
A Knowledge Transfer-Based Semi-Supervised
Federated Learning for IoT Malware Detection

Xinjun Pei , Xiaoheng Deng ,Member, IEEE, Shengwei Tian ,

Lan Zhang ,Member, IEEE, and Kaiping Xue , Senior Member, IEEE

Abstract—As the demand for Internet of Things (IoT) technologies continues to grow, IoT devices have been viable targets for

malware infections. Although deep learning-based malware detection has achieved great success, the detection models are usually

trained based on the collected user records, thereby leading to significant privacy risks. One promising solution is to leverage federated

learning (FL) to enable distributed on-device training without centralizing the private user records. However, it is non-trivial for IoTusers

to label these records, where the quality and the trustworthiness of data labeling are hard to guarantee. To address the above issues,

this paper develops a semi-supervised federated IoTmalware detection framework based on knowledge transfer technologies, named

by FedMalDE. Specifically, FedMalDE explores the underlying correlation between labeled and unlabeled records to infer labels

towards unlabeled samples by the knowledge transfer mechanism. Moreover, a specially designed subgraph aggregated capsule

network (SACN) is used to efficiently capture varied malicious behaviors. The extensive experiments conducted on real-world data

demonstrate the effectiveness of FedMalDE in detecting IoTmalware and its sufficient privacy and robustness guarantee.

Index Terms—Malware detection, federated learning, semi-supervised learning, privacy-preserving, capsule network

Ç

1 INTRODUCTION

RECENT years have witnessed the evolution of Internet of
Things (IoT) technologies. Typically, a vast amount of

IoT devices are managed and controlled by a central server
to share information and improve IoT user experiences,
which, however, opens up the possibility of new attacks tar-
geting IoT devices. Due to the lack of basic security monitor-
ing and protection mechanisms [1], malware attacks have
become very common in IoT environments, leading to seri-
ous privacy leakage, device hijacking, unauthorized access,
and many other security issues.

To mitigate malware threats, deep learning has become
one indispensable and well-recognized solution, which lev-
erages a large number of records collected from users to

obtain useful patterns and trends of malware attacks in a
centralized manner [1], [2]. In the centralized setting, apps
are often uploaded to the cloud server for detection before
the installation, which brings a substantial network over-
head and costs (especially for large apps), and also involves
insecure private data collection and uploading. One promis-
ing solution is to enable distributed learning to leverage
users’ sensitive data locally without migrating the private
IoT mobile data to the cloud server, which is the so called
Federated Learning (FL) [3], [4], [5].

Nevertheless, most FL approaches assume the availabil-
ity of a large amount of labeled data [6], which becomes
impractical for IoT malware detection. Specifically, labeling
malware data is expensive due to the required high-level of
human expertise that few IoT users have. Moreover, mali-
cious users may inject mobile records with poisoned labels
to contaminate the detection model [5], [7], [8]. To address
the above concerns, we propose a semi-supervised FL
framework to enable automatic labeling for privacy-pre-
serving IoT malware detection.

A few recent efforts have been put on semi-supervised
FL [9], [10]. For instance, Jeong et al., [9] developed a general
framework (FedMatch) by enforcing the consistency
between predictions made across multiple user models for
semi-supervised FL. The most relevant work to us is LiM
[10], which establishes a decentralized malware classifier by
learning from data without any domain knowledge guid-
ance. However, the generated noisy pseudo-labels can mis-
lead the detection model to forget the knowledge
represented by the ground truth labeled data. To alleviate
such issues in semi-supervised learning, knowledge transfer
technologies [11], [12] have attracted recent attention to
increase the accuracy of the generated pseudo-labels and
thus improve the robustness of the learned models. Inspired

� Xinjun Pei and Xiaoheng Deng are with the School of Computer Science
and Engineering and ShenzhenResearch Institute, Central SouthUniversity,
Changsha 410083, China. E-mail: pei_xinjun@163.com, dxh@csu.edu.cn.

� Shengwei Tian is with the School of Software, Xinjiang University,
Urumqi 830001, China. E-mail: tianshengwei@163.com.

� Lan Zhang is with the Department of Electrical and Computer Engineer-
ing, Michigan Technological University, Houghton, MI 49931 USA.
E-mail: lanzhang@mtu.edu.

� Kaiping Xue is with the Department of Electronic Engineering and Infor-
mation Science, University of Science and Technology of China, Hefei
230027, China. E-mail: kpxue@ustc.edu.cn.

Manuscript received 26 Nov. 2021; revised 25 Mar. 2022; accepted 4 May 2022.
Date of publication 10 May 2022; date of current version 13 May 2023.
This work was supported in part by the National Natural Science Foundation
of China under Grants 62172441, 62172449, and 61772553, in part by Local
Science and Technology Developing Fundation Guided by Central Goverment
through Free Exploration Project under Grant 2021Szvup166, in part by
Autonomous Region Key R&D Project under Grant 2021B01002, and in part
by the Fundamental Research Funds for the Central Universities of Central
South University under Grant 2021zzts0201.
(Corresponding author: Xiaoheng Deng.)
Digital Object Identifier no. 10.1109/TDSC.2022.3173664

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023 2127

1545-5971 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4772-7525
https://orcid.org/0000-0003-4772-7525
https://orcid.org/0000-0003-4772-7525
https://orcid.org/0000-0003-4772-7525
https://orcid.org/0000-0003-4772-7525
https://orcid.org/0000-0003-2740-8025
https://orcid.org/0000-0003-2740-8025
https://orcid.org/0000-0003-2740-8025
https://orcid.org/0000-0003-2740-8025
https://orcid.org/0000-0003-2740-8025
https://orcid.org/0000-0003-3525-5102
https://orcid.org/0000-0003-3525-5102
https://orcid.org/0000-0003-3525-5102
https://orcid.org/0000-0003-3525-5102
https://orcid.org/0000-0003-3525-5102
https://orcid.org/0000-0002-7144-9089
https://orcid.org/0000-0002-7144-9089
https://orcid.org/0000-0002-7144-9089
https://orcid.org/0000-0002-7144-9089
https://orcid.org/0000-0002-7144-9089
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-2095-7523
mailto:pei_xinjun@163.com
mailto:dxh@csu.edu.cn
mailto:tianshengwei@163.com
mailto:lanzhang@mtu.edu
mailto:kpxue@ustc.edu.cn

by this, we extend the conventional centralized knowledge
transfer-based approach to federated settings by sharing the
class probability information to enable robust detection
based on semi-supervised learning.

Upon the proposed semi-supervised FL framework
above, it is critical to develop an effective malware detection
model. One feasible solution is to formulate the complicated
malware detection as a graph learning problem. Most exist-
ing detection systems [13], [14] use a variety of graph min-
ing-based techniques to depict higher-level semantic
representations, such as function call graph (FCG) [15] and
control flow graph (CFG) [16], [17]. These techniques mainly
focus on method-level program semantics to extract fine-
grained local features, which may cause scalability issues
due to a large number of nodes in a given graph. Although
they reduce the large dimension of a call graph into a low-
dimensional feature vector, it is still difficult or unrealistic
to reflect the entire graphic information. Instead, we intend
to exploit higher-level program semantics by progressively
aggregating fine-grained local features from a global per-
spective to obtain high-quality graph representations,
where the subgraph-based representation method is used to
model the program semantic and graph topology efficiently.

Based on the above ideas, this paper proposes a knowl-
edge transfer-based semi-supervised federated learning
framework for privacy-preserving IoT malware detection,
named by FedMalDE. In many realistic scenarios, tradi-
tional analytic solutions like cloud-based malware detection
are often used to store and process users’ private records in
a centralized manner, which raises serious privacy con-
cerns. To overcome this challenge, this paper implements
distributed FL to exploit user private data locally, avoiding
the significant communication costs and the insecure data
transmission in the conventional centralized learning.
Moreover, using FL to proceed with malware detection
faces a more realistic problem: it requires a larger amount of
labeled data for practical collaborative training, which is a
strong assumption that is hard to satisfy in practice. To
relieve the need for data labeling in the federated system,
we combine semi-supervised learning and federated learn-
ing to decentralize a malware classifier. Based on the knowl-
edge transfer (teacher-student) approach, unlabeled user
records can be automatically labeled, in which the cloud
model (teacher) with prior malware knowledge can teach
the distributed user models (students) to derive a reliable
malware detection model in the federated setting. Besides,
in order to learn a high-quality graph representation, we
propose a subgraph aggregated capsule network (SACN) to
capture various granularity graph information. To the best
of our knowledge, this work is the first attempt to investi-
gate the knowledge transfer-based semi-supervised IoT
malware detection under the well-recognized federated set-
ting. The main contributions of this paper are summarized
as follows:

� We propose a semi-supervised federated IoT mal-
ware detection framework (FedMalDE) to exploit
highly decentralized private data to collectively train
a reliable detection model without revealing users’
specific undisclosed information, which overcomes
the limitation that the data uploading suffers from

the security threats of attackers in the conventional
centralized learning.

� We build a knowledge transfer mechanism to
address the need for data labeling in the federated
system, in which the teacher model with prior mal-
ware domain knowledge shares the class probability
information to participating model trainers, and
guides them to update the local student models dur-
ing the federated training process.

� We develop a call subgraph-based representation
method to model the program semantic and graph
topology, and design a subgraph aggregated capsule
network (SACN) to progressively aggregate the fine-
grained subgraph features to learn high-quality
graph representations.

� We conduct extensive experiments on real-world
datasets to demonstrate the effectiveness of Fed-
MalDE in detecting malware, which can even
achieve comparable performance to the centralized
detection model.

In the rest of the paper. In the rest of the paper, we over-
view the related work in Section 2. Then, we give some pre-
liminaries in Section 3 and describe the system model and
threat model in Section 4. Sections 5 and 6 give the semi-
supervised FL security system in details. In Section 7, we
evaluate the proposed system and analyze the experimental
results. Finally, Section 8 concludes the paper.

