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Abstract— The lack of privacy-preserving capabilities hinders
the further development of blockchains and smart contracts.
While numerous privacy solutions have been proposed,
limitations persist. Firstly, most existing solutions focus on specific
privacy protections such as anonymous payments, private data,
or multi-party computation tasks. However, these solutions lack
a general privacy ability, allowing users to deploy applications
with diverse privacy requirements. Secondly, existing solutions
have limited customizability, which means users cannot easily
customize and adapt the privacy policies according to their
specific demands or preferences. In this paper, we present
EtherCloak, which adopts trusted execution environments (TEEs)
to achieve a general and customizable privacy policy on account
model blockchains, enabling users to conceal any on-chain
information. To address the security issues caused by the
unreliability of the host the TEE runs on, we design the enclave
state check and crash recovery mechanisms and employ them in
the block generation process. In addition, we propose an access
control mechanism for privacy policy management and data
query. We prove that EtherCloak offers general and customizable
privacy protection with a minimal increase in transaction size
(less than triple) and communication overhead (approximately
10%) compared to Ethereum.

Index Terms—Blockchain, Smart Contract, TEE, Privacy
Protection, Consensus.

I. INTRODUCTION

With the rapid development of blockchain technology
in cryptocurrencies and decentralized applications (DApps),
privacy concerns have become increasingly prominent.
For cryptocurrency transactions, public blockchains provide
pseudonym-level privacy, which is proved to be insecure by
the deanonymisation attacks [1] on both Bitcoin and Ethereum.
As for DApps, researchers have proposed various solutions
for typical applications such as e-voting [2], [3]. However,
the lack of universal and system-level solutions hinders the
further deployment of smart contracts in sensitive applications,
including healthcare, supply chain, data sharing, certificate
authorities, or Internet of Things [4]–[7].

A. Blockchain Privacy Demands and Solutions
Blockchain privacy demands are roughly categorized into

identity privacy, contract privacy, and state privacy. Identity
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privacy involves concealing the identities of transaction
participants, enabling the implementation of anonymous
applications like anonymous payments, e-voting, and auctions.
Zerocash [8] introduces a fundamental architecture for
cryptocurrency transactions, leveraging Non-Interactive Zero-
Knowledge (NIZK) to construct anonymous coins and employ-
ing an oblivious Merkle tree to obscure coin transfers, breaking
the linkage between sender and recipient. Subsequently, ZEXE
[9] and Zapper [10] extend the concept of anonymous coins to
programmable anonymous records, facilitating functionalities
such as token issuance and decentralized exchanges.

Contract privacy, on the other hand, is more intricate and
varies based on the privacy requirements of DApps. Existing
solutions mainly address two demands: private contracts and
multi-party computation (MPC) contracts. Private contracts
involve sensitive data accessible only to authorized parties,
and most solutions [9]–[12] typically leverage NIZK proofs
to update encrypted data and provide public verification
on the blockchain. MPC contracts, on the other hand,
enable multiple participants to contribute private inputs to
obtain a public result, supporting applications like poker,
auctions, and voting. These tasks can be implemented using
cryptographic techniques such as multi-party computation
[13]–[15] or Homomorphic encryption [16], [17], or through
trusted execution environments (TEE) [18]–[21].

State privacy refers to protecting account states, including
user balances and data objects stored within contracts.
While there is some overlap between contract privacy and
state privacy, the former is specific to individual contract
accounts, whereas the latter can encompass a broader scope.
For example, [20] protects all account states and restricts
access solely to TEEs. State privacy also involves managing
data access, specifying which data objects are accessible to
particular users. Various access control mechanisms, such
as access lists [5], role-based access control [22], [23], and
attribute-based access control [24], have been introduced to
blockchain systems to address these requirements. Certain
DApps may entail multiple privacy demands; for instance, an
anonymous auction DApp may necessitate identity privacy for
anonymity, MPC contract privacy for sealed auction, and state
privacy to conceal user balances.

B. Limitations

Despite the advancements in blockchain privacy solu-
tions, certain limitations persist, notably in generality and
customizability. Firstly, no one supports a general privacy
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ability that enables DApps to meet different privacy demands.
The anonymous coin-based solutions, represented by [8]–
[10], support identity privacy and private contracts but have
challenges for MPC contracts and other privacy demands.
The MPC contracts solutions, including [15]–[21] do not
provide identity privacy and data access control. Solutions for
data access control ignore other privacy demands. Secondly,
existing solutions lack customizability. They do not allow
users to flexibly configure and change their privacy policies
according to demands or preferences. Third, existing solutions
have limitations on functionality, such as cross-contract
invocation or access to the on-chain state (see Section II-B).

Notably, generality and customizability cannot be realized
by combining existing solutions because they adopt different
system and security models. For instance, the identity
protection method used by Zapper [10] cannot work in ZeeStar
[16] because they are constructed on stateless and account-
model blockchains, respectively. Even if we can set multiple
security models in one system to support different privacy
policies, the system will become cumbersome and redundant.

C. Our Work

We introduce a novel architecture for blockchain privacy
protection that emphasizes generality and customizability,
named EtherCloak1. EtherCloak integrates TEE with the
account model and state transition process of Ethereum,
enabling multi-level privacy while allowing users and DApps
to tailor privacy policies.

In account-model blockchains like Ethereum, each user
or contract possesses an account with an account state that
includes the account’s balance and other data stored within
the contract. Users can send transactions to transfer assets or
invoke contracts, resulting in a state transition for the involved
accounts. The account model and its transition process inspire
a straightforward concept: maintaining different parts of
account states and executing related transactions in TEE
realizes various privacy policies. For instance, concealing
account states and encrypting account addresses in transactions
achieves identity privacy, while concealing data objects in
contract storage facilitates fine-grained contract privacy.

The novel combination of TEE and blockchain creates a
chance for privacy while raising new security issues due
to the unreliability of the host running the TEE, breaking
correctness, liveness, or availability. First, a corrupted host can
load invalid or outdated account states to the enclave, leading
to incorrect execution of transactions. Second, a corrupted
host can terminate a running enclave, losing confidential data
and breaking liveness and data availability. In addition, the
flexibility of privacy policy requires access control on policy
management and data query, preventing inappropriate data
access. Section IV-D gives a detailed explanation of the issues.
To conclude, the main contributions are as follows.

