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Abstract—With the ever-growing attention on communication
security, machine learning-based network intrusion detection
system (NIDS) is widely utilized to meet different security
requirements. However, most of the existing methods manually
extract or learn features from raw traffic, which is usually
expensive, complicated, and time-consuming. Moreover, this also
brings unprecedented challenges for preserving users’ privacy
in the communication process, making it difficult for existing
solutions to be deployed in practice due to the privacy re-
quirements from legal policies. This paper proposes a privacy-
preserving graph neural network (named NIGNN) for NIDS,
which can encode the local structure and traffic features. To
address the privacy issues pertaining to the application of graph
representation learning, we design a privacy message-passing
mechanism with formal privacy guarantees, in which sensitive
information potentially contained in graph vertices will be kept
private. Specifically, we design a privacy-enhancement graph
representation that introduces a degree-sensitive item in vertex-
based aggregation to reduce noise. Our theoretical analysis
shows that NIGNN can provide a provable privacy guarantee.
Extensive experiments demonstrate NIGNN’s performance in
maintaining a sound privacy-accuracy trade-off.

Index Terms—Network Intrusion Detection, Privacy-
Preserving, Supervised Learning, Differential Privacy, Graph
Neural Networks.

I. INTRODUCTION

In recent years, network intrusion detection has attracted
widespread attentions from academia and industry. While
users have greatly benefited from the convenience brought
by the Internet, network intrusion incidents have undoubtedly
increased public concerns about security [1] [2]. The evolu-
tion of network intrusion attacks has prompted researchers
to continuously develop new network intrusion prevention
systems (NIDS) to identify the network intrusion activities.

With the rapid development of neural networks, deep
learning (DL)-based NIDS methods have become state-of-
the-art solutions. Such methods often extract traffic features
manually and feed them into the well-designed model to ob-
tain classification results. Existing DL-based NIDS methods
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extract various traffic features (e.g., message type sequences,
packet lengths, and raw byte sequences) as input data to
feed into the classification model. However, in the real world,
network traffic data often exists in the form of graphs, which
contain the long-term evolution and dynamic changes of
network traffic flow. Representing network traffic as a graph
provides a more effective means of capturing dependencies in
a traffic network, thereby maximizing data integrity. Unfortu-
nately, most existing DL-based NIDS methods only focus on
extracting and learning statistical features of network packets,
while ignoring the structural information of the network traffic
data [3] [4]. Due to the lack of utilization of the structure and
topology of network flow data, they can result in the neglect
of valuable information derived from packet relationships in
the flow data. As a result, these systems may fall short in
detecting complex network attacks. Therefore, we introduce
the concept of mapping network traffic as a non-Euclidean
graph with packet relationships to maximize data integrity. A
general traffic topology graph is used to describe the traffic
network instead of the representation of Euclidean space data
in traditional DL-based methods, thereby better capturing
packet relationships.

Graph Neural Networks, as a subfield of deep learning,
have demonstrated remarkable success across domains, such
as computer vision, natural language processing, and social
network analysis. Their adaptability to diverse non-Euclidean
graph structures makes them ideal for analyzing complex
network traffic patterns. To leverage the topological and
attribute information of network traffic, some studies have
applied graph neural networks (GNNs) to NIDS. For instance,
Zheng et al. [3] introduced a GCN-based method for network
traffic classification, which combines traffic trace graphs with
statistical features to achieve high classification accuracy
even with very few labeled data. Zhu et al. [4] proposed a
Darknet Graph Neural Network (DGNN) for darknet traffic
classification, which can effectively curb malicious darknet
activities. However, many existing graph-based NIDS meth-
ods ignore privacy concerns. Traffic data are vulnerable to
various privacy graph attacks. To overcome this challenge, we
introduced a privacy-preserving graph neural network (named
NIGNN) for NIDS. We extend the differential privacy (DP)
method in the context of NIGNN to effectively preserve data
privacy.

Existing studies employ DP algorithms [5] [6] [7] [8] to
train deep learning models to defend against privacy inference
attacks, such as private inference attacks and membership
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inference attacks. This is typically done by adding DP noise
to the gradients of the model during training, or by training
the model using a noisy loss function. For example, Pan et
al. [5] proposed a regression model based on an adaptive DP
mechanism, which dynamically allocates privacy budgets and
adds noise to the objective function. Furthermore, the work
in [6] developed a private-preserving deep learning, which
applies DP to a stochastic gradient descent (SGD) algorithm.
They performed a refined analysis of privacy costs by tracking
privacy loss. Similarly, Jaewoo et al. [7] proposed a DP-based
SGD solution, which can be improved by carefully allocating
privacy budgets for each iteration. Additionally, the study in
[8] introduced a private LSTM language model to provide a
user-level privacy guarantee. Although these methods intro-
duce private-preserving DL models to protect user sensitive
data, they may not be suitable for many graph learning-based
scenarios, such as those based on GNN models. There are still
theoretical and practical challenges. In this paper, we extend
the application of DP to node classification tasks with GNNs.

Nonetheless, training a GNN model [9] under the constraint
of DP is highly challenging than other privacy deep learning
models due to the particularity of graphs. In GNNs, vertices
are interconnected through edges. The GNN model updates
vertex representations via a messaging framework, involv-
ing multiple exchanges of hidden representations between
adjacent vertices [10]. Consequently, applying DP to GNN
models may incur high noise [10], potentially compromising
the data utility. In addition, the influence of neighbors on the
aggregation is not uniform, which limits the ability of GNNs
to learn vertex representations. To overcome this challenge,
this paper designs a degree-sensitive privacy-enhancement
measure for GNN aggregation and updates, which exerts
different effects on vertices by incorporating contributions
from numerous neighboring vertices. This approach effec-
tively reduces the impact of DP noise, allowing for a more
precise representation of vertices. The involvement of more
neighbors will offer significant advantages in mitigating the
adverse effects of DP noise. In this case, the utility of the
model can be preserved without consuming too much privacy
budget.

Based on the above ideas, we propose a privacy-preserving
NIGNN for network intrusion detection, which transforms
network traffic data into graph structures wherein vertices
represent the traffic, and edges represent the IP hosts. Shaping
the network-wide traffic states as a graph can describe the
network traffic distribution in a heterogeneous spatial space.
This design provides an intuitive description of the network-
wide traffic state, allowing graph analysis techniques to
detect network intrusion activities effectively. Besides, we
train the NIGNN with a privacy graph convolution layer
to prevent adversaries from inferring sensitive information,
which uses a correlation coefficient perception (CCP)-based
DP mechanism to enforce privacy preservation to the GNN
model. To reduce the noise introduced by the DP mechanism,
we design a degree-sensitive privacy-enhancement measure
in the aggregation and update of GNN, which incorporates
contributions from numerous neighboring nodes to generate

a more accurate representation of the underlying data. In
short, the proposed NIGNN ensures the practicality of the
model while avoiding potential privacy leakages. To the best
of our knowledge, we are the first to investigate the problem
of privacy-preserving GNN model in NIDS, which prevents
network intrusions while preserving user privacy. The main
contributions of this paper are summarized as follows:

• We propose a novel graph construction method for net-
work intrusion detection, which shapes the network-wide
traffic states into a graphical representation describing
network traffic distribution in a heterogeneous space.
This gives sophisticated feature representations using
graph structures. This enables excellent potentials in
modeling sophisticated feature representations and graph
structures.

• We develop a privacy-preserving GNN to identify net-
work intrusions, which utilizes a CCP-based DP mech-
anism to enforce privacy preservation to the GNN mod-
els. We design a degree-sensitive privacy-enhancement
measure to exert different effects on vertices, which can
reduce the noise introduced by the DP mechanism while
effectively learning an accurate model.

• Extensive experiments carried out on real-world datasets
demonstrate the effectiveness of NIGNN in identifying
network intrusions. The proposed NIGNN can achieve
a high detection rate while providing a rigorous privacy
guarantee.

The rest of the paper is structured as follows. Section II
describes the related works. Section III briefly introduces
some preliminaries. Section V gives the privacy-preserving
NIGNN in details. Section VI evaluates the proposed NIGNN.
Finally, we conclude the paper in Section VII.