2 RELATED WORK

Graph-Based Malware Detection. The emergence of novel IoT
malware brings high risks to users. Many recent studies
[13], [14] have provided graph analysis methods for mal-
ware detection, such as control flow graph (CFG) [17], func-
tion call graph (FCG) [15], [18], [22], frequent sub-graph
[15], opcode graph [19], PSI-graph [18], etc. These methods
investigate software properties by inspecting manifest files
and analyzing app source codes without running the apps.
For instance, Cesare et al., [17] decomposed a set of control
flow graphs (CFGs) into fixed k-subgraphs to create feature
vectors, and used a distance metric based on the minimum
matching distance to construct a minimum sum weight
matching between two sets of graphs. However, the detec-
tion performance of such a method strongly depends on the
quality of the features. In order to avoid the complexity of
CFG analysis, Nguyen et al., [18] first extracted high-level
features from function call graphs (FCGs), called PSI-Graph,
by using a graph embedding technique (graph2vec), and
then used machine learning methods to identify threat pat-
terns. Similarly, Fun et al., [15] constructed frequent sub-
graphs based on the FCGs at the fine-grained method level
to present the local call relations among the functions (i.e.,
the caller-callee relationships). Their solution assigns
weights based on the importance of API calls to discern
malicious apps from benign ones. The technique is resilient
against variants, even when the code is considerably con-
fused. Moreover, Azmoodeh et al., [19] proposed an
OpCode graph-based deep learning approach for Internet
of Battlefield Things (IoBT) malware detection. They first
extracted OpCode sequence of IoBT malware and then
transmuted OpCodes into a graph in which nodes are

2128 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

represented by OpCodes, and edges are generated based on
the nodes’ affinity in the disassembled file of each sample.

In summary, there exist three main barriers to apply the
above graph-based techniques. First, although these techni-
ques were effective in identifying real malware instances,
they often do not consider node/function properties (e.g.,
the meaning of functions). Without this knowledge, it is dif-
ficult to understand more complex malicious behaviors.
Second, most existing malware detection methods have
focused on method-level local program semantics, while
ignoring necessary class-level program semantics which is
crucial for malware detection. Third, analyzing the entire
CFG/FCG with thousands of nodes incurs a high computa-
tional overhead. To overcome these challenges, this paper
develops a call subgraph-based SACN algorithm that
exploits higher-level program semantics and structural
information by progressively aggregating fine-grained local
subgraphs to express more complex malicious behaviors.
Table 1 lists some representative malware detection
methods.

Federated Malware Detection.Most existing studies on mal-
ware detection depend on centralizing the training by
uploading data to cloud [23], [24], which incurs serious pri-
vacy concerns for users [25] because the feature sets used by
learning models implicitly reveal users’ preferences which
can be utilized to conduct targeted advertising. The short-
comings of centralized detection methods highlight an
imperative need for distributed machine learning. To
address these issues, federated learning provides an espe-
cially promising solution, which not only helps preserve
privacy but also reduces network traffic congestion [26]. An
early version of this concept was proposed by McMahan
et al., [27]. They proposed an iterative model averaging-
based federated learning method that enables multiple
users to train a shared model by aggregating locally-com-
puted updates while keeping data in their mobile devices.
However, there are relatively few studies on FL algorithms
for security related tasks. Hsu et al., [20] proposed a feder-
ated learning-based malware detection system that uses
static analysis to extract permissions and API calls as

features, and applies a support vector machine (SVM) to
classify Android applications. Nguyen et al., [21] employed
a federated learning to anomaly-detection-based intrusion
detection. Their solution is able to detect anomalous devia-
tions in IoT devices communications. Considering a large
number of unlabeled samples and the expensive cost of
labeling big data, existing FL schemes still face enormous
challenges in reality, requiring sufficient labeled samples
for training. To relieve the need for data labeling in the fed-
erated system, this paper extends the traditional FL to the
semi-supervised paradigm to enable automatic labeling for
privacy-preserving IoT malware detection, benefiting from
both private and public data.

Semi-Supervised Federated Learning. Although supervised
learning is the most widely used learning mode based on
the availability of labeled data samples, it is non-trivial to
label a large amount of data, especially in the field of mal-
ware detection that requires human expertise and domain
knowledge. To address the above challenges, semi-super-
vised learning takes advantage of both labeled and unla-
beled data. Jeong et al., [9] used the consistency loss and
parameter decomposition methods to improve semi-super-
vised federated learning. Glvez et al., [10] proposed a decen-
tralized malware detection framework, which can learn
from data without any domain knowledge. As a matter of
fact, learning from the unlabeled data may lead to forgetting
what the model learned from the labeled data. Moreover,
Papernot et al., [28] demonstrated a general semi-supervised
learning strategy, the Private Aggregation of Teacher
Ensembles (PATE) approach, which applies differential pri-
vacy to the training process of generative adversarial net-
works (GANs). In this strategy, a student model is trained
using auxiliary, unlabeled non-sensitive data. Similarly,
Zhang et al., [29] extended the PATE approach, and devel-
oped a novel noisy label detection mechanism for semi-
supervised model training to further improve student
model performance when training with noisy labels. They
modified the original PATE by adding an additional dis-
criminator in the GANs. Typically, the current PATE-based
methods use disjoint subsets of data to train an ensemble of

TABLE 1
Comparison Between Malware Detection Methods

Method Architecture Learning
strategy

Feature Extraction Model Classification
ability

Applications
Characterization Complexity

Cesare et al., [17] Centralized Supervised Control Flow Graph High DBM-
Tree

Moderate Malware Detection

Nguyen et al., [18] Centralized Supervised PSI-Graph &Function
Call Graph

High CNN High Malware Detection

Fun et al., [15] Centralized Supervised Frequent Subgraph &
Function Call Graph

High SVM Moderate Malware Detection

Azmoodeh et al.,
[19]

Centralized Supervised Opcode Graph High CNN High Malware Detection

Hsu et al., [20] Decentralized Supervised Permissions &
API Calls

Moderate SVM Low Malware Detection

Nguyen et al., [21] Decentralized Supervised Packet Sequences Low GRU Moderate Network Intrusion
Detection

Glvez et al., [10] Decentralized Semi-
Supervised

Permissions
&Components

Low LiM Low Malware Detection

Our work Decentralized Semi-
Supervised

Sliced Subgraph Moderate SACN High Malware Detection

PEI ETAL.: KNOWLEDGE TRANSFER-BASED SEMI-SUPERVISED FEDERATED LEARNING FOR IOT MALWARE DETECTION 2129

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

teacher models, and then transfer the learned knowledge to
students in a private manner. Specifically, they use the
GAN model as a client-trained student model. However,
the PATE’s performance is mainly determined by the gener-
ator of GANs. The generator needs to capture the real distri-
bution of instances, but unstable training makes this
difficult to achieve. Besides, GANs may also suffer from the
problem of mode collapse, i.e., the samples generated by
the generator have similar properties, which makes the dis-
criminator unable to distinguish between them, and thus
severely affects the utility of PATE. In this paper, we pro-
pose a semi-supervised FL-based malware detection frame-
work, which leverages a subgraph aggregated capsule
network to improve detection performance. Moreover, we
use a knowledge transfer mechanism to transfer the
teacher’s knowledge to the participating student models by
sharing the class probability information, and thus improve
the robustness of the learned models.

3 PRELIMINARIES

In this section, we present the formal definition of federated
learning and semi-supervised learning.

Federated Learning. Federated learning (FL) implements
the distributed learning of the models at the decentralized
client side, which aims to collaboratively train a global
model in a privacy-preserved manner. Let G be a global
model, and S ¼ fs1; s2; . . . ; sKg be a set of local student
models for K clients Cli ¼ fcli1; cli2; . . . ; cliKg. Let D ¼
fxi; yigNi¼1 be a given dataset, where xi is an arbitrary
instance of application, N is the number of instances, and
yi 2 f0; 1g is the corresponding label of xi, with yi ¼ 0 indi-
cating a benign application, and yi ¼ 1 indicating a mal-
ware. In federated learning, clients collaboratively train the
shared global model G using real-time generated mobile
data without sharing their local data. After that, the cloud
dynamically updates the global model in each training
round by averaging the weights of all uploaded local mod-
els, i.e., w ncli

n

PCli
cli¼1 w

cli. Then, the global model mini-
mizes its loss function LGðwglobalÞ. The learning procedure
will be discussed later.

Semi-Supervised Learning. Generally, semi-supervised
learning refers to learning from labeled training data and
generalizing to available unlabeled (training) data. Fig. 1
depicts the semi-supervised learning process. The cloud
server builds a teacher model to process and learn the data
distribution and trends from labeled samples to obtain use-
ful patterns. Then, the teacher model is sent to distributed
IoT devices to generate high-quality pseudo-labels for

clients’ unlabeled private data. Afterwards, clients perform
on-device learning using their private data that has been
labeled with pseudo-labels, without centralizing the data.
There is a datasetD ¼ fxi; yigNi¼1, where xi is the i-th sample
with the corresponding label yi. We split this dataset into
two sub-datasets DT and DS . Let DT ¼ fxi; yigNt

i¼1 be a set of
labeled data instances, which is used to pre-train a teacher
model at the cloud. Let DS ¼ fxigNs

i¼1 be a set of unlabeled
data instances (without the corresponding labels), which is
used to train a set of local student models forK clients Cli ¼
fcli1; cli2; . . . ; cliKg. Specifically, in our case,DS is composed

of K sub-datasets D
clik
S ¼ fxclik

i gN
clik
s

i¼1 privately collected at
each client clik. In a semi-supervised setting, each client
does not contain the corresponding labels, and the labeled
data can only be used at the cloud. Let fk

wcli
ðxi; yiÞ be a neu-

ral network on the k-th client clik, which is parameterized
by weights wcli, and gives the perdiction ŷi for the input xi.
The goal is to minimize loss function LSðwcliÞ onD

clik
S .

4 SYSTEM MODEL

In this section, we first introduce the real world cloud-based
IoT architectures followed by the considered threat model
of malware attacks, based on which we present an idea of
the proposed FedMalDE.

4.1 Cloud-Based IoT Architecture

Previous works [30], [31] have shown that IoT users have
become accustomed to using mobile apps to interact with
surrounding IoT devices. However, the importance of the
role that mobile apps play in the IoT has always been under-
estimated. We argue that mobile apps do have an important
impact on the interactions between IoT devices and their
corresponding cloud. Its security needs to be thoroughly
discussed. Therefore, we provide a holistic view of three
cloud-based IoT architectures, and derive the IoT malware
attack surfaces in the three architectures. Fig. 2 shows these
IoT architectures.