• We propose EtherCloak, a blockchain privacy architecture
with generality and customization. By combining TEE
with the state transition process of account-model

1The name EtherCloak reflects its ability to provide optional protection for
Ethereum-based blockchains, akin to an invisibility cloak for Ethereum

blockchains, EtherCloak supports a four-level privacy
policy and enables users to configure and adapt their
privacy policies based on their demands or preferences.

• Aiming at the correctness and liveness issues caused by
the unreliability of the host the TEE runs on, we propose
the enclave state check and crash recovery mechanisms.
Furthermore, we propose an access control mechanism
for policy management and data query. Finally, we take an
e-auction DApp as an example to show how EtherCloak
enables different privacy demands.

• We prove the security of EtherCloak in terms of
consensus security and privacy protection. In addition,
we evaluate the block and consensus cost of EtherCloak
and compare it with Ethereum to show its practicability.
Overall, EtherCloak brings 10% additional consensus cost
when half of the transactions are confidential.

The rest of this paper is organized as follows. Section II
introduces existing solutions for blockchain privacy protection.
Section III explains the fundamental building blocks of
Ethereum and Intel SGX that are the cornerstone of our
solution. Then we propose EtherCloak in Section IV and V.
Section VI shows use cases of EtherCloak, and the security
and performance analysis are given in Section VII and VIII.
Finally, Section IX concludes our work.

II. RELATED WORK

Regarding blockchain privacy protection, existing solutions
focus on identity privacy, contract privacy, and state
privacy. Section II-A introduces existing solutions to different
privacy requirements. Besides, functionality is also essential
to evaluate the practicality of a solution, explained in
Section II-B.

A. Privacy

1) Identity Privacy: Identity privacy refers to concealing
the involved parties of a transaction, e.g., the sender and
recipient of a payment or the caller of a contract invocation.
It is a significant requirement for anonymous tasks. Currently,
solutions supporting identity privacy are mainly based on
anonymous coins or off-chain invocation. The anonymous
coin architecture is proposed in Zerocoin [25] that utilizes
NIZK and aggregator to implement a decentralized coin-
mix protocol, concealing which coin is transferred and the
transfer direction. Subsequent solutions, including Zerocash
[8], ZEXE [9], and Zapper [10], are in line with the basic
principle of Zerocoin and make improvement from different
aspects such as security, functionality, and usability. Off-chain
invocation [19], [26] refers to privately sending transactions
to a few selected nodes instead of recording them on-chain.
These chosen nodes privately execute transactions and record
encrypted results or digests on-chain as evidence. The off-
chain invocation leads to a loss of auditability since the
invocation behaviors are not recorded on-chain.

2) Private Contract: Private contracts are mainly realized
based on NIZK, with a typical architecture in which owners
privately update the related data, recording the encrypted data
and NIZK proofs on-chain for public verification. Except
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TABLE I
PRIVACY PROTECTION CAPABILITIES OF EXISTING SOLUTIONS

Zexe,Zapper zkay ZeeStar DeCloak Ekiden, Pose L2Chain [5], [23] EtherCloakours

Identity Privacy Y N N N Y N / Y
Private Contract Y Y Y Y Y Y / Y
MPC Contract N N limited Y Y N / Y
State Privacy stateless N N N N Y / Y
Data Access private private private outp-delivery outp-delivery TEE only ACL or RBAC customizable
Privacy Range contract data object data object contract contract account state data item customizable
Cross-Contract N Y Y N N Y / Y
Onchain State stateless Y Y Y N Y / Y

ZEXE and Zapper, which realize identity privacy and private
contracts based on the stateless model of Bitcoin, some studies
also realize private contracts on account-model blockchains
such as Ethereum. Zether [27] leverages NIZK to construct
token contracts. Users can deposit ethers in the contract
to acquire an encrypted balance. Subsequently, when they
conduct payments by contract, they privately update their
balances and construct NIZK proofs to prove the correctness.
Unlike Zether’s token contracts, BlockMaze [12] designs a
dual-balance account model that embeds the NIZK-based
private balance to the account state, realizing anonymous
payments without dependence on contracts. In line with
Zether, Steffen et al. [11] presented the zkay language that
extends Zether’s balance proof to complex logic, enabling
contract developers to indicate private values and their owner
in the source code.

3) MPC Contract: Some DApps are modeled as multi-
party computation (MPC) tasks, where multiple parties upload
private inputs and finally generate a public verification
output. Verifiability and fairness are two main demands of
these MPC DApps. The former requires that all participants
can verify the correctness of the output, and the latter
requires that all inputs are involved and the output can
be delivered to all participants. Earlier solutions [13]–
[15] combine MPC technologies with Bitcoin, focusing on
fairness and incentive of the computation process. Several
solutions, including ZeeStar [16] and SmartFHE [17], leverage
functional encryption, such as Homomorphic encryption in
the smart contract. Considering the high cost and restricted
function of those cryptosystem-based solutions, various
solutions leverage the trusted execution environment (TEE) for
MPC tasks, including FastKitten [18], Cloak [28], DeCloak
[21], Ekiden [19], and Pose [29]. Among them, the former
three solutions enable participants to send transactions on-
chain, and the TEE acquires transactions and states from the
blockchain. In contrast, the latter two solutions adopt the off-
chain invocation model. Namely, participants interact with the
TEE nodes instead of sending transactions to the blockchain.

4) State Privacy: Some DApps focus on protecting account
states, including the balance of users, the data objects stored in
contracts, etc. L2Chain [20] encrypts account states and uses
TEEs to decrypt states and execute transactions accordingly.
Thus, account states are always protected. Besides, some data-
oriented DApps may require complex access control on the
stored data. Some studies propose data access control schemes
for blockchain, such as access list (ACL) [5] or role-based

access control (RBAC) [23].

B. Functionality

1) Data Access: Data access indicates who can acquire the
protected data or states. Existing solutions fail to combine
flexible data access with original properties. The private
contract allows only the owner to access the data, while
the MPC contract publishes the output. Solutions like [5],
[23] support complex access while losing other functions.
In addition, lightweight clients should query data from other
nodes, and the result should be verifiable, preventing dishonest
nodes from returning incorrect results.