II. RELATED WORK

In recent years, deep learning (DL) methods have been
applied in NIDS with unprecedented detection performance.
In general, these methods follow a prevailing paradigm: the
features extracted from raw traffic are first mapped into
dense vector representations (e.g., word embeddings), and
then concatenated together to input into a deep learning model
to extract and learn high-order latent information. The work
in [11] tested a variety of DL models and demonstrated
the effectiveness of shallow neural network architectures
in detecting network intrusions. Moreover, Liu et al. [12]
presented a traffic obfuscation framework to prevent traffic
analysis attacks. Das et al. [13] proposed a natural language
processing to convert HTTP requests into vectors. Then, the
learning model is used to detect anomalous traffic. Moreover,
Liu et al. [14] designed a utility-optimal differentially private
mechanism in cognitive radio networks, which provides real-
time differential location privacy. Hsu et al. [15] used a
deep reinforcement learning model to reflect traffic behav-
iors, which has the self-updating capability. However, these
methods cannot directly operate on graph structure data [10],
thereby ignoring the spatial structure information of traffic
network.
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The proliferation of network intrusions has presented un-
precedented challenges in preserving users’ privacy. While
Internet anonymity dissociates an individual’s identity from
their network activities [16], any collection of data for
NIDS may jeopardize the anonymity of users [17], thereby
putting their privacy at risk. Sgaglione et al. [18] proposed
a signature-based intrusion detection system that employs
homomorphic encryption to enhance the security of sensitive
data. However, using homomorphic encryption to encrypt data
is computationally expensive, which affects the performance
of the whole system. To reduce the computational overhead,
Mokry et al. [19] proposed a privacy-preserving clustering
algorithm for an intrusion detection system. This algorithm
employs lightweight cryptographic techniques (mainly addi-
tive secret sharing) to protect the privacy of intrusion alert
data. Additionally, Alazab et al. [20] introduced a federated
learning (FL)-based intrusion detection system that creates a
global detection model without sharing private data, where
each entity trains its local model using its private data and
then shares the model updates (gradients) with a central
server. Similarly, Jin et al. [21] proposed an evolvable system
architecture for an intrusion detection system, which utilizes
a federated incremental learning method to aggregate the
knowledge from diverse local models and incrementally up-
date the FL model. However, the effectiveness of federated
learning relies on the collaboration of a large number of
devices. This collaboration can introduce a lot of communi-
cation overhead. Although these methods introduce privacy-
preserving methods to protect sensitive intrusion data, they
may not be suitable for GNN-based NIDS. In this paper, we
extend the application of the differential privacy method to
NIDS, which can not only identify network intrusion but also
protect the privacy of intrusion data.

Recent GNN is considered an emerging research area and
has been successfully applied across various fields, such as
action recognition [22], click-through rate (CTR) prediction
[23], and few-shot learning [24]. The ability to model irreg-
ular graph data is crucial for the GNN models, and many
variants have been proposed, such as graph convolutional net-
works [10], graph attention networks [25], GraphSAGE [26],
and so on. These methods recursively aggregate and transform
neighborhood information to update vertex representations.
As a result, the graph structure is encoded into the neural
network to improve classification performance. As the deploy-
ment of these models becomes more widespread, there are
concerns about graph privacy. However, due to the relational
characteristics of graphs, training a privacy-preserving GNN
model is more challenging than other privacy deep learning
models. To address these challenges, researchers are turning
their attention to the integration of privacy measures (e.g.,
differential privacy) into GNNs. There are a few attempts to
provide privacy protection in the field of graph-based learning
algorithms. Zhang et al. [27] reviewed various privacy attacks
and privacy-preserving techniques in the graph domain. In
[28], the authors categorized representative trustworthy GNN
algorithms from a computational perspective. For instance,
Wang et al. [29] proposed a privacy-preserving GNN for

cloud environments that supports secure GNN training and
inference by encrypting graph data using lightweight encryp-
tion techniques. In [30], the authors extended the privacy-
preserving GNN in a federated learn-based recommendation
system. They applied local differential privacy to local gradi-
ents to protect the privacy of user-item graphs. Another study
by Miao et al. [31] introduced a privacy-preserving collab-
orative GNN for distributed graph databases, which utilizes
a cluster-based DP algorithm to reduce model degradation.
Similarly, Zhang et al. [32] proposed a distributed GCN
framework that uses a subgraph sampling method to reduce
communication and memory overhead. In another study,
Bhaila et al. [33] studied the application of randomization
mechanisms in high-dimensional feature settings, and utilized
frequency estimates of graph clusters to supervise the training
procedure at a sub-graph level. Sajadmanesh et al. [34] pro-
posed a locally private graph neural network (LPGNN). They
designed a multi-bit-based local differential privacy method to
protect node privacy. Following this work [34], Du et al. [35]
proposed an evaluation method to characterize the trade-off
between utility and privacy for LPGNN. Furthermore, Lin
et al. [36] utilized the multi-bit algorithm [34] to perturb
node features, and employed a random response algorithm
to perturb the graph structure. However, introducing too
much noise can reduce data utility and compromise model
quality. Although these methods introduce privacy-preserving
GNN models to protect user sensitive information, there
are relatively few studies on privacy-preserving GNN-based
NIDS. There are still theoretical and practical challenges. Our
work is inspired by recent advances in privacy-preserving
techniques and graph representation learning. In this paper,
we proposed a privacy-preserving GNN (named NIGNN) for
NIDS. The main goal is to protect the privacy of network
traffic data while leveraging the predictive power of GNNs
for the identification of network intrusions.

III. PRELIMINARIES

A traffic network consists of a set of IP hosts. Each pair
of IP hosts may communicate with each other. This paper
treats the traffic network as a directed graph, denoted by
G = (V, E , X) where V denotes the set of N vertices, and
E denotes the set of M edges. We consider that the network
intrusion detection can be transformed to a specific type of
node classification task. We denote X ∈ R|V|×d as a feature
matrix. Each vertex vi ∈ V has a d-dimensional feature
vector vi = xi = {xi1, xi2, ..., xid} with a corresponding
label yi ∈ {0, 1}. Formally, a labeled example is a tuple
(xi, yi) ∈ G: a d-dimensional feature vector xi with a label
yi. This task is to construct a GCN from G that enables us to
output the prediction ŷi for every vertex. ŷ is used to estimate
the probability of network intrusion appearing. Specifically,
to prevent traffic analysis attacks, the proposed NIGNN is
trained under the constraint of differential privacy. Next, we
briefly introduce the definitions of DP and GNN.

A. Differential Privacy
Differential privacy is a privacy definition specifically de-

signed for the problem of privacy-preserving data analysis.
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TABLE I: Frequently used notations.

Notation Description
ε Privacy budget

∆f Sensitivity
D, D′ Any two neighboring dataset
A, X The adjacency matrix and feature matrix
d Dimension of feature
γ Traffic state
h Hidden neurons
ω The parameter vector of the learning model
W Weight matrix
r Spearman correlation
β Privacy budget ratio
thr Threshold parameter
ρ Control parameter








Layer 1

Compute graph for node A Compute graph for node B

node A node B

 



Aggregation

Layer 2

Fig. 1: Details of message passing.

The key idea behind DP [6] is that it does not permit discering
of any individual’s record. In other words, no matter what
auxiliary information is available, the adversaries cannot infer
the sensitive informantion of training data. To protect the
privacy, we formally define DP as follows:

Definition 1 (ε-DP). A randomized algorithm A : D → R
with domain D and range R satisfies ε-DP, if for any two
neighboring databases D, D′ differing on at most one tuple,
and for all possible outputs O ⊆ R(A), we have:

Pr[A(D) ∈ O] ≤ eε Pr [A (D′) ∈ O] .

The privacy budget ε, as a metric of privacy loss, controls
the privacy-utility trade-off. A smaller value of ε indicates a
higher privacy guarantee but more reduced the data utility.
Formally, we define the l1-sensitivity as below.