Now we conduct a conceptual review of these IoT archi-
tectures. The cloud-based IoT architecture consists of IoT
devices, an IoT cloud, and a mobile app. Briefly speaking,

Fig. 1. The semi-supervised learning process.

Fig. 2. Cloud-based IoTarchitectures.

2130 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

the WiFi-enabled IoT devices first obtain Internet access to
establish a connection with the cloud, and then negotiate
login credentials with the cloud. Specifically, as shown in
Figs. 2a and 2b, the IoT devices connected to the cloud can
be divided into two types: i) the WiFi-enabled devices,
which can be connected to the Internet and thus have the
ability to communicate with the cloud instantaneously; ii)
the energy-economic devices without WiFi interface, which
use hubs/gateways to communicate with the cloud. These
IoT devices regularly report their status and execute
received remote control commands. After that, the cloud
authorizes the users to remotely monitor and control each
IoT device by using the device companion app in their
smartphones. In this setting, when users send remote com-
mands to IoT devices, the cloud with device control services
can act as a “proxy” [31].

It is worth mentioning that IoT users have widely
accepted mobile apps as interfaces to interact with sur-
rounding IoT devices to issue commands and retrieve proc-
essed data, and even serve as gateways to provide Internet
connectivity for a myriad of IoT devices in practice, e.g.,
smart home devices and wearable devices. As shown in
Fig. 2c, the device companion app could interact with the
IoT devices through the Bluetooth Low Energy (BLE) chan-
nel [32], while depending on the Internet connectivity to
communicate with the cloud. In this case, the companion
app acts as a “proxy” [30]. However, this interdependence
may lead to a larger attack surface of malware.

4.2 Threat Model

Undoubtedly, the role of mobile apps complicates the IoT
security design. More importantly, the fact that the app may
manipulate the communication between the cloud and the
IoT device greatly expands the malware attack surface. We
list possible malware attacks against the above three IoT
architectures, which pose a serious threat to the entire work-
flow of the IoT.

� A1 - A malicious app could access external devices
(e.g., Bluetooth device) by the channel shared with
the device companion app due to the coarse-grained
permissions provided by the Android system.

� A2 - A malicious app that has been granted Blue-
tooth permissions could launch a co-location attack,
where a co-located attacker can manipulate the traf-
fic of a companion app that co-locates with the mali-
cious app [32].

� A3 - A malicious app could create some simple rules
to instruct the cloud to automatically interact with
the device, and triggers those rules at a specific time,
for example, to turn on the smart lock at 7 am. In the
worst case it can even be life-threatening, such as the
operation of a cardiac descender.

� A4 - A malicious app may request more permissions
than needed, and execute implicit code paths, which
leads to implicit trigger-action chains to be fired
immediately.

� A5 - A malicious app could blind the cloud, or make
the device out of sync with the cloud by deliberately
blocking certain messages.

� A6 - Amalicious app could tamper with the informa-
tion that the cloud uses to authenticate the IoT
device, which could cause serious consequences,
such as sensitive information leakage, illegal access
to the device, and data injection attack.

� A7 - Device owner authorizes some temporary users
to access their devices for a certain period of time.
When the authorization expires, the temporary users
will have access revoked. However, a malicious app
could exploit the leaked sensitive information to
enable temporary users to access the device stealth-
ily, even if authorization is revoked [33].

We consider various types of adversaries who might
launch attacks against vulnerable IoT devices in the IoT net-
work by malware. As new/unknown malware attacks con-
tinue to emerge, IoT malware detection systems become
vital to adopt. However, there are many challenges entailed
with such practices.

Challenges. We list some of the challenges of deploying a
complete and scalable IoT malware detection system in IoT
scenarios.

� C1 - Existing deep learning-based malware detection
systems usually involve processing and learning a
large, diverse set of examples from public data sets
to obtain useful threat patterns. The growth rate and
evolution of malware highlights an urgent need to
update existing detection models. However, cloud
data is usually sensitive and private. For deep learn-
ing practitioners that cannot access large clouds, the
challenge of collecting enough data to train deep
learning models seems to never end. In this case, any
supervised learning method would be difficult to
implement.

� C2 -Considering that traditional centralized detec-
tion schemes have only one attack detector entity
(e.g., a centralized cloud responsible for training and
attack detection), it makes the training and retraining
of the learning models very challenging, especially
when handling the massive amount of data gener-
ated by geographically distributed IoT devices. The
back-and-forth communication of data imposes
other problems, for example, the latency for data
transmission is often very large because of the exces-
sive communication overhead. Therefore, decentral-
ized detection solutions are very much in need.

� C3 - As discussed earlier, many real-world applica-
tions do not have access to large training sets
because of data scarcity, or because of the difficulty

and expense in labeling data. However, in a feder-

ated setting, we cannot expect users to assign correct
labels to samples, especially in malware detection

which requires high-level human expertise and

domain knowledge that few users possess [6]. How

to derive a more robust malware detection model

from the massive unlabeled data that exists in reality

is still a difficult and wide-open problem.
� C4 - New IoT applications are released on a daily

basis, many of which are downloaded from third-
party markets that have not undergone rigorous mal-
ware screening. Meantime, adversaries are always

PEI ETAL.: KNOWLEDGE TRANSFER-BASED SEMI-SUPERVISED FEDERATED LEARNING FOR IOT MALWARE DETECTION 2131

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

developing new malware attacks with varying
degrees of complexity to circumvent security prod-
ucts. This makes the security of such IoT applications
highly unpredictable and uncontrollable. To be useful
in practice, our system must be adaptable in kind to
resist malware.

4.3 Overview of FedMalDE

Consider that the cloud provides various sub-services and
components for many organizations and services. We
deploy the FedMalDE framework on the cloud to provide
security services for users, which consists of Security Cloud
and IoT Security Service. i) The role of Security Cloud is to
monitor devices and perform malware detection for identi-
fying potential risks related to malware infection in the net-
work. ii) The IoT Security Service supported by service
providers like Google and Microsoft maintains a repository
of malware detection models that are trained locally by all
clients in the federated system. Specifically, the IoT Security
Service aggregates all these local models to update a global
detection model on the Security Cloud. Our main security
objective is to detect malware on IoT devices and prevent
targeted devices from being infected.

Design Choices. In this paper, we build a privacy-preserv-
ing federated learning framework for IoT malware detec-
tion to perform local training and inference of detection
models, which can utilize all available data for learning. As
a result, our framework enables users to collaboratively
train a shared model using real-time generated on-device
data. This design choice enables the analysis fast for such
enormous data without migrating the private end-user
data, which reduces the network traffic congestion, effec-
tively addressing challenges C1 and C2. Moreover, as
described in challenge C3, it is hard to obtain large-scale,
high-quality labeled data for practical collaborative training,
which makes the application of FL limited. To relieve the
need for data labeling in FL systems (challenge C3), we
introduce the concepts of semi-supervised learning for FL,
leading to a more practical and competitive paradigm,
which leverages very limited labeled records in the cloud
and massive unlabeled mobile data distributed across user
devices to derive a reliable detection model. Moreover, we
also develop a call subgraph-based SACN algorithm as an
integral part of FL to identify threat patterns by progres-
sively aggregating the fine-grained program semantics,
which can improve the detection performance. This design
choice can effectively address challenge C4.

5 KNOWLEDGE TRANSFER-BASED SEMI-
SUPERVISED FEDERATED LEARNING
FRAMEWORK

In this section, we describe a practical problem of identify-
ing potential risks related to malware infection in the cloud
environments under the FL setting, where clients could not
provide the ground truth labels. To address this limitation,
we extend the traditional federated learning to the semi-
supervised paradigm, and establish a semi-supervised FL
framework (FedMalDE) that represents the real-world sce-
nario for malware detection. We first introduce the

detection procedures, followed by the details of the algo-
rithm design.

5.1 Semi-Supervised Federated Learning Process

Under a semi-supervised federated learning setting, we
consider a common scenario where the labeled dataset DT

is only available at the cloud, and the unlabeled dataset
DSTU is privately spread over K clients. Each client clik 2
Cli locates in different databases consisting of N

clik
s samples

fxclik
i gN

clik
s

i¼1 . As a result, with the labeled and unlabeled data-
sets, DT and DS , we perform semi-supervised federated
learning. In our case, the public labeled data DT is used to
pre-train a teacher model. Afterwards, the teacher model
produces high-quality pseudo-labels for users’ private data.
During the learning process, each client trains its own
model locally, and fine-tunes it on limited labeled data.
Then, the cloud aggregates the local models from clients,
and updates them in a federated manner. This circumvents
the need for data exchange between the cloud and the cli-
ents, while ensuring privacy for users’ data. The learning
process is detailed in Fig. 3 and Algorithm 1.

� Step 1. We use the labeled public dataset DT on the
cloud to pre-train a teacher model TEAmodel, as
described in Algorithm 1 (Line 1-2).

� Step 2. At this stage, we randomly select m out of a
total of K idle clients to participate in the FL process
as described in Algorithm 1 (Line 3-8). Under the set-
ting of semi-supervised learning, each of m clients
downloads the pre-trained teacher model TEAmodel

that assigns a pseudo-label j 2 ½c� to each sample xi :
njðxiÞ ¼ jfTEAmodelðxiÞ ¼ jgj, where c represents the
number of classes in our task. Moreover, the teacher
model TEAmodel gives the prediction for the input xi.

� Step 3. At each communication round r 2 R, each
client cli initializes a student model Stumodel with
the weights wtea of the teacher model, and then
trains the student model Stumodel to minimize loss
LSðwcliÞ on the corresponding private sub-dataset
D

clik
s with pseudo-labels, as described in Algorithm

1 (Line 10-25). At this stage, clients keep their local
data private, as only the model parameters of the

Fig. 3. The overall flow of the proposed FedMalDE.

2132 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

learning model are shared with the central cloud.
Specifically, the total communication round R is
set to 35.

� Step 4. Next, we upload all clients’ weights to the
cloud. Specifically, to transfer information from
teacher to student, we use a knowledge transfer
mechanism to enable knowledge matching between
the teacher and the students, which guides the cli-
ents to update their model weights.

� Step 5. The cloud dynamically updates the global
model by aggregating the learned weights wcli PCLIr

cli¼1
ncli
n wcli to create a new updated global model.

Note that in Algorithm 1 (Line 26-27), the teacher
model is also participated in this process, which
assists the cloud to aggregate information from stu-
dent models, i.e., wglobal Aggregationðfwcli; wteagÞ.