2) Protection Range: This property indicates the possible
object to be protected. For instance, zkay and ZeeStar only
protect several data objects in the contract. Some solutions
protect entire contracts based on NIZK (Zexe, Zapper) or by
running the contract in TEEs (DeCloak, Ekiden, and Pose).
L2Chain protects all account states and conceals execution
processes. We require a customizable privacy range, enabling
users to decide which part of the account or contract is
protected according to their requirements or preferences.

3) Cross-Contract: Many DApps rely on contract libraries
(i.e., deployed contracts providing essential functions) or
consist of multiple contracts with a mutual invocation, leading
cross-contract invocation to be a fundamental requirement.
Among existing solutions, zkay and ZeeStar inherit the
Ethereum contract functions directly. L2chain also enables
cross-contract invocation; however, it requires complex
consensus to handle these invocations, leading to higher costs.
Other solutions do not support cross-contract invocation.

4) On-chain State: This property denotes the demand to
use on-chain account states in a contract, for instance, getting
the balance of an account specified in the calldata. On-
chain account states (not only the state of one contract) are
quite significant for DApps. Among existing solutions, okay,
ZeeStar, DeCloak, and L2Chain support on-chain state access.
However, in Ekiden and Pose, the contract can only access its
own state and receive off-chain input.

TABLE I concludes the privacy and functionality properties
of existing solutions and our proposed EtherCloak, and
detailed explanations are given here-in-before. In brief, for
identity privacy, only Zerocoin-based solutions (Zexe, Zapper)
and TEE-based off-chain solutions (Ekiden, Pose) support
identity privacy. As for contract privacy, most solutions
perform well. For confidential states, only L2Chain provides
protection on all account states (while others protect only
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specific contract states). As for functionality, most existing
solutions do not perform well. We expect a customizable data
access and privacy range, enabling users and DApp developers
to tailor their privacy policy as needed. In addition, we expect
the cross-contract invocation and on-chain state access, as
Ethereum supports.

III. PRIMITIVES

This section introduces two important primitive technolo-
gies of EtherCloak, including Ethereum and Intel SGX.

A. Ethereum

Ethereum [30] is the most representative and widely adopted
account-model blockchain. There are two kinds of entities in
the Ethereum network, including clients who send transactions
and validators who execute transactions and generate blocks.
In addition, there are external and contract accounts in
Ethereum. An external account has a pair of keys, and a
client who owns the private key can send transactions from the
account. Contract accounts have no private keys and cannot
send transactions. Instead, they are created by validators when
executing contract deployment transactions.

As Fig. 1 shows, the account state consists of four fields,
i.e., nonce, balance, storageRoot, and codeHash. The latter
two fields are empty for external accounts. The storageRoot
is a digest of data objects that are stored in the contract,
and codeHash is the bytecode of the contract code. The
digest is generated based on a Merkle Patricia Trie (MPT).
The account state of account a is denoted as σ[a] :=
⟨nonce, balance, storageRoot, codeHash⟩. All the activated
account states are organized into an MPT, called world state,
denoted as σrh := mpt(a→ σ[a]), where rh is the roothash of
the MPT. MPT is used to verify lightweight clients’ queries.

root Account StateWorld  

State  

Trie

Storage

Trie

codeHash

nonce balance storageRoot

storageRoot

... ... ...

account states

... ... ...

Fig. 1. World state and account state of Ethereum.

For instance, given a client who has rh and a validator who
has σrh. The client can send queries to the validator including
several accounts a=⟨a1, ..., ak⟩, and the validator will return
σa=⟨σ[a1], ..., σ[ak]⟩ along with a proof π. Then, the client
can run an MPT verify function that takes (a,σa, π, rh) as
input to check whether σa is the correct result acquired from
σrh. Similarly, when the client queries the storage data objects
in a contract, the validator generates a proof for the account
state based on σrh and then generates a proof for the data
object based on the storage tree.

External accounts can send transactions to transfer ethers
and deploy or invoke contracts. The transaction contains the
transferred value (v), nonce (n) increased by one denoting the
number of transactions sent by the sender, sender’s signature

(s), recipient (r), and invocation input (d). There are also
three gas-related fields; we denote them as g∗ for brevity.
Then, a transaction is denoted as T := ⟨n, s, r, v, d, g∗⟩. There
are three kinds of transactions, including ether transfer (with
empty d), contract invocation (whose r should be a contract
account), and contract deployment (with empty r).

For each time slot t (twelve seconds), a specific validator,
i.e., the block proposer, selects a group of transactions T =
⟨T1, ..., Tn⟩ and execute them sequentially, leading to the
transition of world states from σrht−1 to σrht , denoted as
σrht = Γ(σrht−1 ,T). In addition, all transactions in T should
first pass the initial tests of intrinsic validity, including the
transaction form, signature, nonce, etc. Then, the proposer
generates a new block Bt = ⟨preHash, rht,T⟩, called a beacon
block, and broadcasts it to other validators. Notably, each
validator maintains a local blockchain whose last block is
Bt−1. The validator first check whether Bt[preHash] equals
hash(Bt−1). Then, it checks the validity of T and re-executes
T based on σBt−1[rh], i.e., the validator’s current world state. If
the result equals σrht , the validator regards the block valid and
generates an attestation for it. When a beacon block acquires
enough attestations, it upgrades to a justified block. It will
upgrade to a finalized block when another justified block
links behind it. Afterward, it is permanently accepted by the
blockchain unless more than 2

3 staked ethers are possessed by
the adversary. Notably, in practice, the upgrade is executed for
every 32 blocks (the final one of which is called a checkpoint)
rather than per block.

B. Intel SGX

Intel’s Software Guard Extensions (SGX) [31] is a typical
instance of the trusted execution environment (TEE), which
has been widely used in various privacy protection scenarios
[32]. It leverages the trusted hardware to establish a secure
container, called the enclave, that provides confidential and
trusted execution. Usually, a user encrypts his/her private data
and sends the encrypted data and secret key to the host and
enclave, respectively. Then, the enclave loads the encrypted
data from its host, decrypts data, executes the opcode, encrypts
the result, and outputs it to the host along with a remote
attestation. Finally, the host returns the output to the user.
Intel SGX adopts remote attestation to validate whether an
enclave is valid. After remote attestation, users verify whether
a message is generated by a valid enclave through the enclave’s
signature.