Definition 2 (l1-sensitivity). For any function f : X → Rd,
the l1-sensitivity of f is:

∆f = max
D,D′
‖f (D)− f (D′)‖1 .

The Laplace noise mechanism [37] is a well-known DP
method, which can be described as below.

Theorem 1. Laplace mechanism. For any function f , the
Laplace mechanism Af (D) , f(D)+Lap (0,∆f/ε) satisfies
ε-DP.

Proof. Proof of Theorem 1 can be found in [38].
The Laplace mechanism perturbs the private value

with a random noise drawn from a Laplace distribution
Lap (0,∆f/ε) with mean zero and variance ∆f/ε. The noise
scale is calibrated by the l1-sensitivity ∆f (divided by ε).

B. Graph Neural Networks

This subsection presents a GNN model that directly op-
erates on graph-structured data. Fig 1 gives an example.
The GNN can perform effective information propagation on
the graph. Let (A, X) be a tuple, which can be used as
the input. X denotes the feature matrix, and A denotes the
adjacency matrix. For every vertex in the graph, the GNN
aggregates the vectors of its adjacent neighbors to learn the
vertex’s hidden representation. This process is shown in Fig.
1. The graph structure and vertex features can be encoded by
the neighborhood aggregation operation Agg() and update
operation σ(). More formally, the hidden representation hlv
of a vertex v can be described as follows.

hlN (v) = Agg
({

hl−1u ,∀u ∈ N (v)
})
, (1)

hlv(θ) = σ
((

hl−1v ⊕ hlN (v)

)
W l
)
, (2)

where l is the number of layers, ⊕ represents the merge
operation, W represents the weight matrix, and N (v) rep-
resents a set of its adjacent neighbors. Specifically, the
Agg() is an aggregate function with invariant permuta-
tion, such as max, sum, or mean. Each layer updates all
its hidden representations H l = {hlv}n0 by an activation
function σ (such as Sigmoid and ReLU), where n rep-
resents the number of hidden neurons. It is worth men-
tioning that, the GCN takes X as input, i. e., h1xi

(θ) =
σ
(
(xi ⊕ Agg ({xu,∀u ∈ N (xi)}))W 1

)
. Let f (xi,ωωω) de-

note the cost function and ωωω∗ represents the optimal model
parameter. The objective of the GNN is minimize the given
cost function f (xi,ωωω) in order to find the optimal parameter
ωωω. Then, we give the definition of ωωω∗ as follows.

ωωω∗ = arg min
ωωω

n∑
i=1

f (xi,ωωω) . (3)

IV. THREAT MODEL

A. System Architecture

In our study, we explore a typical IoT network, where
IoT nodes connect to the Internet via an access gateway,
as depicted in Fig. 2. We present a comprehensive network
intrusion detection framework to defend against network in-
trusions and traffic private analysis. This framework includes
the Security Gateway, Security Server, and Security Service.

1) Security Gateway: serves as a local access gateway to
the Internet, allowing IoT devices to connect via Ethernet
and WiFi. Its primary function is to monitor and collect
communication data from all IoT devices. All Security Gate-
ways upload their network traffic data to the Security Server
for training a large-scale intrusion detection system. Another
function of the Security Gateway is traffic filtering, which
utilizes the predefined rules or policies to inspect, analyze
and filter incoming and outgoing traffic. The predefined rules
can be configured to block network traffic based on various
criteria, such as destination IP address, source IP address,
protocols, and port numbers. The Security Gateway enforces
the filtering rules to restrict malicious traffic and reduce
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Fig. 2: Threat model.

the risk of network attacks. Furthermore, it monitors IoT
device communications and detects abnormal communication
behaviors caused by malicious IoT devices.

2) Security Server: We consider that Security Server has
sufficient computational power to train a large-scale deep
learning-based NIDS system. It is supported by the IoT
security services provided by companies like Google and
Microsoft. These services collect all network traffic data from
security gateways to facilitate large-scale network intrusion
detection and traffic behavior analysis.

3) Security Service: maintains a repository of NIDS to su-
port Security Gateway to quickly query and identify abnormal
traffic. Security Service periodically collects network traffic
data to update the large-scale NIDS model provided by Secu-
rity Server. Under cyber-attacks and other network anomalies,
it also can support fast response and prevent the expansion
of network attacks by blocking node communication.

B. System Model

In an IoT network, communication between IoT nodes
occurs through the transmission of traffic, and each IoT
node in the network has the ability of transmiting and
forwarding traffic. Note that in most cases, traffic cannot be
directly routed from the source IP node to the destination IP
node. Instead, it typically necessitates traversal through one
or more forwarding devices. However, due to the inherent
limitations in the computing resources of IoT nodes, on-
device monitoring is seldom feasible. In this context, Security
Gateway switches stand out as the primary forwarding devices
responsible for forwarding or discarding traffic, which serves
as a vital component for security-related measures within
IoT networks to identify and monitor traffic patterns, detect
anomalies, and enforce security policies. The transmission
process of all traffic within an IoT network can be mathe-
matically expressed as follows:

SRC → (Ns1 , Rs1)→ (Ns2 , Rs2) · · · (Nsn , Rsn)→ DES,
(4)

where SRC indicates the source IP address of IP host H ,
DES indicates the destination IP address of IP host H ,
Nsi indicates i-th IoT node, and Rsi indicates the traffic

processing rules associated with the IoT node Nsi . Then, we
establish the anomaly detection components in the Security
Gateway for device communication monitoring and traffic
capture, where each traffic is assigned to a specific class
y ∈ {0, 1}. y = 1 indicates malicious traffic, and y = 0
indicates normal traffic. Then, the Security Gateway extracts
statistic features from the raw network traffic to characterize
the behavior of the traffic.

C. Adversary Model and Assumptions

We divide our threat model into two distinct classes of
adversaries with differing visibility into the home network:

A1 - Network intrusion attacks: We consider an Adver-
sary, referred to as ”Adversary 1”, who lacks knowledge
of the home network topology but possesses the ability to
launch attacks against IoT nodes from an external network.
Adversary 1 can launch a variety of network traffic attacks,
such as backdoors, fuzzers, and DoS attacks, etc. The goal
of Adversary 1 is to execute network intrusion attacks that
compromise as many IoT nodes as possible, thereby destabi-
lizing device functionality and potentially infecting additional
devices. Fig. 2 shows our threat model. For example, a DoS
attack can deplete the resources of one or more servers, or
block specific links within a data center. Ultimately, these
coordinated attacks overwhelm the targeted servers with an
excessive amount of network traffic.

A2 - Privacy inference attacks based on traffic analysis:
Within the context of deep learning-based NIDS, the pro-
cessing of the original network traffic leads to the generation
of sequences of traffic features. These sequences encom-
pass various attributes, such as traffic packets, traffic bytes,
traffic duration, protocol types, TCP flags, etc. To establish
a robust deep learning-based NIDS, the traffic features are
typically transmitted to a Security Server for training the
deep learning model. However, such communication raises
privacy concerns, as traffic features contain a lot of important
information, which could reveal private information about the
activities of a home’s occupants. For example, traffic rates
from the indoor security camera in a smart home reveal
whether the user is present at home when the camera detects
movement, and traffic rates from the switch reveal when
the IoT device is turned on or off. For example, a member
inference attack [39] can infer whether a data record belongs
to the training dataset of the target model. Suppose the
training data is collected within a home network. When a
network observer (referred to as ”Adversary 2”) determines a
sub-training set using the member inference attack, Adversary
2 can reasonably infer a user’s home activities from the
sequence of traffic features of the sub-training set through
traffic analysis.

D. Design Choices

This paper presents a novel privacy-preserving NIGNN for
network intrusion detection, which shapes the network-wide
traffic states into a graph. This method uses graph analysis
method to detect network intrusion activities, effectively
weakening the network intrusion attacks A1. Despite the
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importance of privacy in traffic analysis, few efforts have been
devoted to studying privacy inference attacks in this context
of deep learning NIDS. This paper reveals how attackers
can infer user privacy through traffic analysis. We trained
the GNN model under DP constraints to mitigate privacy
inferences from traffic feature sequences (privacy inference
attack A2). By integrating privacy-preserving measures into
the design and development of graph mining-based NIDS
systems, it is possible to achieve a balance between effective
intrusion detection and preservation of individual privacy. To
our best knowledge, in the field of NIDS, it is the first attempt
that graph anaysis-based NIDS is proposed to prevent network
intrusion while preserving user privacy.