� Step 6. The updated global model is sent to all its cli-
ents. After that, each client completes its federation
round.

Training student models in a semi-supervised way
makes better use of the users’ private data. The underpin-
ning idea is to leverage the teacher model to learn distribu-
tion priors, guiding student models to update their weights.
The student models learn to accurately mimic the output of
the teacher model, thereby improving the performance of
FL.

5.2 Knowledge Transfer Mechanism

In this part, we develop a knowledge transfer mechanism,
enabling the federated model to benefit from both public
labeled data and private unlabeled data, as illustrated in
Fig. 4. To improve the effectiveness of knowledge transfer,
we integrate the class probability information generated by
the teacher into the calculation of the loss function of the
students, which can derive a robust detection model.

5.2.1 Teacher Model

The teacher model is trained with the public data, and its
final output layer typically produces the classification prob-
abilities by using a sigmoid function that converts the logit
ZT , computed for each class into a probability PðT;iÞ, where
PðT;iÞ ¼ 1

1þexpZðT;iÞ . Specifically, the Sigmoid function can be

used to produce high-quality pseudo-labels (hard targets)
for users’ private data. Next, we use the cross-entropy as
the loss function LT

LT ¼ LS
hardðWT ;PðT;iÞÞ ¼ �

XNTEA

tea¼1
YðT;iÞlogPðT;iÞ
�

þ 1� YðT;iÞ
� �

log 1� PðT;iÞ
� ��

; (1)

where WT is the parameters of the teacher model, and YðT;iÞ
is the ground truth.

Algorithm 1. Semi-Supervised Federated Learning

1: TEAmodel RunCloudTrainðDT Þ
2: Initialize all clients with weights w0;
3: for each client cli 2 Cli in parallel do
4: wtea (weights of teacher models)
5: PðT Þ TEAmodelðcliÞ
6: PseudoLabelscli PðT Þ
7: LT ¼ LThardðWT ;PðT ÞÞ
8: end for
9: wglobal wtea

10: for each round r ¼ 1; 2; . . . ; R do
11: K (number of clients)
12: C (fraction of clients randomly selected per round)
13: m maxðC �K; 1Þ
14: Cli (random set ofm clients)
15: for each client cli 2 Cli in parallel do
16: B (splitDcli

S into batches of size B)
17: P (split PseudoLabelscli into batches of size P)
18: for each local epoch e ¼ 1; 2; . . . do
19: for batch b 2 B, p 2 P do
20: PðSÞ RunClientTrainðbcli; pcliÞ
21: LS ¼ aLS

hardðWS ;PðSÞÞ þ bLS
softðWS ; ðPðT Þ; PðSÞÞÞ

22: wðcli;rþ1Þ wðcli;rÞ � h5LSðwðcli;rÞ; bðcli;rÞÞ
23: end for
24: end for
25: end for
26: wðcli;ðrþ1ÞÞ

PCLIr
cli¼1

ncli
n wcli

rþ1
27: wðglobal;ðrþ1ÞÞ Aggregationðfwðcli;ðrþ1ÞÞ; wteagÞ
28: end for

5.2.2 Student Model

Analogously, suppose stuk be a student model with output
logit vectors ZS and class probability PðS;iÞ ¼ 1

1þexpZðS;iÞ
. Then,

we train the student model with the sigmoid function to pro-
duce the hard targets. The loss function LShardðWS;PðS;iÞÞ is
defined as follows:

LS
hardðWS;PðS;iÞÞ ¼ �

XNSTU

stu¼1
YðS;iÞlogPðS;iÞ
�

þ 1� YðS;iÞ
� �

log 1� PðS;iÞ
� ��

: (2)

Specifically, the ground truth YðS;iÞ is given by the teacher
model, as described earlier. It can make students mimic the
output of the teacher model. However, when the teacher
model generates pseudo-labels for users, the class probabili-
ties are forced to be converted to one-hot labels, resulting in
the inevitably lost class probability information. To remedy
this limitation, we integrate the class probability generated
by the teacher into the calculation of the loss function. Then,
we define an additional loss function LS

softðWS; ðPðT;iÞ; PðS;iÞÞÞ
as follows:

LS
softðWS; ðPðT;iÞ; PðS;iÞÞÞ ¼ �

XNSTU

stu¼1
PðT;iÞlogPðS;iÞ
�

þ 1� PðT;iÞ
� �

log 1� PðS;iÞ
� ��

; (3)

where PðT;iÞ and PðS;iÞ are the class probabilities of the
teacher model and the student model, respectively. We train
the student model to minimize the loss function

Fig. 4. The knowledge transfer mechanism.

PEI ETAL.: KNOWLEDGE TRANSFER-BASED SEMI-SUPERVISED FEDERATED LEARNING FOR IOT MALWARE DETECTION 2133

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

LS ¼ aSShard WS;PðS;iÞ
� �þ bLS

soft WS; PðT;iÞ; PðS;iÞ
� �� �

; (4)

where a and b are the tunable parameters, which can con-
trol the student’s access to the teacher, so that the student’s
exposure to the teacher’s knowledge can be meaningfully
bounded. In this paper, a and b are set to 0.5 and 1,
respectively.

6 SLICED SUBGRAPH BASED MALWARE

DETECTION

In this section, a graph-based semi-supervised federated
learning framework (FedMalDE) is proposed to decentral-
ize a malware detection algorithm and respect the user’s
privacy. We expect FedMalDE can benefit greatly from the
domain knowledge insights through specific algorithm.
Specifically, the FedMalDE consists of four main stages. To
begin with, we use a disassembler to extract a set of sub-
graphs (SG) from the Dalvik code for each malware. Then,
we proposed a sliced subgraph (SSG) based representation
method to model the program semantics and structure.
Moreover, we use the word embedding method to inject the
SSG into the embedding vector space to obtain better feature
representations. In this process, each of them is associated
with a corresponding dense real-valued vector. Finally, a
specially designed subgraph aggregated capsule network
(SACN) is proposed to aggregate domain knowledge from
complex call graphs.

6.1 Sliced Subgraph Based Representation

Given an application, static analysis is performed to trans-
form the program codes into a graphical representation to
present the behaviors and structures. Our goal is to predict
whether a given application is malware. We first give the
basic definition of Function Call Graph (FCG) before intro-
ducing the sliced subgraph.

6.1.1 Function Call Graph (FCG)

The Function Call Graph (FCG) can be derived from an
Android application by code analysis, which reflects the
program behaviors.

Definition 1 (FCG). Define a FCG as G ¼ ðV; EÞ where V and
E represent the set ofN nodes andM edges, respectively.

� Each node vi 2 V corresponds to a function invoked by
a given app.

� Similarly, each edge ei;j 2 E connects two nodes vi and
vj, which indicates the calling relation between the cal-
ler function vi and the callee function vj.

By extracting the callers and the callees from the Dalvik
code of an given app, FCG can describe the necessary struc-
tural information.

Analysis. Although some studies [15] have proved that
FCG is effective for malware detection, there are still some
problems for applying it in practice based on the following
observations:

Observation 1. Clearly, analyzing the entire FCG is inefficient
and time-consuming since thousands of nodes (methods) can be
found in the FCG.

Observation 2. FCG is seldom focused on program semantics
at the class level, but rather, at the method level only.
Although more fine-grained local features can be extracted,
FCG ignores the global information about the malicious
behaviors.

6.1.2 Sub-Graph (SG)

To solve these challenges mentioned above, we develop a
sub-function call graph-based representation approach. We
slice the FCG into n subgraphs fSG1; SG2; . . . ; SGng. More-
over, instead of constructing FCG at method level, the SG is
constructed at class level [34]. In this setting, the whole pro-
gram can be represented according to the correlations
between classes. This strategy allows us to describe the pro-
gram semantics from a global perspective. Specifically, each
node (class) extracts the features from all its methods in the
class as node attributes, allowing us to benefit from local
information as well. The following provides the basic nota-
tion of SG.

Definition 2 (SG). Define a SG as G0 ¼ ðV; E;XV ;XE ;AÞ
where V and E represent the set of N nodes and M edges,
respectively. SG is a sub-graph in FCG.

� Define a XV 2 RN�D1�D2 as the node attribute matrix,
where N indicates the number of nodes, D1 indicates
the number of node attributes, and D2 indicates the
dimension of the node attribute. Each node vi is associ-
ated with an attribute representation XV;i 2
R1�D1�D2 .

� Similarly, the XE�RM�D3�D4 is defined as the edge
attribute matrix.

� Define a A 2 RN�N as the adjacency matrix, where
Ai1;i2 ¼ 1 if ei1;i2 2 E. Otherwise, Ai1;i2 ¼ 0.

6.1.3 Sliced Subgraph (SSG)

To identify malware, we distilled program semantics and
structural information into the sliced subgraph (SSG) repre-
sentation. The malicious parts are more likely to be buried
in these complex functions and call sequences. We seek to
exploit a combination of multiple SGs. Intuitively, the com-
bination can represent the program semantics of the entire
FCG. For knowledge refinement, we merely focus on the
top K subgraphs as the candidate subgraphs, which
reduces the dimensionality, making the problem more
tractable.

Definition 3 (SSG). Define a SSG as G00=fG0gk, where G0 rep-
resents the SG.

Specifically, the SSG is a set of sub-function call graphs,
which can reflect the program semantics and the call rela-
tions among the classes, as shown in Fig. 5.

6.2 Generation of SSG

The entire application can be rendered by a combination of
SGs. To get the best of both worlds, we extract the program
semantics and graph structure information from an app for
constructing node attributes and edge attributes, respec-
tively. An example of the graph representation is shown in

2134 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. We consider the following questions to better under-
stand the construction of SSG.

Q1: How to utilize program semantic?
To depict the program semantics, the features of all meth-

ods in a class are extracted as the class (node) attributes. The
key idea is to progressively aggregate the fine-grained fea-
tures to obtain a high-quality node representation.