IV. SYSTEM MODEL AND OVERVIEW

This section provides the system model and basic workflow
of the proposed protocol and analyzes the threat model and
our design goals.

A. System Model

Fig. 2 outlines the system model and workflow of the
proposed EtherCloak. There are three entities, i.e., clients,
validators, and T-validators. Clients are users that generate
and broadcast transactions, and validators are responsible
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for generating and validating blocks. T-validators refer to
blockchain nodes that are equipped with TEE. T-validators
facilitate the generation of beacon blocks but do not participate
in block consensus. Complying with Ethereum, time is evenly

clients

EtherCloak Blockchain

1) generating txs 2) executing txs and proposing a beacon block

validators

Policy

Transaction

Beacon Block

Consensus Crash Revocery

T-committee Config

3) reaching consensus on the beacon block

EVM
Tpublic

Tconfidential

eEVM

proposer

eStateCheck

T-validators

......

stateDB

Fig. 2. The system model of EtherCloak.

divided into slots, and multiple slots form an epoch. For each
epoch, a T-validator group is selected as the T-committee to
execute confidential transactions. The management of the T-
committee can be implemented through a smart contract. There
are three phases in EtherCloak to generate a block, basically
consistent with Ethereum. First, clients generate transactions
to transfer assets or deploy or invoke contracts. Second, the
proposer collects and executes transactions, updates account
states and generates a new block. This phase is assisted by T-
validators. Finally, the block is validated and attested by other
validators through consensus.

B. Threat model

Clients and validators adopt the same security assumptions
as Ethereum, i.e., clients may create invalid transactions
for their benefit, and validators may manipulate blocks to
record invalid transactions and states on the blockchain. When
malicious validators hold less than one-third of the stake, the
consensus mechanism of Ethereum can deter these malicious
behaviors. Therefore, we focus on T-validators. Each T-
validator consists of an enclave that runs on a host. The enclave
is assumed to have confidentiality and integrity, meaning the
data in the enclave is protected, and the execution of programs
is reliable. However, the attack difficulty of hosts is the same
as that of a validator, and a corrupted host can manipulate all
communications of its enclave or just power off.

In line with Ethereum, we assume an adversary A can
control less than one-third of staked ethers. A can also create
an arbitrary number of accounts; however, it cannot acquire
the private key of other accounts. Regarding T-validators, we
assume A can control the hosts of all T-validators in the worst
case. According to our proposed crash recovery mechanism
that can detect compromised T-validators and displace them,
we require that at least one honest T-validator join the system
within a limited number of attempts.

C. Requirements

The security requirements of EtherCloak include blockchain
security and privacy requirements. Below are the informal
descriptions of the security properties, and we formally define
them in Section VII.

Requirement 1: correctness, safety, and liveness. As a
stateful blockchain, EtherCloak should assure fundamental
security properties, including correctness, safety, and liveness.
Informally, correctness requires that for each block, the world
state is correctly updated based on the state version of its
precursor and a set of valid transactions. Safety requires that
the blockchain only accepts at most one block at each slot,
implying consistency and fork resistance. These two properties
ensure that the honest majority validators record the same valid
transactions and correct states. Besides, liveness requires that
it’s always possible to update the world state within a limited
time. In EtherCloak, since the world state is divided into public
and confidential parts, we extend the liveness requirement to
ensure it’s always possible to update the world state, both
public and confidential, within a limited time.

Requirement 2: privacy and availability. Each account,
whether external or contract, is assigned a privacy level that
specifies the privacy protection requirement of the account-
related information. Privacy requires that an adversary cannot
acquire the protected information when the access condition is
not satisfied. On the contrary, availability requires that when
a client has access authority to specific data, it can obtain the
correct results. According to the protected information, there
are four privacy levels in EtherCloak. Suppose an account a is
involved in transaction T and T is executed and packed into
block B. The privacy requirement for different privacy levels
is as follows, where A has the ability defined in Section IV-B.
In addition, A is not the sender of T nor the owner of a. Thus,
the four-level privacy is as follows.

• Public (level-0).A level-0 account requires no protection.
• Storage (level-1). If a is a contract account, it can be set

as storage privacy, where a part of data objects (do) on
the storage trie are protected, and A cannot learn their
values.

• State (level-2). When a has state privacy, A cannot learn
the account state of a, except for the nonce field.

• Identity (level-3). When a has identity privacy, A cannot
learn that a is involved in T and B.

Requirement 3: functionality. Enabling the four function-
ality requirements in Section II-B, including customizable data
access control and privacy range, cross-contract invocation,
and on-chain state access.

D. Design Overview and Challenges

Based on Ethereum, EtherCloak introduces two design
principles. First, each account is assigned a privacy level,
including public, storage, state, and identity. As Fig. 3 shows,
the world state is divided into a public part σrhp and a
confidential part σrhc . Accounts with different privacy levels
are protected in different ranges and maintained by different
world state parts. Section V-A provides a detailed explanation.
Second, the T-validator (TEE) is introduced to maintain
protected states and execute corresponding transactions.
Assume the proposer collects a group of transactions. It pre-
executes the transactions and organizes them as T = ⟨Tc,Tp⟩,
where transactions in Tc involve confidential accounts while
in Tp involve only public accounts. Then, the proposer sends
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Tc to the T-validator. The T-validator consists of a host H
and an enclave E . E runs an EVM called eEVM. Tc is

Proposer

𝑓𝑜𝑟 𝑇𝑖  𝑖𝑛 𝑻𝒄: 

     𝒂𝒊 ← accounts in 𝑇𝑖

     if 𝝈 𝒂𝒊 ∈ 𝝈𝒓𝒉𝒑: 
         ഥ𝝈. 𝑎𝑝𝑝𝑒𝑛𝑑 𝝈 𝒂𝒊  

Receive 𝑻𝒄

Get ഥ𝝈 from 𝝈𝒓𝒉𝒑

Output: 𝜎𝑐
′

Order transactions

𝑻 ≔ ⟨𝑻𝒄, 𝑻𝒑⟩

Update 𝝈𝒓𝒉𝒑 

Execute 𝑻𝒑

T-validator

Beacon block

Decrypt 𝑻𝒄 and ഥ𝝈
Prepare: 𝝈𝒓𝒉𝒄

1) Initial Test of 𝑻𝒄
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Fig. 3. Design principles: privacy levels and TEE-assisted execution.