V. DIFFERENTIAL PRIVACY GRAPH NEURAL NETWORKS
FOR INTRUSION DETECTION

In this section, a privacy-preserving NIGNN is proposed.
We consider that network intrusion detection can be regarded
as a specific type of node classification task. In Section
V-A, we transform the network traffics as graph data that
describes the transition between network-wide traffic states at
consecutive time steps. Section III-B describes how NIGNN
encodes graph structure and traffic features. Section V-B
describes how to construct a privacy graph convolution layer
in NIGNN that perturbs the model input. Finally, we propose
a degree-sensitive privacy-enhancement mechanism to reduce
the noise in Section V-C.

A. Graph-based Traffic Representation

A traffic network usually consists of a set of IP hosts.
Network intrusion detection can be seen as a specic time
series analysis problem, which aims at predicting future
network attacks in the trafc network using historical data.
In this study, we transform the time series analysis into
a node classication problem. Subsequently, a network-wide
trafc graph is constructed to capture the spatial structure of
the trafc data, which represents trafc ows as vertices and hosts
as edges. Based on the link homophily [3], trafc ows with
public IP hosts exhibit similar application trends, which can
be measured on the graph. For instance, in a peer-to-peer
(P2P) application, hosts frequently connect with multiple col-
laborating hosts, and trafc ows between them are associated
with the same application [3]. Equally, we can obtain the
same conclusion in client-server applications. We then use the
NIGNN to model the temporal and spatial properties of the
graph. This relational view of network trafc treats the node
classication problem as information dissemination over the
network-wide trafc graph. In this part, we contract a network-
wide traffic graph.

Fig. 3 (a) illustrates a general traffic network. There are 6 IP
hosts labeled as s1, s2, ..., s6, where each IP host has some
traffic packets. For example, the IP host S1 have send two
traffic packets γs1t1 and γs1t3 and received one traffic packet
γs2t2 . The packets timestamps are denoted as ti, where i =
1..k, and k is the total number of packets or nodes. When
we measure the traffic data collected by s-th IP host for
a certain period of time, the collected data sequence can

be characterized in the form of a time series, denoted by
γs = {γ1, γ2, . . . , γT } ∈ RT×M . We extract characteristics
for each traffic packet. The extracted set of features can now
describe each traffic packet. For the s-th IP host Si, its traffic
packet γst at time t is described by several features, such as
timestamps, inter-packet mean time, and flow duration. For
simplicity, we only use directed connections to construct the
edges of the graph. Consequently, the traffic data sequence is
transformed into the form of a network-wide traffic graph.

We are interested in utilizing the graph structure to analyze
the trafc. In our case, the traffic data is transformed to
a graph representation. We demonstrate the mapping of a
network traffic flow into a graph-structured representation
in which each packet is assigned to a node, and packet
relations are encapsulated in edges with the chronological
relationship serving as the edge direction. Fig. 3 (b) illustrates
a general graph-structured network traffic flow representation.
The details of how a network traffic flow is mapped to each
graph entity are presented as follows.
• In Fig. 3 (a), the traffic γs1t1 and γs1t3 have the common

host s1. In Fig. 3 (b), there exists a directed edge between
γs1t1 and γs1t3 .

• We regard the receiving and sending traffic of a host as
two vertices in the graph, and use a directed connection
to construct the edge between the two vertices, e.g. γs1t1
is linked to γs2t2 in Fig. 3 (b).

• We set a threshold thr that designates the maximum
time interval. Temporal information is the inter-arrival
time between packets and can be calculated by tr ts.
In this scenario, s is the sender node index and r is the
receiver node index. When the threshold thr is set to
1, |t3 − t1| > thr. As shown in Fig. 3 (b), there is no
edge between the two vertices γs1t1 and γs2t3 .

For simplicity, all traffic data can form a traffic feature
matrix X = {x1,x2, . . . ,xn}, where X ∈ RN×M , and each
element x1 represents a traffic data γst . Let A ∈ RN×N
be the adjacency matrix of the network-wide traffic graph.
When the traffic i and j have a common IP host, Ai,j = 1,
otherwise Ai,j = 0. After that, the network-wide traffic graph
is constructed, which can be represented as G = (X,A).

B. Private Graph Convolution Layer with Correlation Coef-
ficient Perception Noise

In our proposed NIGNN, we construct a private gaph
convolution (PGC) layer that perturbs the input features. Fig 4
shows an overview of NIGNN architecture. To achieve DP, a
baseline approach is to insert the same magnitude of noise (se-
lected from an identical noise distribution 1

|D|Lap (0,∆h/ε1))
to the all input X . Intuitively, the baseline approach can work
well. In practice, this assumption is not valid, and the utility
of the model may be affected as the contribution of each
feature may vary.

Moreover, we propose a correlation coefficient perception
(CCP)-based DP mechanism, which relies on a weighted
correlation coefficient matrix to inject different magnitudes
of noise into the model input. Since features are dependent
of each other (e.g., duration versus number of packets, flow
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Fig. 3: Details of graph transformation.

byte rate versus flow packet rate, and minimum segment size
versus minimum inter-arrival time of packets), we adopt CCP
to quantify the extent of statistical dependence between two
variables. In CCP, Spearman rank correlation coefficient is
recommended for data with deviations or outliers [40]. In
essence, rank correlation analysis is conducted for measuring
both linear and general relationships between two variables. It
determines whether one variable takes on a larger or smaller
value concerning the other variable, although not necessarily
in a linear manner [40].

Recall that feature matrix X consists of a set of traffic
data x1,x2, ...,xn, where each row xi contains d features
xi1, xi2, ..xid. Let t(p) = {x1p, x2p, ..., xnp} and t(q) =
{x1q, x2q, ..., xnq} be two column vectors. Let t′(p) =
{x′1p, x′2p, ..., x′np} and t′(q) = {x′1q, x′2q, ..., x′nq} be the per-
mutations of t(p) and t(q), respectively. Spearman correlation
between t(p) and t(q) can be described as follows.

r(t(p),t(q)) =
cov

(
t′(p), t′(q)

)
σ̂t′(p) σ̂x′(q)

, (5)

where σ̂t′(p) and σ̂t′(q) denote the standard deviations of
rank variables, and cov

(
t′(p), t′(q)

)
represents the covariance

of rank variables. Only if all n ranks are distinct integers,
Spearman correlation can be computed by r(t(p),t(q)) =

1 − 6
∑n

i=1 df
2
i

n(n2−1) [41] where dfi = x′ip − x′iq is the difference
between the two ranks.

Intuitively, the Spearman correlation between t(p) and t(q)

is large (resp. small) when observations have a similar (resp.
dissimilar) rank. For j-th input feature xij , we calculate the
Spearman correlations between it and all other features (i.e.,
rj = {r(t(j),t(1)), r(t(j),t(2)), ..., r(t(j),t(d))}). As a result, we
can denote a privacy budget ratio as βj =

|rj |
1
d ·
∑d

j=0 |rj |
. For

j-th input feature, the privacy budget can be denoted as εj =
βj · ε.

As mentioned earlier, each traffic data xi is repre-
sented by a d-dimensional vertex vector xi, where xi =
{xi1, xi2, ..xid}. Here, the PGC layer perturbs each vertex
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Fig. 4: An overview of NIGNN architecture.

feature xij of xi. For j-th input feature xij of xi, we can
have:

x′ij = PGCxi(xij) = xij +
1

|D|
Lap (0,∆f/εj) , (6)

where x′ij is the perturbed vertex feature. Specifically, ∆f

is set to 2
∑
f d. Then, the perturbed vertex data x′i can be

represented by:

x′i = {x′i1, x′i2, ..., x′id}.
= {PGCxi(xi1), PGCxi(xi2), ..., PGCxi(xid)}.