6.2.1 Node Attribute

In the feature extraction, we focus on features that help dis-
tinguish malware from benign apps. After the observation
and analysis of the features, the irrelevant information is
eliminated, and the following four types of features are
extracted as the node attributes:

Parameter Features (PF): Each method has at least one
parameter. Thus, we record the number of the parame-
ters for each method, which is defined as PFpar. More-
over, we also extract a total of 4 features, including the
length of method PFlen, the values of opcode PFop, the
number of registers PFreg, and whether the return type is
void PFvoid

PFi ¼ fPFpar;i; PFlen;i; PFop;i; PFreg;i; PFvoid;ig; (5)

where PFi is the parameter features extracted from i-th
method in a class.

Sensitive API Features (SAF): We extracted all the API
calls (SAFapi) contained in a method, if they exist. Then, we
extract the sensitive API calls (SAFsapi) from SAFapi as a
special feature set, as they may lead to malicious behaviors.
The set is defined as follows:

SAFi ¼ fSAFapi;i; SAFsapi;ig: (6)

Instruction Features (IF): Based on a scenario in which a
method uses a set of instructions to access the registers, we
extracted the instructions as the method features, which
include the number of data types (e.g., const-string) and
arrays, the instructions of move, jump (e.g., if and switch),
compare (e.g., cmp), exception (e.g., throw), and invoke (e.g,
invoke-static), and the operations of instances (e.g., new-
instance and check) and fields (i.e., sget and sput)

IFi ¼ fIFdt;i; IFarr;i; IFmov;i; IFjum;i; IFcom;i;

IFexc;i; IFinv;i; IFi;ins;i; IFfi;ig: (7)

Modifier Features (MF): Access modifiers are used in set-
ting accessibility values. Each access modifier controls the
access level for classes and its members. Thus, the access
modifiers (including public MFpub, protect MFpro, and private

MFpri) are treated as the modifier features, and all other
non-access modifiers (such as abstract and final) are consid-
ered as othersMFother as follows:

MFi ¼ fMFpub;i;MFpro;i;MFpri;i;MFother;ig: (8)

Then, the node (class) attribute features FV can be repre-
sented by:

Mi ¼ PFi � SAFi � IFi �MFi; (9)

FV ¼ fCjgN1
j¼1 ¼ ffMigN2

i¼1gN1
j¼1; (10)

where N1 is the number of classes, and N2 is the number of
methods in a class.

Q2: How to utilize graphic structural information?
We consider that the structural information can be

depicted by the execution paths between classes, which
reflect the program logic. For the utilization of the structural
information, we captured all execution paths according to
the class call relations as the basis of edge attributes.

6.2.2 Edge Attribute

For each subgraph, the root class in the hierarchy can be
regarded as the central node Vu. We use N ðVuÞ to denote the
set of its neighbors. To simplify things, the execution paths
from Vu to its k-hop neighbors are used to describe the hier-
archical structures. Moreover, each path (Vu ! Vv) has a
distance DisðVu;VvÞ. If a neighbour node Vv of Vu is included
at the k-th hop, we will give a value k to DisðVu;VvÞ. Finally,
the edge attribute features can be represented by:

FE ¼ fDisigN3
i¼1: (11)

Fig. 5. The generation of sliced sub-graphs.

Fig. 6. Details of graph embedding.

PEI ETAL.: KNOWLEDGE TRANSFER-BASED SEMI-SUPERVISED FEDERATED LEARNING FOR IOT MALWARE DETECTION 2135

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

The edge attributes can sufficiently discriminate nodes of
different distances to the target central node.

6.3 Graph Embedding

The outcomes of previous steps are a set of subgraphs as well
their corresponding node attributes and edge attributes.
Recall that the nodes in a subgraph are actually classes, and
each node attribute is associated with a set FV 2 RD1 (where
D1 represent the set size), which integrates the program
semantics of allmethods in the corresponding class. Similarly,
the edge attributes integrate the graph structure information.

Q3: How to impove the quality of graph represention?
In this part, our task is to embed the node attributes and

edge attributes into a low-dimension vector space by the
embedding method, aiming to better construct the program
semantics and the structure information. Moreover, each
feature is converted into a embedding vector xv 2 RD2 ,
where D2 represent the feature dimension. Finally, the node
attribute matrix can be represented by XV 2 RN�D1�D2 ,
where N represent the number of nodes. Similarly, we can
have the edge attribute matrix XE .

6.4 Subgraph Aggregated Capsule Networks

In this subsection,we describe the details of ourmodel SACN.
The SACN takes L subgraphs G00 ¼ ½G01;G02; . . . ; G0L� as the
inputs, which aggregates the fine-grained information atmul-
tiple levels. The overall flow of SACN is illustrated in Fig. 7.
During the feature aggregation, we consider multiple domain
knowledge through the following three modules: (1) a node-
level aggregator that learns the program semantics from the
node attributes; (2) an edge-level aggregator that identifies
the graphic structural information from the edge attributes;
(3) a graph-level combiner that recombines the above learned
features to obtain unified graph embedding. Finally, a sig-
moid function is applied to output the prediction.

6.4.1 Node-Level Aggregator

Given a SSG G00 consisting of LV subgraphs SG G0, we try to
learn representation of the node-level features. The role of
the node-level aggregator is to properly process the sub-
graphs so that different fine-grained information can be
mapped to different representations.

Given a subgraph G0 with a node sequence (i.e.,

G0 ¼ XV ¼ fX vgTv) where each node X v in the sequence can
be presented bymultiple dimensions such as node attributes.
Then, we slice the node sequence into nv subsequences Nv

with an equal length tv ¼ Tv/nv (i.e., fNv;1; Nv;2; . . . ; Nv;nvg),
and each subsequence can be represented by:

Nv;p ¼ ½X v;ðp�1Þ�tvþ1;X v;ðp�1Þ�tvþ2; . . . ;X v;p�tv �: (12)

By repeating the operation l times, we can have a set of
subsequences of equal length on the l layer. The length of a
subsequence is defined by tv;l ¼ Tv=n

l
v, and the number of

the minimum subsequences is defined by nl
v. Then, we use

a node-level aggregator (NLA) for each subsequence. By
doing this, the fine-grained information can be aggregated
on multiple levels. Formally

Ol
Xv;i
¼ NLAðXv;iÞl; (13)

where the size of Ol
Xv

is tv;l � h, with h being the number of
hidden states. With the parallel calculations, the input is
changed to fX l

v;1jjX l
v;2jj � � � jjX l

v;nlv
g, where the X l

v;i is the i-th
input of NLA. Fig. 8 shows the details of NLA. Specifically,
for i-th input X l

v;i, it is first fed into a standard convolutional
layer to generate b feature maps F in the l-th NLA layer,
which can be represented as F ¼ ½F1; F2; . . . ; Fb� 2
Rðn�C1þ1Þ�b, where Fj represent the j-th column feature
map, C1 is the size of convolutional filter. Then, we use the
primary capsule to combine the instantiated parts by con-
verting the scalar-output to vector-output, so that the
instantiated parameters for each feature can be preserved,
which represent the intensity of activation. In this way, the
model learns the feature attributes from a different view-
point and records some details of the instantiated parts.

Let Wp 2 RC2�d be the filter, where C2 is the filter size
and d is the dimension of the capsule. Fj 2 Rb denotes each
vector generated by the convolution operation. A column-
list of capsules can be calculated by:

P ¼ ðWpÞTfFjgn�C2þ1
j¼1 2 Rðn�C2þ1Þ�d: (14)

Moreover, each capsule Pj 2 Rd in P can be obtained by

Pj ¼ gðsjÞ, where sj ¼ ðWpÞTFj þ bj, and g represents the
nonlinear squash function that can be calculated by:

Fig. 7. The overall architecture of subgraph aggregated capsule network.
The model consists of multiple blocks. Each block contains two modules,
the node-level aggregator (Section 6.4.1), and the edge-level aggregator
(Section 6.4.2). Lastly, the graph-level information is extracted by a
graph-level combiner (Section 6.4.3).

Fig. 8. Details of the node-level aggregator and the edge-level
aggregator.

2136 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

gðsjÞ ¼ jjsjjj2
1þ jjsjjj2

sj

jjsjjj2
: (15)

Suppose there are C filters. For j 2 1; 2; . . . ; C, the capsule
feature maps can be obtained as

V ¼ ½P1; P2; . . . ; PC � 2 Rðn�C2þ1Þ�C�d: (16)

Moreover, we apply an attention mechanism to enhance the
representations of important capsules.

For the SACN, each of the higher layers can not only learn
the features of the current layer but also aggregate the low-
level features from the previous layer. Specifically, the NLA
in the SACN is set to three layers as shown in Fig. 7 for clar-
ity. In practice, by stacking multiple layers, the aggregator
can be easily extended to deeper networks, which can aggre-
gate the fine-grained information at multiple levels.

6.4.2 Edge-Level Aggregator

In previous studies [15], [16], [17], researchers have only
focused on the representations of nodes, ignoring the graphic
structural information, so that their modeling capabilities are
imitated. In the face of this challenge,we design an edge aggre-
gation module to automatically learn the subgraph structure
information that depicts the execution paths between classes.

Given a subgraph G0 consisting of LE edges (i.e.,
G0 ¼ XE ¼ fX egTe). By slicing the edge sequence, we can
have ne subsequences Ne with an equal length te ¼ Te/ne,
and each subsequence can be represented by:

Ne;p ¼ ½X e;ðp�1Þ�teþ1;X e;ðp�1Þ�teþ2; . . . ;X e;p�te �: (17)

Moreover, the ne subsequences fX e;1jjX e;2jj � � � jjX e;neg
can be used as the inputs of the edge-level aggregator (ELA)
at each step through the parallel calculations. After per-
forming operations similar to node-level aggregator (NLA),
we can have a set of subsequences of equal length on the l
layer. Formally

Ol
Xe;i
¼ ELAðX e;iÞl: (18)

6.4.3 Graph-Level Combiner

In addition to the above two aggregators, for better classifi-
cation, we also extract the graph-level information. In this
module, the output capsules of the two aggregators from
the previous layer are flattened into a list of capsules, and
combined by an internal product layer. Then, each capsule
is connected to a list of low-layer capsules via a weight
matrix that is used to produce the final capsule. Instead of
the traditional pooling algorithms, dynamic routing is used
to conduct an efficient layer-to-layer information delivery
among capsules. The output of the graph-level combiner
(GLC) can be given by:

Oglc ¼ GLCð½OXV ; OXE �Þ; (19)

where “[]” represents the concatenation operation. For
knowledge distillation, an attention mechanism is further
used to enhance the representations of important capsules.
In order to obtain the weight distribution, the normalized

importance weight ai is first calculated by:

ai ¼ expðuT
i uwÞP

i expðuT
i uwÞ : (20)

where ui ¼ tanhðWwhi þ bwÞ. Then, the final vectors can be
obtained by v ¼P

i aihi. Moreover, the whole calculation
process can be formalized as

OAtt ¼ AttðOglcÞ: (21)

Finally, the sigmoid layer is added after the attention
layer to give the classification probabilities, and the cross
entropy is used as the loss function.