received by H. Note that Tc may involve accounts whose
states are maintained on σrhp . Thus, H scans Tc to acquire
involved account states (denoted by σ) from σrhp and loads
(Tc,σ) into E . Next, E decrypts transactions and account
states, prepares σrhc , and executes valid transactions, updating
σ to σ′. E outputs the updated account states σ′ to H who
further sends them to the proposer. The proposer updates σrhp

according to σ′, executes Tp, and generates the beacon block.
With these two principles, clients and contract developers

can customize their privacy policies by choosing a specific
privacy level. For a level-1 contract, the protection can be
more fine-grained, i.e., protecting specific data objects, such
as do2 of a2 in Fig 3. In addition, since both the proposer
and enclave run an EVM to execute transactions, EtherCloak
inherits the cross-contract invocation and on-chain state access
functionalities of Ethereum. However, introducing TEE and
the adjustable privacy policy brings three issues:

• Block Verifiability. The adoption of TEE breaks block
verifiability, thus breaking correctness. Although we
assume the integrity of the enclave, namely, with correct
σ and Tc, the transition Γ will be correctly executed, and
the output σ′ is then correct. However, E has difficulty
in verifying σ due to lack of communication interface
and persistent storage. Thereby, H can easily break the
correctness of σ′

c by manipulating σc and Tc.
• Crash Recovery. The usability of TEE is vulnerable

since it may run on a dishonest host. Although we can
mitigate the problem by letting multiple T-validators run
simultaneously, there is still a chance that the hosts of all
running T-validators are corrupted, breaking liveness and
availability. Thus, a crash recovery mechanism is required
to detect the crash and recover the T-validator function.
The recovery includes finding an honest T-validator and
recovering the lost enclave data such as σrhc .

• Access Control. Policy management and data queries
need access control. On one hand, policy management
refers to assigning or changing the privacy level of

an account. An insecure policy management mechanism
can cause a leakage of protected data; for instance, the
adversary sets the privacy level of a protected account to
the public. On the other hand, data query refers to who
can acquire the account state of an account or the value of
a data object in a contract. Notably, a lightweight client
has to query data from validators or T-validators who may
be dishonest. Thus, the query results should be verifiable.

In Section V, we solve these issues by several steps. First,
we propose the key components of EtherCloak, especially
the confidential account, confidential transaction, and enclave
state check mechanism(V-A). On this basis, we introduce
the EtherCloak block generation process that supports TEE-
assisted transaction execution (V-B). Next, we show the
privacy policy management mechanism, including policy
assignment and access control (V-C). For clarity, the above
protocols are proposed based on the one T-validator setting.
Finally, we introduce the T-committee setting and the crash
recovery mechanism (V-D).

V. ETHERCLOAK PROTOCOL

A. Components

Several key components are used to construct EtherCloak.
First, we introduce the data structure of account states,
explaining how to realize the multi-level privacy policy
defined in Section IV-C. Second, we show the formation of
transactions involved in accounts with different privacy levels.
Finally, we propose the enclave state check mechanism to
solve the block verifiability issue.

1) Confidential Account: EtherCloak provides four privacy
levels of accounts, including public (level-0), storage (level-
1), state (level-2), and identity (level-3), as defined in
Section IV-C. Level-1/2/3 accounts are called confidential
accounts. TABLE II defines the account state and storage trie
of different privacy levels, and an illustration is given in Fig. 3.
We write σ[a] and γ[a] to denote the account state and storage
trie, respectively, that is, σ[a] = ⟨nonce, balance, storageRoot,
codeHash⟩ and γ[a] = mpt(doi, vi). In addition, we assume
each account a has a pair of encryption key (epka, eska) used
to encrypt account states and use Ea(·) to denote encrypting
by epka. Notably, (epka, eska) differs from the account key
pair used for sending transactions.

TABLE II
ACCOUNT STATE AND STORAGE TRIE

level account state storage trie

0 σrhp [a] := σ[a] validator: γ[a]
1 σrhp [a] := σ[a] validator: γ1[a]

2 σrhp [a] := σ2[a]) enclave: γ[a]
3 σrhc [a] := σ[a] enclave: γ[a]

γ1[a] = mpt(doi, vi or Ea(vi)

σ2[a] = ⟨nonce, Ea(balance∥storageRoot∥codeHash)⟩

The world state σrh is divided into a public part σrhp and
a confidential part σrhc . σrhp is maintained by validators,
recording the account state of level-0 to 2 accounts. While
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σrhc is maintained by the enclave and records level-3 account
states. Both σrhp and σrhc are in the form of MPT. When a
is level-0, its account state is in line with Ethereum and is on
σrhp . The storage trie is maintained by validators. When a is
level-1, its account state is still σ[a], while some data objects
on γ[a] are protected. When a data object do is protected, the
leaf node on γ[a] is encrypted, i.e., Ea(vi). For a level-2 a, the
account state is encrypted except for the nonce field. Besides,
γ[a] is confidentially maintained by the enclave. And when a
is level-3, both σ[a] and γ[a] are confidentially maintained by
the enclave, σ[a] is on σrhc .

The public part σrhp provides two public interfaces
including query and update. Besides, a verification function
verState is used to verify the output of query, as follows.

• (σa, π) ← σrhp . query(a). This function takes a set of
accounts as input, queries the related account states σa

on σrhp (i.e., the leaf nodes of the MPT), outputs σa

along with a proof π which is the MPT path proof.
• rh′ ← σrh.update(a,σa). This function takes a set of

account-state pairs and update the world state σrh. For an
existing account, the leaf value on the MPT is updated;
and for a non-existing account, a new leaf is inserted.

• 0/1← verState(a,σa, rhp, π). This function takes a set
of accounts a, a set of account states σa, a world state
digest rhp and a proof π as inputs, and outputs 1 only
when σa are the account states of a on world state σrhp .

The confidential part σrhc also provides query interfaces,
however, are assisted by the access control mechanism. In
addition, the query result of σrhp may be encrypted, and one
should execute the access control process to acquire the real
data. The related algorithm will be given in Section V-C.