(7)

After that, the Security Gateway uploads the perturbed data
x′i to the Security Server to train a privacy-preserving GNN.
On the Security Server side, we construct the PGC layer
PGCD (W ), and take the perturbed vertex features x′i as
input. The PGC layer PGCD′ (W ) consists of a set of hidden
neurons h̄D(W ) :

h̄D′(W ) =
∑

x′
i∈D′

(x′i ·W ), (8)

PGCD′ (W ) =
{
h̄D′(W )

}
h∈PGC . (9)

As explaining in Algorithm 1, we first determine the
sensitivity ∆f and the privacy budget εj (lines 2-4). Then,
each vertex aggregates the information of its neighbors (lines
6-8) followed by a perturbation with Laplace noise (lines 9-
10). Lastly, all hidden neurons are updated (lines 12-14). We
give the bound of the sensitivity ∆f as follows.

Lemma 1: Let D and D′ be any two neighboring datasets.
Let PGCD (W ) and PGCD′ (W ) be the two PGC layers on
D and D′, respectively. We have:{

hD(W ) =
∑

xi∈D(xi ·W )

PGCD (W ) = {hD(W )}h∈PGC{
hD′(W ) =

∑
x′
i∈D′(x′i ·W )

PGCD′ (W) =
{
hD′(W )

}
h∈PGC

Then, we have the following inequality:

∆f =
∑

h∈PGC

d∑
j=1

∥∥∥∥∥∥
∑
xi∈D

xij −
∑

x′
i∈D

′

x′ij

∥∥∥∥∥∥
1

≤ 2
∑

h∈PGC

d.
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Algorithm 1 Private Graph Convolution Layer with DP

Input: Original traffic data X , privacy budget ε
Output: The perturbed PGC layer PGCD′ (W )

1: Security Gateway side:
2: ∆f = 2

∑
h∈H0

d;
3: for each 0 ≤ j ≤ d do
4: εj = βj · ε1;
5: end for
6: for xi ∈ D, i ∈ [0, n] do
7: for xij ∈ xi, j ∈ [0, d] do
8: Perturb the vertex feature:
9: x′ij = PGCxi

(xij) = xij + 1
|D|Lap (0,∆f/εj);

10: end for
11: Obtain the perturbed vertex representation:
12: x′i = {x′i1, x′i2, ..., x′id};
13: end for
14: Update PGC ′x′

i
to the Security Server;

15: Security Server side:
16: Construct the PGC layer:
17: hD′(W ) =

∑
x′
i∈D′(x′i ·W );

18: PGCD′ (W ) =
{
hD′(W )

}
h∈PGC ;

19: return PGCD′ (W ).

where d is the feature dimensions of xi ∈ D.

Proof. Assume that D and D′ differ in the last tuple. Let
xn (x′n) be the last tuple in D (D′). We have that

∆h =
∑

h∈PGC

d∑
j=1

∥∥∥∥∥∥
∑
xi∈D

xij −
∑

x′
i∈D

′

x′ij

∥∥∥∥∥∥
1

=
∑

h∈PGC

d∑
j=1

∥∥xnj − x′nj∥∥1

≤ 2 max
xi∈D

∑
h∈PGC

d∑
j=1

‖xij‖1 .

Since ∀xi, j : xij ∈ [0, 1], we have that: ∆h ≤ 2
∑
h∈PGC d.

Lemma 2: Algorithm 1 preserves ε-DP in the computation
of PGCD (W ).

Proof. According to the calculation of GCN, for each h ∈
PGCD, h can be re-written as follows.

h̄D(W ) =

d∑
j=1

∑
xi∈D

(
xij +

1

|D|Lap (0,∆f/εj)

)
W

 =

d∑
j=1

ξ̄hjW.

Then, we set ∆h to 2
∑
h∈H0

d, as shown in Algorithm 1.
We have

Algorithm 2 Degree-Sensitive Graph Convolution Layer

Input: The perturbed PGC layer PGC, adjacency matrix A
Output: The degree-sensitive graph convolution layer DGC

1: Obtain the degree of each vertex from the adjacency
matrix A:

2: DegSet = ObtainDegree(A);
3: for v ∈ V, degv ∈ DegSet do
4: Compute the degree item D(v, deg) for each vertex:

5: d(v, deg) =

{
(degv)

ρ
, degv > thr(

ε
degv

)ρ
, degv ≤ thr

6: Obtain the vertex representation:
7: ĥv = D(v, deg) · hv ⊕ Agg

({
hl−1u ,∀u ∈ N (v)

})
;

8: ĥv(W ) = σ
(
ĥvW

)
;

9: end for
10: Construct the DGC layer:
11: DGC = {ĥv(W )}ĥv∈DGC ;
12: return DGC (W ).

Pr
(
PGCD (W )

)
Pr
(
PGCD (W )

) =

∏
h

∏d
j=0 exp

(
εj

∥∥∥∑xi∈D xij−ξ̄hj
∥∥∥
1

∆h

)
∏
h

∏d
j=0 exp

 εj

∥∥∥∥∑x′
i
∈D′ x′ij−ξ̄

h
j

∥∥∥∥
1

∆h


≤
∏
h

d∏
j=0

exp

 εj
∆f

∥∥∥∥∥∥
∑
xi∈D

xij −
∑

x′
i∈D

′

x′ij

∥∥∥∥∥∥
1


≤
∏
h

d∏
j=1

exp

(
εj
∆f

2 max
xn∈D

‖xnj‖1

)

≤
∏
h

d∏
j=1

exp

(
2εj
∆f

)
≤
∏
h

d∏
j=1

exp

(
ε

∆f
· 2 · |rj |

1
d

∑d
j=1 |rj |

)

≤ exp

(
ε

∆f
· 2
∑
h

d

[
d∑
j=1

|rj |∑d
j=1 |rj |

])
= exp (ε) .

C. Degree-Sensitive Graph Convolution Layer

Recall that in the PGC layer, the DP mechanism is used
to perturb every vertex features by adding Laplace noise
1
|D|Lap (0,∆h/εj) into xij , and the level of noise introduced
by each individual vertex xi is controlled by the privacy
budget ε. Hence, the presence of noise can significantly
impact the accuracy and reliability of aggregated information.
Considering the impact of noise introduced by the PGC layer
on the aggregation process, we propose a degree-sensitive
graph convolution (named DGC) layer DGC (·), which ma-
nipulates the outputs of DGC (·) by giving vertices with a
very small number of neighbors relatively higher impacts on
the model learning. The DGC (·) is designed to alleviate the
impact of the DP noise introduced by PGC (·) and enhance
the overall performance of the model. In the context of vertex-
based aggregation, it is naturally quite sensitive to the number
of neighbors. It is worth noting that the original GNN treats
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Fig. 5: The decision boundaries for the cluster of vertices with a small number of neigbors produced by the (a) raw network
traffic graph, (b) PGC(·) with ρ = 0.8 and thr = 10, and (c) DGC(·) with ρ = 0.8 and thr = 10. The decision boundaries
for the cluster of vertices with a large number of neigbors produced by the (d) raw network traffic graph, (e) PGC(·) with
ρ = 0.8 and thr = 10, and (f) DGC(·) with ρ = 0.8 and thr = 10.

all the vertices equally. However, the influence of neighbors
on the aggregation is not uniform.

In order to alleviate the impact of the DP noise, each vertex
v is associated with a degree item d(v, deg), where deg is
the degree of v. The DGC(W ) can act as a noise reducer by
dynamically adjusting the update amplitude for each vertex
based on its degree. The degree item d(v, deg) indicates the
vertex importance. Clearly, a vertex with more neighbors is
more important. This is because the involvement of more
neighbors can counteract the adverse effects of noise during
the aggregation process, (i.e., Agg()). In other words, the col-
lective contribution from these vertices counteracts the noise
introduced by each individual vertex by the PGC layer. The
resulting aggregation reflects a more accurate representation
of the underlying data. Therefore, vertices with more neigh-
bors should assign smaller degree terms d(v, deg), aiming to
preserve the aggregation results obtained from the previous
layer. This allows the model to learn with reduced noise,
bringing the results closer to those of a noise-free model.
Conversely, vertices with fewer neighbors are considered less
important and are assigned higher values of the degree term
d(v, deg). This strategy encourages more substantial updates
for vertices with fewer neighbors, facilitating the model’s
ability to move away from local optima and learn more
effectively. In general, our method can balance the update
amplitude based on the degree of each vertex. This ensures
that both vertices with many or few neighbors contribute
meaningfully to the learning process, enhancing the model’s
adaptability.