7 EVALUATION

In this section, we present data preprocessing and imple-
mentation details. We implement our SACN model by
using the Keras platform, and use word2vec to learn graph
embeddings.

Federated Learning Setup: To evaluate our method, we
empirically evaluated FedMalDE by simulating a single
cloud, and multiplying edges and clients (with “their part”
of the data). In each communication round, we randomly
selected onlym clients to participate in the training. In addi-
tion, a “single model” is also evaluated (a single cloud with
all the labeled data). In the following sections, we will show
how FedMalDE performs with different configurations, as
well as its evolution across rounds with respect to the differ-
ent baseline learning models in FedMalDE.

7.1 Datasets and Evaluation Metrics

7.1.1 Datasets

For a comprehensive assessment, we evaluated FedMalDE on
four benchmark datasets. DREBIN [35] is an Android mal-
ware dataset that contains 5,565 samples. We collected 5,565
benign apps from a variety of sources for further experiments.
MalDroid (MD) [36] is an Android malware dataset collected
from December 2017 to December 2018. In our experiments,
12,008 malware samples and 12,008 benign apps are used.
Moreover, AndroZoo (AZ) [37] dataset for 2010 through 2020
consists of all applications from respective years. Along with
these datasets, we collected 21,871 malware samples from
VirusShare [38] to build the VS dataset. In addition, to balance
this dataset, we also collected 21,871 benign samples fromvar-
ious sources. Specifically, we also evaluated FedMalDE with
unbalanced data in Section 7.2.3. In our experiment, 40% of
the samples being randomly selected as a labeled training set
which is used to train the teacher models, 40% of the
samples as a training set with pseudo-labels generated

TABLE 2
Main Datasets Used in Our Evaluation Studies

Datasets #Malware #Benign apps #Total

DREBIN 5,565 5,565 11,130
MD 12,008 12,008 24,016
VS 21,871 21,871 43,742
AZ 31,673 31,673 63,346

PEI ETAL.: KNOWLEDGE TRANSFER-BASED SEMI-SUPERVISED FEDERATED LEARNING FOR IOT MALWARE DETECTION 2137

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

by the teacher ensemble which is used to train the stu-
dent models, and the remaining as the test set. Note that
this evaluation study did not involve any re-sampling o
avoid biases or overfitting. Table 2 lists the descriptions
of the four datasets.

7.1.2 Experimental Setup and Parameters Setting

The setting of model parameters has an important impact on
detection results. As mentioned previously, our detection
model is formed by merging three modules, a node-level
aggregator, an edge-level aggregator, and a graph-level com-
biner. Each module mainly consists of a capsule layer and an
attention layer. SACN can transmit important information
through a multiple-layer structure. Some important training
details are as follows: (i) the dimension of word embedding
is set to 150; (ii) the number of the capsule is set to 64, and
each capsule has 32 dimensions; (iii) the sigmoid layer is
used as the output of our detection model, which gives the
classification probabilities; (iv) the batch size is set to 32; (v)
the dropout rate is set to 0.5; (vi) we use Adamwith learning
rate a ¼ 0:001 to optimize the training process, and (vii) the
back propagation is used minimize the loss, where the loss
function is set to cross entropy.

7.1.3 Evaluation Metrics

For evaluating the classification results, some common
machine learning performance evaluation metrics are used
to quantify numerically the performance of the classifier,
which include false positive rate (FPR), true positive rate
(TPR), ROC curve, and F-score. FPR measures the rate at
which the benign samples are incorrectly classified as mal-
ware, thereby causing false alarms. TPR corresponds to the
proportion of malicious apps that are correctly reported,
which is also known as recall or detection rate. The Receiver
Operating Characteristic (ROC) curve illustrates how good
our model is in classifying classes based on FPR and TPR.

The F-score is the harmonic mean of precision and recall.
Our goal is to achieve high values for F-score and TPR while
obtaining the minimum FPR.

7.2 Performance Stability

7.2.1 Effects of Client Number

We consider that there will be many federation rounds to
train the local models. Therefore, we conducted an addi-
tional study to test the classification performance of feder-
ated learning with the different numbers of clients (ranging
from 100 to 500) contributing to the training of the federated
learning, as shown in Fig. 9. Specifically, each client trains
its local model. The results show that the proposed SACN
can achieve a satisfactory result without too much client
involvement, and our model is insensitive to the number of
clients. It indicates that it is beneficial to combine semi-
supervised learning with federated learning. For efficiency,
we only randomly select a fraction C of clients at the begin-
ning of each round. Fig. 10 shows that the return will dimin-
ish when the number of clients exceeds a certain point.

7.2.2 Performance Comparison for the Proportion of

Labeled Public Data

We also conducted an additional study to investigate the
impact of the number of labeled public training sets used for
training a teacher model. Fig. 11 illustrates the accuracy of
FedMalDEwith respect to the number of labeled public train-
ing sets. We evaluate our model on five proportions of the
labeled training data on the four benchmark datasets. For
example, in the case of a small proportion, we split the DRE-
BIN dataset into labeled public training, unlabeled private
training, and testing sets in the proportion of 3:6:1. As
described in Section 5, FedMalDE pre-trains a teacher model
with labeled public data, and then generates pseudo-labels
for user data. Intuitively, our model can fit the data distribu-
tion better and achieve better performance, when more

Fig. 9. Number of clients contributing in federated learning.

Fig. 10. Fraction of clients randomly selected per round of federation.

2138 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

labeled samples are added. This is established in Fig. 11,
which shows that the F-score increases significantly with
increasing labeled data, and then stabilizes. In addition, as
expected, we observe that FedMalDE exhibits worse perfor-
mancewhen the number of samples in the labeled training set
is small. This is because the teacher model does not learn
enough domain knowledge due to the data scarcity, which
gives wrong guidance to the student model, leading to mis-
prediction of samples in the test set. However, somewhat sur-
prisingly, we noticed that FedMalDE still maintains a high F-
score with not too much labeled data. This suggests that, in
some use cases, the proportion of labeled datamay have a rel-
atively low impact on the performance of FedMalDE.

7.2.3 Performance Comparison for the Proportion of

Malware and Benign Samples

To further study the generalization capability of our system,
we consider the impact of the number of malicious and
benign samples in different proportions on classification per-
formance, and all samples are randomly distributed to each
client. There should be more data labeled as benign, as users
typically install more clean apps than malicious apps.
Assuming that the adversaries can control a large number of
devices, as is highly likely in real-world situations, it will
mean that the distribution of the data participating in train-
ing of the local models could be changed, resulting in the
local models being poisoned. It can be seen from the results
shown in Fig. 12 that as the number of malware samples
increases, the F-score drops slightly. Conversely, the FPR has
a trend of increase. This means that malware has not been
misclassified as benign apps. Moreover, this may be because
the increase in the number of malicious samples allows the
model to learn more information, so as to avoid being
affected by changes in the proportion of malware and benign
samples. This finding agrees with our speculation on gener-
alization: the proposed SACN has a strong classification

ability for unbalanced data, which corroborates the robust-
ness merits of our method.

7.3 Parameter Sensitivity Analysis

In this experiment, we perform sensitivity analysis to some
main experiment parameters in FedMalDE. Due to the lim-
ited space, we only reported the parameter analysis results
on the MD dataset, as shown in Fig. 13. In the following, we
provided the parameters commonly used in our proposed
model. Then, our best performing setup is used to fine-tune
a final federated model FedMalDE. The robustness of our
model is evident by the difference in performance metrics.

7.3.1 Dimension of the Embedding

We discuss the effect of dimensions of the embedding. We
selected the values [30, 50, 100, 150, 200] to investigate its
influence on the federated model. Fig. 13a shows that as the
dimension of the embedding increases, the model fits the
data distribution better. Because of that the increase in the
embedding dimensions provides our model access to more
semantic information.

7.3.2 Convolutional Parameter

We investigate the effect of different sizes of kernel and filter
in the convolutional capsule network layer. From Figs. 13b
and 13c, we can see that as the sizes of kernel and filter grow,
the classification performance of our system raises steadily.
This is not surprising since themodel can only learn less infor-
mationwhen the sizes of kernel and filter are small. Generally,
we can conclude that a modest increase in the sizes of kernel
and filter would improve the classification performance.

7.3.3 Effects of Capsule Network

We evaluate the classification performance for different cap-
sule numbers and dimensions involved in building the

Fig. 12. The comparative classification performance in various ratios of benign to malware samples.

Fig. 11. Performance on different labeled data proportions.

PEI ETAL.: KNOWLEDGE TRANSFER-BASED SEMI-SUPERVISED FEDERATED LEARNING FOR IOT MALWARE DETECTION 2139

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

federated model. From Figs. 13d, 13e, and 13f, we can see
that our model is insensitive to these three parameters. Spe-
cifically, the model performs the worst when the number of
capsules, the dimensions of capsules and the number of iter-
ations in the routing process are set to be 64, 128, and 5,
respectively. This may be explained by the fact that the cap-
sule network algorithm is easy to converge, which can cap-
ture the correlation (e.g., class call relations) among
different nodes (classes).

7.4 Centralized SACN versus Federated SACN

In this experiment, we evaluated the classification perfor-
mance of centralized SACN and federated SACN. Com-
pared with the centralized SACN, the SACN trained in a
federated manner may result in a loss of accuracy. For com-
parison, we specified the number of clients to be 200. Table 3
shows the performance evaluation results. We can see that
compared with centralized SACN, the performance of fed-
erated SACN on the TPR, FPR, and F-measure is slightly
reduced. This small degradation in the performance of the
federated SACN is not a concern. It indicates that the

federated SACN has a strong classification ability for mal-
ware detection. This may be because the node-level aggre-
gator and the edge-level aggregator consider the correlation
among various features, thereby learning from multiple
angles to the various features of the same threat pattern.