2) Confidential Transaction: A transaction is simplified
to ⟨n, s, r, d, v, f⟩ that separately denote nonce, signature,
recipient, data, value, and flag. When a level-3 account is
included, f helps the enclave to identify the account. The
formats of transactions are affected by the privacy level of the
sender and recipient. Suppose epks, epkr, and epke denotes
the encryption key of the sender, recipient, and enclave.

The sender’s privacy level decides whether to encrypt n
and s fields in the transaction. When the sender is level-0 or
2, n and s are not encrypted; and when it is level-3, both
are encrypted by epks (denoted by Es(n∥s)). The recipient’s
policy affects r and d. When it is level-3, both r and d are
encrypted by epkr (Er(r∥d)); and when level-2, d is encrypted
(Er(d)). Besides, when recipient has level-1 privacy and the
calling function requires a protected input, a part of calldata is
encrypted. For instance, in the auction function in Section VI,
the calldata may be bid(Er(b)). v is encrypted by epkr only
when both sender and recipient are not level-0 or 1. Finally,
when sender or recipient is level-3, f includes the account
address encrypted by epke. When the enclave executing the
transaction, it decrypts f to acquire the account address and
then get the corresponding esk to decrypt the transaction. As
an example, when both sender and recipient are level-3, the
transaction is ⟨Es(n∥s), Er(r∥d∥v), f=Ee(sender∥r)⟩.

In line with Ethereum [33], the validity of transactions
is pre-checked before being included in blocks by the
VerTransaction function. VerTransaction takes a transaction

T as input and outputs 1 only when 1) T is well-constructed,
2) the nonce of T equals the nonce of sender plus 1, and 3) the
balance of sender is more than value pluses the basic execution
fee. Differently, when sender is a confidential account, the
VerTransaction function should be executed in the enclave.

3) Enclave State Check: The enclave state check function,
denoted by eStateCheck, is executed by H and E of the T-
validator when executing transactions, enabling E to check the
world state version of σ loaded by H. It outputs a world state
digest, denoted by rh. When E involves rh in its execution
output, other validators can check the world state version on
which E executes the confidential transactions to determine the
validity of a new block. Following we show the construction
of eStateCheck, the detailed process is shown in Algorithm 1.

Algorithm 1: The construction of eStateCheck

/* Offline Load, run by H */

1 foreach T in Tc do
2 if T.s.level <= 2 then a. append(T.s) ;
3 if T.r.level <= 2 then
4 a. append(T.r);
5 if T.r is a contract and T.r.level <=1 then
6 execute T.d, append involved accounts to a;
7 end
8 end
9 end

10 (σ, π)← σrhp . query(a);
11 load (a,σ, rhp, π) to E ;
/* Offline Check, run by E */

12 require verState(a,σ, rhp, π) outputs 1;
13 load (Tc,σ∥σrhc) to eEVM, start execution;
/* Online Load and Check */

14 During transaction execution:
15 if encounter an account a not exist in a then
16 E request σ[a] from H;
17 upon receiving (a, σ[a], rhp, π) from H, E runs:
18 require verCheck(a,σ, rhp, π) outputs 1;
19 a. append(a); σ. append(σ[a]);
20 end
21 output rh := rhc∥rhp;

To execute Tc, E should acquire all account states that
involved by Tc. We write a to denote all involved accounts
and σ to denote their account states. Notably, Tc may involve
accounts with any privacy level, and thus, σ may involve
account states on both σrhp and σrhc . Since σrhp cannot
be entirely maintained in E due to memory limitation, the
involved account states should be loaded to E by H as needed.
In addition, for a well-run T-validator, we assume E maintains
the entire σrhc . However, since E has no persistent storage,
it is necessary to backup σrhc in a secure way and reload it
when E restarts. We will discuss this situation in Section V-D.

Upon receiving Tc, H scans it to acquire an account
set a (line 1-11). Specifically, the sender and recipient of
each transaction, if not level-3 privacy, are included; if the
recipient is a level-0 or level-1 contract account, H pre-
executes the invocation to add other related accounts to a.
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The pre-execution may be early terminated when encounter
confidential accounts. It is adopted to load as much as
possible account states during the offline load process. Then,
H acquires σ and π by executing σrh. query(a), and loads
m1 := (a,σ, rh, π) to E (line 12-13). Notably, for a contract
account, except for the account state, the storage trie should
also be loaded to E . To reduce communication overhead,
during pre-execution, H can acquire the involved data objects
and only load them to E . The integrity can be proved by MPT
path proof. For simplicity, we omit this process in Algorithm 1
and assume σ contains the required data objects.

When E receives m1, it runs verState(a,σ, rh, π) and
requires output 1. Next, E starts to execute Tc based on σ
(line 14-15). The above process is called offline load and
check, since it is run before transaction execution. However,
since a contract can involve other accounts, during transaction
execution, the eEVM may encounter some accounts which are
not involved in a. In this situation, E runs the online load and
check process to acquire the needed account states, and the
state check method is in line with the offline process (line
16-22). Notably, rhp should be always consistent during the
whole execution process of Tc. Finally, eStateCheck outputs
rh that is the state version based on which E executes Tc.

B. Block Generation

Assume the current slot is t and the proposer is P , it requires
four phases to generate and validate a new block Bt, as Fig. 4
shows. For clarity, the protocol is described in the one-T-
validator setting, and the T-validator consists of a host H and
an enclave E . We will extend the protocol to the T-committee
setting in Section V-D.

Proposer: Phase 3Proposer: Phase 1

order transactions verEO(𝐵𝑡−1, 𝑒𝑜) genBeacon(𝐵𝑡−1, 𝑒𝑜)

T-validator: 

Phase 2

Enclave

eStateCheck

𝑇, 𝜎 𝜎′
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• outp ≔ ⟨𝑇inv, ഥ𝝈′, rh𝑐

′ ⟩
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World 
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Fig. 4. Block generation.