Formally, we define the degree term d(v, deg) as follows.

d(v, deg) =

{
(degv)

ρ
, degv > thr(

ε
degv

)ρ
, degv ≤ thr

(10)

where thr is a threshold parameter, and ρ ∈ [0, 1] is a control
parameter.

Specifically, the DGC layer takes the output of the PGC
layer as its input. When the privacy budget ε is small, the
output of the PGC layer contains more noise. In contrast,
when the privacy budget ε is large, the output of the PGC
layer contains less noise. To accommodate different privacy
scenarios, we incorporated the privacy budget parameter ε
into the Eq. 10, allowing the model to dynamically adjust
the update amplitude based on the level of privacy protection
required. Intuitively, a smaller privacy budget ε (indicating
more added noise) implies a need for a more cautious and
conservative update amplitude (i.e., a smaller d(v, deg)). As
a result, a smaller privacy budget ε should result in a smaller
d(v, deg), which ensures that the update amplitude aligns with
the noise level.

In the DGC layer DGC (·), the hidden representation hv
of a vertex v can be updated as follows.

hv = hv ⊕ Agg
({

hl−1u ,∀u ∈ N (v)
})
, (11)

ĥv = d(v, deg) · hv, (12)

ĥv(W ) = σ
(
ĥvW

)
, (13)

where hv represents the hidden representation of a vertex v,
and hu represents the hidden representation of a neighbor
vertex u. N (v) represents the set of its adjacent neighbors,
Agg() is an aggregate function, ⊕ represents the merge
operation, and W represents the weight matrix. For a vertex
v, Eq. 11 is used to aggregate information from its adjacent
neighbors N (v). By introducing a degree item d(v, deg), Eq.
12 acts as a noise reducer to alleviate the impact of noise
introduced by the PGC layer. Following this, Eq. 13 updates
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the hidden representation of a node v. Finally, the DGC layer
employs Eq. 14 to update all hidden representations.

DGC(W ) = {ĥv(W )}ĥv∈DGC , (14)

As a result, the DGC layer can capture and leverage
relevant information from the graph structure while mitigating
the adverse effects of noise, thereby enhancing the robustness
and performance of the proposed NIGNN. Our method not
only maintained the original network structure, but also
strengthened the learning with regard to the vertex-based
aggregation.

After building the DGC layer DGC(W ), we stack the
graph convolution layers {H1, H2, ...,H l} on the top of
DGC(W ). In Fig. 5, benign vertices and malicious vertices in
the network traffic graph constructed in this paper are denoted
by red and blue circles, respectively. This visualization serves
to illustrate the impact of the number of neighbors. The first
row shows vertices with a small number of neighbors, falling
below the threshold thr. Conversely, the second row shows
vertices with a large number of neighbors. Intuitively speak-
ing, with the advantage in quantity, vertices with more neigh-
bors tend to have clearer classification boundaries compared
to those with fewer neighbors, leading to better classification
results. The visual analysis presented in Fig. 5 sheds light on
the crucial role played by neighbor number in the accuracy
and robustness of the classification task.

Fig. 5 (a) and (d) focus on evaluating the effects of the raw
network traffic graph without any additional modifications or
enhancements, which can be served as a baseline. Fig. 5 (b)
and (e) provide an overview of the effect of PGC(·), which
enforces privacy preservation to the standard GNN. Fig. 5
(c) and (f) illustrate the DGC(·), which augments PGC(·)
by applying different impacts to vertex update process. A
direct comparison of the results presented in Fig. 5 (b) and
(e) with those in (c) and (f) allows for an assessment of the
effectiveness of DGC(·) in mitigating the adverse effects of
noise and improving classification accuracy. By incorporating
tailored vertex update strategies, DGC(·) enables enhanced
adaptation to the underlying network traffic patterns, ulti-
mately enhancing the model’s ability to accurately classify
benign and malicious vertices.

D. The Correctness and Applicability of the NIGNN
This section summarizes the key steps of our NIGNN.

Algorithm 1 presents the procedures of CCPM in the PGC
layer, which enforces privacy preservation to the standard
GNN. This procedure is independent of the number of training
epochs. ∆f depends on the dimensions of vertex features, but
do not depend on the number of training epochs. According
to Lemma 2, the PGC layer is ε-differentially privacy,
and thus the computation of the DGC layer and l hidden
layers {H1, H2..., H l} above PGC are differentially private
because there is no additional information from the traffic
data to be accessed.

VI. PERFORMANCE EVALUATION

In this section, we conduct a number of experiments using
real-world datasets to evaluate the privacy-utility performance

TABLE II: Main datasets used in our evaluation studies.

Datasets Tor-nonTor DIDarknet UNSW-NB
# |V| 440,044 66,615 141,530
# |E| 4,389,183 1,756,939 2,326,182

Avg. Deg. 8.99 25.67 17.13
Training size 265,546 40,199 85,324

Validation size 87,359 13,066 28,045
Test size 87,139 13,350 28,161

of NIGNN. We are interested in network intrusion detection
where traffics are connected via directed edges, forming a
graph. The task is to detect network intrusions.

A. Datasets and Evaluation Metrics

1) Datasets: In our experiment, we evaluated NIGNN on
three benchmark datasets. The DIDarknet [42], Tor-nonTor
[43], and UNSW-NB [44] datasets are widely used in NIDS.
The DIDarknet dataset [42] is an open-source repository that
includes malicious traffic from the darknet and corresponding
benign traffic from various sources such as Chat, Email,
Browsing, etc. It also reflects how network nodes act in space,
and how each node contacts with each other within a certain
time interval. Note that the latest trend of using protocols (like
VPN/Non-VPN) to encrypt and disguise Internet traffic makes
network traffic classification an open challenge. In light of
this, we also evaluated our method on the Tor-nonTor dataset
[43], in which each Tor traffic includes a set of time-based
features. The UNSW-NB dataset [44] mixes normal real-
world network traffic with synthesized cyber-attack activity
traffic, in which attacks have been categorized into nine types,
such as Backdoors, Dos, Worms, etc. Table II provides details
of these datasets.

2) Evaluation Metrics: In our experiments, we evaluate the
performance of the privacy-preserving NIGNN based on some
common performance evaluation metrics in machine learning,
including accuracy and ROC. The primary objective of this
paper is to achieve a high detection rate for network intrusion
detection. Specifically, we shuffled the examples and trained
on 60% of the data, validated on 20% of the data, and tested
on the rest 20% as listed in Table II.

B. Comparative Classification Performance

In this experiment, we compare NIGNN with other private-
preserving techniques. Fig. 6 and Table III illustrate the
accuracy of each algorithm under varying privacy budgets
ε. These baseline methods are introduced below:
• DPSGDGCN and DS-DPSGDGCN: Following the work

of [45] and [7], we re-implement a differentially pri-
vate stochastic gradient descent (DPSGD)-based GCN,
namely DPSGDGCN. This method introduces DP in the
back propagation learning procedure, which provides a
strong privacy guarantee. In addition, to verify the valid-
ity of the degree sensitivity-based privacy-enhancement
measure proposed in this paper, we constructed a degree
sensitive-based DPSGDGCN, namely DS-DPSGDGCN.

• LPGCN and DS-LPGCN:The LPGCN was originally
designed by [34], which introduces a multi-bit-based
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TABLE III: NIGCN versus private-preserving methods.