7.5 Comparative Classification Performance

Wehave used five different classifiers as the baseline learning
models in FedMalDE to compare the performance of the pro-
posed SACN. These baselines include Deep Neural Network
(DNN) [39], Convolutional Neural Network (CNN) [40],
Gated Recurrent Unit (GRU) [41], Long Short Term Memory
(LSTM) [42] and Capsule Network (CAP) [43]. Fig. 14 and
Table 3 provide the performances of all baselines and our
method on four benchmark datasets. It is worth noting that all
baseline models are trained under the same semi-supervised
FL setting. Fig. 14 and Table 3 present the performance com-
parison of all baselines and our method on the four bench-
mark datasets. We can see that all of the compared models
perform well on the DREBIN dataset, while performing
poorly on the other three datasets. Although DNN, GRU, and

TABLE 3
Effect of Using Federated Learning Comparing to Centralizing Approach

Centralized learning Federated learning

Datasets DNN CNN GRU LSTM CAP Our DNN CNN GRU LSTM CAP Our

DREBIN TPR 95.37 94.36 96.58 85.85 96.95 98.24 94.82 96.30 96.58 90.48 96.30 97.50
FPR 0.90 0.90 3.26 12.5 2.71 2.71 0.63 2.98 3.35 17.66 2.17 2.26
F-Score 97.33 96.85 96.69 86.90 97.15 97.76 97.20 96.70 96.64 85.91 97.12 97.64

MD TPR 94.11 89.16 93.86 85.19 92.14 96.89 95.74 89.16 94.51 40.96 92.18 96.8
FPR 4.21 1.25 7.49 1.60 6.14 3.62 6.52 1.26 8.50 2.52 6.31 3.73
F-Score 94.90 88.03 93.05 84.28 92.94 96.58 94.48 87.98 92.82 75.47 92.87 96.48

VS TPR 97.24 98.11 96.31 98.21 98.43 97.82 96.79 98.14 96.17 98.34 97.17 97.01
FPR 1.01 22.48 6.52 11.98 1.42 4.78 0.98 22.58 6.43 12.55 1.35 4.12
F-Score 93.27 86.38 94.79 92.73 91.48 96.45 93.20 86.33 94.77 92.47 91.27 96.40

AZ TPR 92.09 89.16 92.37 92.08 88.85 96.44 93.01 89.13 91.87 88.30 88.36 95.75
FPR 7.49 9.86 8.16 15.41 7.70 4.11 8.33 9.85 7.88 11.02 7.31 3.93
F-Score 92.14 89.63 92.03 87.83 90.50 96.14 92.13 89.62 91.95 88.60 90.48 95.86

Fig. 13. Parameter sensitivity of FedMalDE.

2140 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

CAP are closest to our model SACN in overall performance
on the four benchmark datasets, they are not yet comparable
to SACN. Moreover, these baseline models are inclined
toward accuracy (TPR) rather than recall (FPR), while our
method SACN offers a more balanced performance as shown
in Table 3. As we expect, under the federated setting, SACN
performs consistently well on all datasets and outperforms all
baseline models. This is because SACN can model the pro-
gram semantics and structural information by progressively
aggregating the fine-grained subgraph features, which can
accurately and efficiently process the data. The superior per-
formance of SACN in the malware detection task reflects its
powerful generalization ability.

7.6 Processing Time Evaluation

Another topic of discussion is the efficiency of FedMalDE
for detecting arbitrary malware. For a fair comparison, all
experiments are run at the same hardware resources. Ana-
lyzing a malware can be divided into two phases: feature
extraction and classification. For a malware detection sys-
tem, the bottleneck in efficiency is mainly in the feature
extraction stage. We recorded the runtime for processing
one sample in the feature extraction stage. All baselines
underwent the same feature extraction, and none of them
avoided this stage. It takes less than 3 minutes on average to
analyze a sample, which is comparable with other state-of-
the-art approaches, such as DroidCat [44] (10 min tracing
per app) and MamaDroid [45] (mean of 4 min per app).

Additionally, we recorded the runtimes for training a
teacher model. As shown in Table 4, our method is slower
than some baseline methods, such as CNN and DNN. This
is because our model is more complex and it is able to
extract more useful information. Apparently, given the

substantially superior performance of the FedMalDE over
other baseline methods (see Table 3 in Section 7.5 for
details), the additional cost incurred by the FedMalDE can
be seen to be justified. It is worth noting that our model
became optimal after approximately 20 iterations. In prac-
tice, however, the cloud only needs to pre-train the teacher
model once.

Under the setting of semi-supervised FL, we also mea-
sured the runtimes for training a student model on a single
device. In typical real-world applications, there are few
apps (private data) installed on the user’s device. In the
training mode, the student models can be parallelized
unlike conventional centralized models which handle all
data on the cloud, and thus only take a small amount of
time to train. For example, a user with 20 apps spends
approximately 2 seconds to train a student model in a round
of federation. Therefore, this allows us to easily implement
on-device learning to retrain a large number of emerging
samples in the real world. It is worth noting that the time
spent on model inference is almost negligible. For example,
the average lies at just 0.1876 seconds for processing one
sample. Based on the above facts, we can claim that Fed-
MalDE performs FL with high performance and efficiency.

8 CONCLUSION

This paper proposes a semi-supervised federated learning
framework (FedMalDE) that identifies the potential risks to
IoT malware infections in IoT networks, while alleviating
data privacy issues on user devices. The FedMalDE explores
the use of semi-supervised federated learning for analysis of
malware to conduct distributed FL, and it can provide suffi-
cient privacy and robustness guarantees. Besides,

Fig. 14. ROC curve of the SACN versus baselines for malware detection on four benchmark detasets.

TABLE 4
Execution Time Comparison

Model Teacher model Student model Inference / Testing time

#Train
samples

Train time (per
epoch)

#Single
device

Train time (per
epoch)

#Testing
samples

Testing
time

Avg. time (per
sample)

DNN 10,000 132 s 20 < 1 s 5000 551 s 0.1102 s
CNN 10,000 133 s 20 < 1 s 5000 528 s 0.1056 s
CAP 10,000 313 s 20 < 2 s 5000 1047 s 0.2094 s
GRU 10,000 2816 s 20 < 11 s 5000 972 s 0.1944 s
LSTM 10,000 2985 s 20 < 11 s 5000 979 s 0.1958 s
Our 10,000 498 s 20 < 2 s 5000 938 s 0.1876 s

PEI ETAL.: KNOWLEDGE TRANSFER-BASED SEMI-SUPERVISED FEDERATED LEARNING FOR IOT MALWARE DETECTION 2141

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

considering that the function call graph can reflect the
semantics information of the entire program, we incorpo-
rate the graph mining technology into this framework to
reveal the malicious behaviors, and use a subgraph aggre-
gated capsule network (SACN) to capture various granular-
ity and structural information. The extensive experiments
conducted on real-world data validate the effectiveness of
FedMalDE. We believe that our work will inspire the com-
munity to further explore the implementation of FL in secu-
rity-related tasks.

There might be room for further FL-based contribu-
tions in the field of malware detection. In each federation
round, the cloud communicates with only a limited num-
ber of devices. However, unreliable communication chan-
nels, limited computing resources, and stringent training
latency budget hinder the convergence of FL. Future
research will focus on exploring new device scheduling
and resource allocation schemes to balance the latency
per round, as well as the number of rounds required. It is
generally believed that centralized-based schemes are
considered to be the best in terms of model accuracy.
Therefore, future work is needed to improve the accuracy
of federated models.

ACKNOWLEDGMENTS

The authors would like to thank the Editor-in-Chief, the
Associate Editor, and the reviewers for their insightful com-
ments and suggestions.

REFERENCES

[1] L. Qi, X. Zhang, S. Li, S. Wan, Y. Wen, and W. Gong, “Spatial-tem-
poral data-driven service recommendation with privacy-preserva-
tion,” Inf. Sci., vol. 515, pp. 91–102, 2020.

[2] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and
M. Backes, “ML-leaks: Model and data independent membership
inference attacks and defenses on machine learning models,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[3] L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong,
“Federated learning for Internet of Things: Recent advances, tax-
onomy, and open challenges,” IEEE Commun. Surveys Tuts.,
vol. 23, no. 3, pp. 1759–1799, Jul.–Sep. 2021.

[4] J. Feng, L. T. Yang, Q. Zhu, and K.-K. R. Choo, “Privacy-preserv-
ing tensor decomposition over encrypted data in a federated
cloud environment,” IEEE Trans. Dependable Secure Comput.,
vol. 17, no. 4, pp. 857–868, Jul./Aug. 2020.

[5] L. Lyu et al., “Privacy and robustness in federated learning:
Attacks and defenses,” 2020, arXiv:2012.06337.

[6] S. Sharma, C. Xing, Y. Liu, and Y. Kang, “Secure and efficient fed-
erated transfer learning,” in Proc. IEEE Int. Conf. Big Data, 2019,
pp. 2569–2576.

[7] L. Zhao et al., “Shielding collaborative learning: Mitigating poi-
soning attacks through client-side detection,” IEEE Trans. Depend-
able Secure Comput., vol. 18, no. 5, pp. 2029–2041, Sep./Oct. 2021.

[8] L. Zhao, J. Jiang, B. Feng, Q. Wang, C. Shen, and Q. Li, “SEAR:
Secure and efficient aggregation for byzantine-robust federated
learning,” IEEE Trans. Dependable Secure Comput., to be published,
doi: 10.1109/TDSC.2021.3093711.

[9] W. Jeong, J. Yoon, E. Yang, and S. J. Hwang, “Federated semi-super-
vised learning with inter-client consistency & disjoint learning,” in
Proc. 9th Int. Conf. Learn. Representations, 2021, pp. 1–11.

[10] R. G�alvez, V. Moonsamy, and C. Diaz, “Less is more: A privacy-
respecting android malware classifier using federated learning,”
in Proc. Privacy Enhancing Technol., vol. 2021, no. 4, pp. 96–116,
2021.

[11] Y. Tang et al., “Visual and semantic knowledge transfer for large
scale semi-supervised object detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 12, pp. 3045–3058, Dec. 2018.

[12] Y. Zhang et al., “Deep matrix factorization with knowledge trans-
fer for lifelong clustering and semi-supervised clustering,” Inf.
Sci., vol. 570, pp. 795–814, 2021.

