2018 – 2020, and an associate editor of Journal of
Circuits, Systems and Computers, 2013–2018. He is the recipient of IEEE Region
1 Technological Innovation Award (Academic), 2020, for contributions to in-
formation security in wireless and satellite communications and cyber-physical
systems. He is a member of ACM and AAAS, IEEE Computer Society, and IEEE
Communications Society. Currently, he focuses his research efforts on cloud and
edge computing, cybersecurity, and quantum computing and communications.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 24,2024 at 14:29:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