Methods Tor-nontor Dataset DIDraknet Dataset UNSW-NB Dataset
ε=0.01 ε=1 ε=10 ε=0.01 ε=1 ε=10 ε=0.01 ε=1 ε=10

DPSGDGCN 11.94 38.87 40.79 17.62 22.56 81.45 20.34 40.03 51.89
LPGNN 88.87 88.88 88.21 76.59 79.38 80.55 77.14 77.20 79.66
GaussGCN 87.30 87.65 95.86 78.05 77.72 86.55 72.83 79.63 94.52
LapGCN 87.17 89.84 96.41 79.02 80.35 90.40 79.58 77.69 96.85
NIGNN 96.43 97.63 97.57 89.76 94.99 95.13 97.58 98.03 98.05
DS-DPSGDGCN 11.93 78.97 87.54 17.62 52.92 75.67 26.05 52.34 53.01
DS-LPGNN 89.66 89.84 89.45 77.63 79.95 79.00 78.09 77.32 79.66
DS-GaussGCN 86.81 88.37 95.72 80.09 81.11 89.22 76.82 79.27 95.84
DS-LapGCN 87.57 89.82 96.58 79.24 83.09 93.37 76.66 84.90 98.05
DS-NIGNN 97.09 97.69 97.76 91.96 98.55 98.81 98.60 98.88 98.91
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Fig. 6: Experimental results of different private-preserving method comparisons under varying privacy budgets ε.
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Fig. 7: ROC curve of NIGNN versus private-preserving methods on three benchmark datasets.

privacy-preserving mechanism to protect the node data
privacy. Similar to DS-DPSGDGCN, we also built a
degree-sensitive LPGCN, namely DS-LPGCN.

• GaussGCN and DS-GaussGCN: The GaussGCN uses
the Gaussian-based DP mechanism in the input layer of
the standard GCN, and injects the Gaussian noise [46]
[37] [6] into the model inputs.

• LapGCN and DS-LapGCN: Similar to GaussGCN, the
LapGCN injects the Laplace noise [46] [37] [6] sampled
from the Laplacian distribution into the model inputs.

• NIGCN and DS-NIGCN: The two models use the CCP-
based DP mechanism proposed in this paper to perturb
the model inputs.

From the results, we can find that GaussGCN and LapGCN
outperform DPSGDGCN on all benchmark datasets. This is
because the DPSGDGCN can only be trained in a limited
number of epochs. As the number of iterations of the model
increases, the privacy budget ε noise and accumulate, reducing
utility. Moreover, the baseline models (such as GaussGCN
and LapGCN) incur significant errors on the three datasets
when the ε is small (e.g., ε = 0.01). The reason is that
too much noise is added, making it difficult for the baseline
models to converge to global optimization. The performance

of the baseline models improves as the privacy budget ε in-
creases. Importantly, we observe that NIGNN outperforms all
other private-preserving methods in all cases. This proves the
effectiveness of our approach. As shown in Fig. 6 and Table
III, the performance of NIGNN shows almost no variations
to the changes in ε on all benchmark dataset. This means that
NIGNN allows using smaller values of ε for better privacy
protection without sacrificing much of its accuracy. Fig. 7
provides the ROC results of all baselines on the three datasets.
In summary, NIGNN can achieve the privacy-utility trade-
off. Specifically, we also found that classification performance
is further improved when the degree-sensitive mechanism is
employed. This is because the degree sensitivity mechanism
can mitigate the effect of noise.

C. Robustness to Attribute Inference Attacks
In this experiment, we investigate the accuracy of at-

tribute inference attacks under both non-private and privacy-
preserving NIGNN frameworks. As illustrated in Table IV,
the Rand attack approach serves as the baseline method
for predicting users’ sensitive attributes. It randomly as-
signs predictions to sensitive attributes without leveraging
any information from the dataset. As expected, the Rand
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Fig. 8: Experimental results of different feature comparisons under varying privacy budgets ε.
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Fig. 9: Experimental results of different feature comparisons.

attack approach achieved close to 50% accuracy on all three
datasets, which is consistent with random guess expectations.
Following previous work [35], we re-implemented the MB
attack model to infer sensitive attributes. In the case of the
MB attack, we assume that the attacker possessed partial
knowledge of the training dataset. We then evaluated the per-
formance of the MB attack model under both non-private and
privacy-preserving settings. In the non-private setting, the MB
attack model achieved high accuracies of 85.73%, 98.91%,
and 97.36% on the three datasets, respectively. These results
show that MB attack models can effectively and accurately
infer sensitive attributes in the absence of privacy protection
mechanisms. However, under the privacy-preserving setting,
the accuracy of the MB-AT attack model is significantly
reduced. Additionally, following previous work [47], we re-
implemented the RI-MI and FP-MA methods, which were
originally developed to reconstruct missing attributes. The
results summarized in Table IV indicate that RI-MI performs
relatively poorly, achieving similar performance to the Rand
attack method. In contrast, FP-MA achieves better attack
accuracy in the non-privacy setting. However, the proposed
privacy-preserving NIGNN significantly reduces the attack
accuracy of both RI-MI and FP-MA. For instance, the attack
accuracy of FP-MA is reduced by 33.7%, 69.58%, and 79.7%
on the three datasets, respectively. These results demonstrate
the effectiveness of the privacy-preserving NIGCN in mitigat-
ing attribute inference attacks. In conclusion, the accuracy of
attribute inference attacks differs significantly between non-
private and privacy-preserving NIGNN frameworks. While
non-private NIGNN is vulnerable to attribute inference at-
tacks, the privacy-preserving NIGNN offers a more robust
defense against such attacks by leveraging techniques such
as differential privacy.

TABLE IV: Accuracy of attribute inference attack under non-
private and privacy-preserving NIGNN.

Methods Tor-nontor DIDraknet UNSW-NB

Rand non-private 50.42 50.24 49.77
privacy-preserving 50.42 50.24 49.77

MB non-private 85.73 92.56 97.36
privacy-preserving 55.49 64.71 88.46

RI-MI non-private 50.20 45.39 45.94
privacy-preserving 44.81 14.15 11.95

FA-MA non-private 67.16 84.81 87.55
privacy-preserving 33.46 15.23 7.85

TABLE V: Effect of different features.

Datasets OH DS-OH RD DS-RD Our work

Tor-nonTor
ε = 0.01 97.09

93.34 94.89 87.80 88.55 ε = 1 97.76
ε =10 97.76

DIDarknet
ε = 0.01 91.96

80.85 86.85 82.38 83.88 ε = 1 98.55
ε =10 98.81

UNSW-NB
ε = 0.01 98.60

76.26 79.66 77.16 79.66 ε = 1 98.88
ε =10 98.91

TABLE VI: Effect of different graph-less NIDS methods.

Methods Tor-nonTor DIDarknet UNSW-NB
LR 93.52 94.02 97.73

SVM 94.31 96.91 98.49
DNN 94.91 98.24 98.89
CNN 94.90 97.96 98.75
RNN 95.44 98.04 98.85

LSTM 95.12 98.52 98.63
NIGNN 97.66 98.83 98.92

D. The Influence of Different Features

To show the effectiveness of the traffic-based vertex fea-
tures used in this paper, we compared the classification per-
formance of our feature extraction with some other methods.
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TABLE VII: NIGNN versus graph-based models.

Models Tor-nontor Dataset DIDraknet Dataset UNSW-NB Dataset
ε=0.01 ε=1 ε=10 noDP ε=0.01 ε=1 ε=10 noDP ε=0.01 ε=1 ε=10 noDP

GCN 96.43 97.63 97.57 97.66 89.76 94.99 95.13 98.83 97.58 98.03 98.05 98.92
GAT 94.76 95.08 95.08 95.12 90.05 95.22 95.19 95.27 97.55 98.04 98.04 98.03
SAGE 96.65 98.13 98.16 98.13 91.72 98.84 98.84 98.82 98.57 98.91 98.90 98.89
SGCN 94.16 94.66 94.65 94.65 89.75 94.97 94.96 94.95 97.51 97.99 97.98 97.99
TAGCN 97.15 98.01 98.04 98.04 93.16 98.95 98.88 98.92 98.64 98.95 98.95 98.97
DS-GCN 97.09 97.69 97.76 97.66 91.96 98.55 98.81 98.83 98.60 98.88 98.91 98.92
DS-GAT 96.03 97.21 97.43 95.12 91.83 98.51 98.71 95.27 98.62 98.88 98.86 98.03
DS-SAGE 97.00 98.17 98.12 98.13 92.43 99.33 99.58 98.82 98.62 98.93 98.98 98.89
DS-SGCN 96.10 97.13 97.02 94.65 92.21 98.47 98.78 94.95 98.58 98.89 98.91 97.99
DS-TAGCN 97.51 98.13 98.16 98.04 92.86 99.26 99.52 98.92 98.58 98.97 98.96 98.97
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Fig. 10: Experimental results of different graph-based model comparisons under varying privacy budgets ε.
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Fig. 11: ROC curve of NIGNN versus graph-based models on three benchmark datasets.