[13] T. Wuchner, A. Cislak, M. Ochoa, and A. Pretschner, “Leveraging
compression-based graph mining for behavior-based malware
detection,” IEEE Trans. Dependable Secure Comput., vol. 16, no. 1,
pp. 99–112, Jan./Feb. 2019.

[14] A. Abusnaina et al., “A deep learning-based fine-grained hierar-
chical learning approach for robust malware classification,” IEEE
Trans. Dependable Secure Comput., to be published, doi: 10.1109/
TDSC.2021.3097296.

[15] M. Fan et al., “Android malware familial classification and repre-
sentative sample selection via frequent subgraph analysis,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 8, pp. 1890–1905, Aug. 2018.

[16] Z. Xu, K. Ren, and F. Song, “Android malware family classifica-
tion and characterization using CFG and DFG,” in Proc. Int. Symp.
Theor. Aspects Softw. Eng., 2019, pp. 49–56.

[17] S. Cesare, Y. Xiang, and W. Zhou, “Control flow-based malware
variant detection,” IEEE Trans. Dependable Secure Comput., vol. 11,
no. 4, pp. 307–317, Jul./Aug. 2014.

[18] H. Nguyen, Q. Ngo, and V. Le, “A novel graph-based approach for
IoT botnet detection,” Int. J. Inf. Secur., vol. 19, no. 5, pp. 567–577,
2020.

[19] A. Azmoodeh, A. Dehghantanha, and K. R. Choo, “Robust mal-
ware detection for Internet of (Battlefield) things devices using
deep eigenspace learning,” IEEE Trans. Sustain. Comput., vol. 4,
no. 1, pp. 88–95, Jan./Feb. 2019.

[20] R.-H. Hsu et al., “A privacy-preserving federated learning system
for android malware detection based on edge computing,” in
Proc. 15th Asia Joint Conf. Inf. Secur., 2020, pp. 128–136.

[21] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Aso-
kan, and A.-R. Sadeghi, “D€IoT: A federated self-learning anomaly
detection system for IoT,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst., 2019, pp. 756–767.

[22] M. Cai, Y. Jiang, C. Gao, H. Li, and W. Yuan, “Learning features
from enhanced function call graphs for android malware
detection,” Neurocomputing, vol. 423, pp. 301–307, 2021.

[23] H. Zhang et al., “ScanMe mobile: A cloud-based android malware
analysis service,” ACM SIGAPP Appl. Comput. Rev., vol. 16, no. 1,
pp. 36–49, 2016.

[24] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A perfor-
mance-sensitive malware detection system using deep learning on
mobile devices,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 1563–1578, 2021.

[25] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium
blockchain for secure energy trading in industrial Internet of
Things,” IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3690–3700,
Aug. 2018.

[26] S. Luo, X. Chen, Q. Wu, Z. Zhou, and S. Yu, “HFEL: Joint edge
association and resource allocation for cost-efficient hierarchical
federated edge learning,” IEEE Trans. Wireless Commun., vol. 19,
no. 10, pp. 6535–6548, Oct. 2020.

[27] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y
Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Int. Conf. Artif. Intell. Statist., 2017,
pp. 1273–1282.

[28] N. Papernot, M. Abadi, I. Erlingsson, I. J. Goodfellow, and K. Tal-
war, “Semi-supervised knowledge transfer for deep learning from
private training data,” in Proc. 5th Int. Conf. Learn. Representations,
2016, pp. 1–12.

[29] Q. Zhang, J. Ma, J. Lou, L. Xiong, and X. Jiang, “Towards training
robust private aggregation of teacher ensembles under noisy
labels,” in Proc. IEEE Int. Conf. Big Data, 2020, pp. 1103–1110.

[30] H. Liu, J. Li, and D. Gu, “Understanding the security of app-in-
the-middle IoT,” Comput. Secur., vol. 97, 2020, Art. no. 102000.

[31] W. Zhou et al., “Discovering and understanding the security haz-
ards in the interactions between IoT devices, mobile apps, and
clouds on smart home platforms,” in Proc. 28th USENIX Secur.
Symp., 2019, pp. 1133–1150.

[32] P. Sivakumaran and J. Blasco, “A study of the feasibility of co-
located app attacks against BLE and a large-scale analysis of the
current application-layer security landscape,” in Proc. 28th USE-
NIX Secur. Symp., 2019, pp. 1–18.

[33] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. A. Wag-
ner, “Smart locks: Lessons for securing commodity Internet of
Things devices,” in Proc. 11th ACM Asia Conf. Comput. Commun.
Secur., 2016, pp. 461–472.

2142 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 3, MAY/JUNE 2023

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2021.3093711
http://dx.doi.org/10.1109/TDSC.2021.3097296
http://dx.doi.org/10.1109/TDSC.2021.3097296

[34] K. Tian, D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection of
repackaged android malware with code-heterogeneity features,”
IEEE Trans. Dependable Secure Comput., vol. 17, no. 1, pp. 64–77,
Jan./Feb. 2020.

[35] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth
analysis of current android malware,” in Proc. Int. Conf. Detection
Intrusions Malware Vulnerability Assessment, 2017, pp. 252–276.

[36] S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, and A. A.
Ghorbani, “Dynamic android malware category classification
using semi-supervised deep learning,” in Proc. IEEE Int. Conf
Dependable Autonomic Secure Comput., 2020, pp. 515–522.

[37] K. Allix, T. F. Bissyande, J. Klein, and Y. L. Traon, “AndroZoo:
Collecting millions of android apps for the research community,”
in Proc. 13th Int. Conf. Mining Softw. Repositories, 2016, pp. 468–471.

[38] Virusshare, 2021. [Online]. Available: http://virusshare.com/
[39] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal

deep learning method for android malware detection using vari-
ous features,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3,
pp. 773–788, Mar. 2019.

[40] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic
classification using convolutional neural network for representa-
tion learning,” in Proc. Int. Conf. Inf. Netw., 2017, pp. 712–717.

[41] B.Athiwaratkun and J.W. Stokes, “Malware classificationwithLSTM
andGRU languagemodels and a character-level CNN,” inProc. IEEE
Int. Conf. Acoust. Speech Signal Process., 2017, pp. 2482–2486.

[42] A. N. Jahromi, S. Hashemi, A. Dehghantanha, R. M. Parizi, and K.-
K. R. Choo, “An enhanced stacked LSTMmethod with no random
initialization for malware threat hunting in safety and time-critical
systems,” IEEE Trans. Emerg. Topics Comput. Intell., vol. 4, no. 5,
pp. 630–640, Oct. 2020.

[43] Y. Qin, N. Frosst, S. Sabour, C. Raffel, G. Cottrell, and G. Hinton,
“Detecting and diagnosing adversarial images with class-condi-
tional capsule reconstructions,” in Proc. 8th Int. Conf. Learn. Repre-
sentations, 2020, pp. 1–12.

[44] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective real-time
android application auditing,” in Proc. IEEE Symp. Secur. Privacy,
2015, pp. 899–914.

[45] L. Onwuzurike, M. Almeida, E. Mariconti, J. Blackburn, G. String-
hini, and E. D. Cristofaro, “A family of droids-android malware
detection via behavioral modeling: Static vs dynamic analysis,” in
Proc. 16th Annu. Conf. Privacy Secur. Trust, 2018, pp. 1–10.

Xinjun Pei is currently working toward the PhD
degree in the School of Computer Science and
Engineering, Central South University, Chang-
sha, China. Since 2017, he has been engaged in
the direction of information security. His research
interests include deep learning, edge computing,
and IoTsecurity.

Xiaoheng Deng (Member, IEEE) received the
PhD degrees in computer science from Central
South University, Changsha, Hunan, P.R. China,
in 2005. Since 2006, he has been an Associate
Professor and then a full professor with the
School of Computer Science and Engineering,
Central South University. He is the chair of RS
Changsha Chapter, a senior member of CCF, a
member of CCF Pervasive Computing Council, a
member of the ACM. He has been a chair of CCF
YOCSEF CHANG SHA from 2009 to 2010. His

research interests include wireless communications and networking,
edge computing, congestion control for wired/wireless network, cross
layer route design for wireless mesh network and ad hoc network, social
network analysis, distributed computing system.

Shengwei Tian received the BS, MS, and PhD
degrees from the School of Information Science
and Engineering, Xinjiang University, Urumqi,
China, in 1997, 2004, and 2010, respectively.
Since 2002, he has been a teacher with the
School of Software, Xinjiang University, where he
is currently a professor. His research interests
include artificial intelligence, natural language
processing, and cyberspace security.

Lan Zhang (Member, IEEE) received the BEng
and MS degrees in telecommunication engineer-
ing from the University of Electronic Science and
Technology of China, Chengdu, China, in 2013
and 2016, and the PhD degree in electrical and
computer engineering from the University of Flor-
ida, Gainesville, Florida, in 2020. She is currently
an Assistant Professor with the Department of
Electrical and Computer Engineering, Michigan
Technological University. Her research interests
include wireless communications, vehicular sys-

tems, Big Data analysis, and security and privacy issues for various
cyber-physical system applications.

Kaiping Xue (Senior Member, IEEE) received
the bachelor’s degree from the Department of
Information Security, University of Science and
Technology of China (USTC), in 2003, and the
PhD degree from the Department of Electronic
Engineering and Information Science (EEIS),
USTC, in 2007. From May 2012 to May 2013, he
was a postdoctoral researcher with the Depart-
ment of Electrical and Computer Engineering,
University of Florida. Currently, he is a professor
with the School of Cyber Security, USTC. His

research interests include next-generation Internet architecture design,
transmission optimization, and network security. He serves on the edito-
rial board of several journals, including the IEEE Transactions on
Dependable and Secure Computing (TDSC), IEEE Transactions on
Wireless Communications (TWC), and IEEE Transactions on Network
and Service Management (TNSM). He has also served as a (lead) guest
editor for many reputed journals/magazines, including the IEEE Journal
on Selected Areas in Communications (JSAC), IEEE Communications
Magazine, and IEEE Network. He is an IET fellow.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

PEI ETAL.: KNOWLEDGE TRANSFER-BASED SEMI-SUPERVISED FEDERATED LEARNING FOR IOT MALWARE DETECTION 2143

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 25,2023 at 16:17:21 UTC from IEEE Xplore. Restrictions apply.

http://virusshare.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