Phase 1: Proposer Ordering. P selects a set of transactions
and orders them as T = ⟨T1, ..., Tn⟩. Notably, transactions in
T should pass the initial test including the transaction form,
nonce, and signature (for level-0 and level-2 senders). Then, P
pre-executes the transactions to split T to Tc∥Tp. Tp consists
of transactions which involved only level-0 accounts, and Tc

consists of the others. Finally, P sends Tc to H.
Phase 2: T-validator Execution. According to the enclave

state check mechanism (eStateCheck), upon receiving Tc,

H first runs the offline load process to load (Tc,a,σ, π, rh)
into E . We denote the non-eEVM part of E as the enclave
environment (eENV). Subsequently, eENV runs the offline
check and then invokes eEVM to execute transactions in Tc

sequentially. eEVM first runs verTransaction. The invalid
transactions are recorded in Tinv and are not executed. During
execution, when new account states are needed, eENV runs the
online load process to get them from H. Then, the execution
process is denoted by σ′∥σrh′c

c ← Γ(σ∥σrhc
c ,Tc−Tinv). The

enclave output, denoted by eo, is

eo := ⟨outp = (Tinv,σ
′, rh′c),

checksum = (DT , rh,hash(outp), sig)⟩.

outp is the execution result including the invalid transactions
Tinv, the updated account state σ′ and rh′c. DT and rh are
used to check the version of Tc and world state of the enclave
execution, where DT = hash(Tc−Tinv) is the digest of valid
confidential transactions. sig is a signature used for remote
attestation. Finally, E outputs eo to H and H sends eo to P .

Phase 3: Beacon Block. When receiving eo, P first runs the
verEO(Bt−1.rh, eo) function, where Bt−1 is the head block
of P’s local blockchain. verEO checks the validity of eo from
three aspects: sig is generated by a valid E (remote attestation);
DT = hash(Tc −Tinv); and rh = Bt−1.rh. If verEO outputs
1, P runs genBeacon(σrhp ,T, eo) to generate a beacon block
Bt. genBeacon first sets T=T−Tinv, updates σrhp according
to a and σ′. Then, it executes Tp, leading to the public world
state trie updated to σrh′p . Finally, P generates a beacon block
Bt = ⟨preHash, rh′,T, eo.checksum⟩.

Phase 4: Block Validation. The beacon block is broadcast
to other validators for validation. Each validator V runs
the verBlock(Bt−1, Bt) function and generates an attestation
on Bt only when the output is 1, where Bt−1 is the
head block of V’s local blockchain. verBlock checks three
items: Bt.preHash = hashBlock(Bt−1); verEO(Bt−1.rh, eo)
outputs 1; genBeacon(σrhp ,T, eo) outputs Bt. When Bt

acquires enough attestations, it becomes a justified block, and
can further become a finalized block if another justified block
is added behind it. This consensus process remains unchanged
compared with Ethereum. Considering readability, we omit
some details including gas, receipt, event and log, etc. We
discuss these components in Section V-E2.

C. Policy Management and Data Query

1) Privacy Policy: Each EtherCloak account a is assigned
a policy policy[a] := ⟨level, (req, acp)i⟩. Among them, level
is the privacy level, i.e., 0 to 3. When level = 1, a set of
data objects that are to be protected should be included. req
denotes a possible request and acp is the access control policy
of req. A policy may consist of multiple (req, acp) pairs. An
acp consists of an identity policy idp and a condition policy
cp, where idp contains a set of account addresses, and cp is a
piece of code that can be executed by the enclave and outputs
0/1. There are two kinds of req, including the privacy level
change request policyReq and data query request queryReq.

• policyReq. policyReq contains a policy change request
and its corresponding acp indicates when the request
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TABLE III
TYPES OF policyReq

reqType input function

newPolicy policy[a] replace policy[a] with a new one
newLevel level replace level with a new one
newLevel1 (do, 0/1) publish/protect do, for level-1 contracts
appACP (req, acp) add a new (req, acp) to policy[a]

delACP req delete (req, acp) of a given req

can be executed. A client can send a policy transaction
Tpolicy with data=(policyReq∥input) and recipient=a to
update policy[a]. TABLE III lists the five possible types
of policyReq. In policy, req can contain only reqType, im-
plying all possible input. Or it can contain both reqType
and input. For instance, (newLevel1, acp) indicates that
when acp is satisfied, it is allowed to publish or protect
any data object. And (newLevel1∥(do, 0), acp) indicates
that only do can be published when satisfying acp.

• queryReq. queryReq has two types, including state and
storage, referring to getting the account state or data
objects. A (state, acp) policy specifies the access policy
of getting the account state, and a (storage, do, acp)
policy specifies the access policy of getting the value of
do. In addition, when do is default, i.e., (storage, acp),
when acp is satisfied, all data objects are accessible.

All external accounts adopt the same acp, i.e., acp=(a, ϕ)
for external account a. Namely, only the owner can change the
privacy level and acquire the account state without a condition
restriction (cp=ϕ). As a result, policyReq for an external
account has only one formation, i.e., (newLevel, level). For
a contract account, its policy is specified in the contract code.

2) Account Creation: Each external account is created as
level-0. Once the account has enough balance, it can send
a Tpolicy to change its privacy level. A contract account is
created by the proposer or enclave when executing the contract
deployment transaction. If the initial policy contains level-0
privacy, it is regarded as a public transaction and executed
by the proposer; otherwise, it is regarded confidential and
executed by the T-validator. In the latter case, when level=3,
the account state is added to σrhc . And when level=1 or 2,
the account state is added to σ′ in eo and then added to σrhp .

3) Policy Transaction: Tpolicy will be included in Tc and
executed by the T-validator. When executing a Tpolicy, E
runs checkPolicy(Tpolicy) to check whether the change is
allowed. When r is an external account, checkPolicy outputs
1 only when the sender of Tpolicy is the same as the recipient
and policyReq=(newLevel, level). And when r is a contract,
checkPolicy acquires the corresponding (acp) and outputs 1
only when the sender is in idp and cp is reached. When
checkPolicy outputs 1, E updates σ[r] according to the new
privacy level. When changePolicy=3, σ[r] is added to σrhc ;
otherwise, the updated σ[r] is included in σ′ of eo.