Fig. 8 and Table V present the evaluation results, providing
valuable insights into the performance of different models.
These baseline methods are introduced below:
• OH and DS-OH: Following the work of [34] and [9],

the OH method uses the one-hot encoding of vertex
degrees. A standard model of GCN originally proposed
by [10] was then used for training. Specifically, we set
the feature dimension equal to the originally provided
traffic-based vertex features.

• RD and RD-OH: The RD [34] consists of a four-layer
GCN, which randomly initializes the input features with
a Gaussian distribution. The two learning models are
optimized with stochastic gradient descent (SGD).

Specifically, these methods can be regarded as ”fully pri-
vate” because they do not require any private vertex fea-
tures. In Fig. 9, we see that OHTGCN and RANGCN yield
inferior performance. The OHTGCN model gives similar
performances to the RANGCN model on the three datasets.
Our method performs considerably better than these two fully
private methods, i.e., OHTGCN and RANGCN. Experimental
results demonstrate the effectiveness of traffic-based vertex
features used in this paper. This means that vertex features
are helpful for network intrusion detection.

TABLE VIII: Effect of different components.

Datasets non-private NIGNN NIGNN Our work
NIGNN without PGC without DGC

Tor-nonTor
ε = 0.01 96.43 97.09

97.66 97.82 ε = 1 97.63 97.69
ε = 10 97.57 97.76

DIDarknet
ε = 0.01 89.76 91.96

98.83 98.89 ε = 1 94.99 98.55
ε = 10 95.13 98.81

UNSW-NB
ε = 0.01 97.58 98.60

98.92 98.94 ε = 1 98.03 98.88
ε = 10 98.05 98.91

E. Comparison with Graph-Less NIDS Methods

In this experiment, we compared the proposed graph-based
NIGNN with several state-of-the-art graph-less NIDS meth-
ods. Table VI shows the results. Notably, linear regression
(LR) and support vector machine (SVM) perform the worst
among the graph-less NIDS methods. This suggests that they
may not be able to capture the complex and nonlinear patterns
in network traffic data, limiting their ability to accurately
detect network intrusions. In contrast, neural network models
including deep neural networks (DNN), convolutional neu-
ral networks (CNN), recurrent neural networks (RNN), and
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Fig. 12: Effect of different components, wrt. privacy budget ε, with DP.
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Fig. 13: Ablation studies of NIGNN on three benchmark datasets.

long short-term memory (LSTM) networks can better fit the
data distribution, resulting in higher detection performance.
However, it is noteworthy that even though these neural
network models outperform LR and SVM in graph-less
NIDS methods, they are still not comparable to the proposed
graph-based NIGNN method. This result demonstrates the
superiority of the proposed NIGNN in detecting network
intrusions, and emphasizes the unique advantages of graph-
based approaches in modeling the complex graph structures
and relationships within network traffic data. By leveraging
the graph structure of network data, NIGNN can capture
complex interactions between network entities and effectively
detect network intrusions.

F. Comparison with Different Graph Neural Networks

In our experiment, we included some state-of-the-art GNN
models, i.e., GCN [10], GAT [25], SAGE [26], SGCN [48],
and TAGCN [49], which are commonly used for graph-related
tasks. To highlight the significance of the proposed NIGNN
framework, we re-implemented these baseline models in the
NIGNN framework. Fig. 10 and Table VII show the accu-
racy results of each model across varying privacy budgets.
From the results, we find that the baseline GCN performs
considerably better than GAT and SGCN but are almost worse
than the SAGE. The accuracy gain is increased by roughly
3.5% on the three datasets. It indicates that SAGE can capture
useful information. Specifically, TAGCN performs better than
the baseline model SAGE. This is because TAGCN utilizes a
set of fixed-size filters to perform graph convolution without
the need for convolution approximation, enabling efficient
extraction of local features. Therefore, we recommend adopt-
ing the TAGCN model in the NIGNN framework. When
ε is set to 1, the accuracy loss is less than 1% in the
worst case, demonstrating the effectiveness of our privacy-

preserving method. This is because the aggregate function
in the graph convolutional layer can eliminate most of the
noise in the vertex features. The results clearly show that the
proposed NIGNN not only preserves the power of the original
NIGNN on the detection task but also provides compelling
evidence on improving privacy and utility.

Directly injecting noise to the model input would incur
much noise due to the aggregation operation. To alleviate
this problem, this paper proposes a graph convolution layer
based on degree sensitivity privacy-enhancement mechanism,
which manipulates the outputs of this layer by giving vertices
with very few neighbors a relatively high influence on model
learning. To highlight the significance of the proposed degree
sensitivity-based privacy-enhancement mechanism, we intro-
duce the degree sensitivity privacy-enhancement mechanism
into these baseline models, i.e., DS-GCN, DS-GAT, DS-
SAGE, DS-SGCN, and DS-TAGCN. Fig. 11 depicts the ROC
results of the performance comparison. We can see that using
degree sensitivity mechanism can effectively improve model
accuracy. This verifies the validity of the proposed degree
sensitivity privacy-enhancement mechanism.

G. Ablation experiment

To demonstrate the contribution of each module in the
NIGNN framework, we conducted a set of experiments. To
have a fair comparison, the non-private NIGNN adopts a
standard three-layer GCN as a baseline model. Compared
to these baseline models, the performance of the proposed
private-preserving NIGNN is closest to that of the non-private
NIGNN on all three benchmark datasets. Fig. 12, Fig. 13 and
Table VIII show the results. We observe that the accuracy is
almost identical to that of non-private NIGNN, demonstrating
its strong generalization ability. Our model can achieve high
detection accuracy while effectively protecting user privacy.
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Futhermore, we test the effects of the PGC and DGC on
performance, respectively, i.e. NIGNN without PGC (with
DGC) and NIGNN without DGC (with PGC). We can see that
without the PGC layer, the baseline model (NIGNN without
PGC) is comparable to the non-private NIGNN and even
exceeds it on the Tor-nonTor and UNSW-NB datasets. This is
because this model only uses the DGC layer, which shows that
the DGC layer is useful and can effectively improve model
performance. Moreover, it can be observed that the baseline
model (NIGNN without DGC) has the worst performance on
all datasets. This is not surprising, as the PGC layer used in
this model introduces a lot of DP noise into the model input,
which results in degraded model performance.

VII. CONCLUSION

The existing deep learning-based methods do not consider
the topologic structure information of network traffic graph.
This paper proposes a graph construction method to transform
network traffic data into graph structures. Then, the network
intrusion detection can be converted to a specific type of node
classification task. Moreover, we built a differential privacy-
based graph representation learning model that is trained
within an appropriate privacy budget ε. In fact, our privacy-
preserving method can be easily generalized to other tasks.
Moreover, we design a degree-sensitive privacy-enhancement
measure to exert different effects on vertices, which can
reduce the noise introduced by the DP mechanism while
effectively learning an accurate model. We evaluated the per-
formance of NIGNN on three datasets for network intrusion
detection. Experimental results demonstrate that NIGNN can
achieve a high detection rate close to the non-privacy ones,
while providing a rigorous privacy guarantee. The superior
performance of NIGNN highlights that privacy-preserving
GNN is a worthwhile exploration.
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