4) Key Distribution: When the enclave executes a Tpolicy

or executes a contract deployment transaction whose level is
not 0, it generates an encryption key pair (epk, esk) for the

account. If the account is external, the enclave sends esk to
the sender from a secure channel. And when the account is a
level-1 contract with policy queryReq=storage and cp = ϕ,
or is a level-2 contract with a policy queryReq=state and
cp = ϕ, the enclave sends esk to the clients included in idp.
This implies that clients in idp can acquire σ[a] anytime. If
there’s no such policy, esk is kept by the enclave.

5) Data Query: A lightweight client should query data
from validators who maintain the world state. There are two
query types, including account states and data objects in
contracts; the latter is generally implemented through the view
function. There are two methods for a client to acquire the
protected data, which are adopted by different privacy policies
and query types. First, if the encrypted data is maintained
on σrhp , clients who have the corresponding esk can decrypt
the data at any time. Second, for data on σrhc , clients should
send query requests to a T-validator. The enclave then checks
the corresponding acp and returns the data through a secure
channel if satisfied.

• queryType=state. When a is level-0/1, any client can
acquire σ[a] through the σrhp . query(a) interface and
verify the result by the verState() function. When a is
level-2, the result of σrhp . query(a) is σ2[a]. Only a client
with eska can decrypt it. And when a is level-3, a client
should send a query request to a T-validator. Then, the
enclave checks acp of queryType=state in policy[a]. If
the client is in idp and cp is satisfied, the enclave sends
σ[a] to the client through a secure channel.

• queryType=storage. The query of data objects is
implemented through view functions. When the contract
is level-0 or when it is level-1 while the target do is not
protected, any node with σrhp can return the result. And
when do is a protected data object of a level-1 contract,
validators only return Ea(v[do]). If the client acquires
eska during key distribution, it can decrypt the result.
Otherwise, the view function should be executed by the
enclave. It checks acp of do and returns the value to the
client through a secure channel only when acp is satisfied.

D. T-committee and Crash Recovery
To enhance robustness, EtherCloak requires that multiple T-

validators work simultaneously, denoted by the T-committee
mechanism. As a result, as long as one T-validator in the
T-committee has an honest host, an honest proposer can
acquire a valid eo and generate a valid block. To this end,
EtherCloak maintains a global T-validator candidate list and
randomly selects a T-validator group to form the T-committee.
Enclaves in a newly formed T-committee negotiate an enclave
encryption key pair (epke, eske) and publish epke, which will
be used to generate the flag f in transactions. In addition, the
selection process assigns T-validators a fixed sequence. When
multiple T-validators generate different execution results, for
instance, assign different encryption key pairs to the same
account, only the first T-validator’s result is accepted. The T-
committee is updated periodically, and we omit the selection
process since it has become a regular function.

Crash Detection. However, as we discussed in Section IV-B,
there is a chance that all T-validators in the T-committee are
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corrupted. In such a case, the proposer and validators cannot
acquire a valid eo. Thus, Tc will be discarded, and the new
block only contains Tp. In that case, liveness is breached
since σrhc will not be updated. In addition, availability is
also breached to some extent since some data can only
be acquired through T-validators. To solve the problem, we
adopt the crash recovery mechanism to guarantee liveness and
availability. When Tc is continuously discarded for multiple
blocks (denoted by τc), it is regarded that a T-committee crash
arises. In that case, a new T-committee will be selected.

Data Recovery. In a normal T-committee update process,
enclaves pass the encryption private keys (esk) of confidential
accounts and σrhc so that new enclaves can access protected
data. However, when a crash occurs, the above process cannot
work. To address the issue, T-validators who are not in the T-
committee are employed to backup data, and these T-validators
are called backup T-validators. When an enclave updates esk
list when executing Tpolicy, it synchronizes the updated list
to storage T-validators. As for σrhc , storage T-validators can
update it by executing Tc in new blocks. Once a crash occurs,
T-validators in the new T-committee can acquire backup data
from storage T-validators.

E. Extensions

1) Data Offloading: When invoking a level-2 or level-3
contract, the calldata (i.e., the data field in the transaction)
can be directly submitted to the T-validator. And the data field
of the transaction can contain only the digest of the calldata.
As a result, the transaction size and communication cost can
be significantly reduced. When executing the transaction, the
enclave need to check whether the calldata is consistent with
the digest recorded in the transaction.

2) Omitted Details: The construction of EtherCloak omits
several details including gas, receipt, event and log. Since
both public and confidential transactions are executed in
EVM/eEVM, EtherCloak inherits the processing logic of
these components. For instance, EVM/eEVM computes gas
during transaction execution and deduct the gas fee from the
sender’s account, generates a receipt after each transaction, and
generates a log when an event is triggered. Only two principles
should be noted to implement these components in EtherCloak.
First, the gas consumption of confidential transactions should
be higher than public transactions, generating a positive
incentive for T-validators. We require a future work to
determine the exact value of gas. Second, the confidential
information in receipt and log should be protected, preventing
from privacy leakage through these components.

3) Pegging to Ethereum: To support confidential account,
EtherCloak inevitably modifies the data structure and
transaction execution process compared to Ethereum. Thus,
EtherCloak intrinsically runs as an independent blockchain
and is not compatible with legacy blockchains such as
Ethereum, leading to a reduction of practicality. To eliminate
the incompatibility issue, we can leverage the peg-based
sidechain architecture to peg EtherCloak to Ethereum, making
EtherCloak works as a layer-2 protocol of Ethereum.

VI. USE CASES

A client who owns an external account can set the privacy
level to be 0, 2, 3, meaning no privacy protection, protecting
balance, and protecting all behaviors, respectively. As for
a contract account, its privacy level is specified by its
developer in the contract code. A level-1 contract can be
used to implement applications that have both public and
confidential parts, enabling customized data access control.
Level-2 contracts protect all data and functions. Level-3
accounts are silent on the blockchain: no one else can learn
anything about a level-3 account, except that a client can
know when it has invoked it. The sender and recipient in a
transaction can have different privacy levels. We use a typical
e-auction application to show how to implement different
privacy demands by combining different privacy levels.

contract Auction {

address public INITIATOR;  

uint public ENDTIME;  

address private winner;  

uint private winnerBid;

function bid(uint b) public {

require(block.timestamp<ENDTIME);

if(winnerBid<b)

winner,winnerBid = msg.sender,b;}

function announce() view public returns

(address,uint){

require(block.timestamp>ENDTIME);

return(winner, winnerBid);}

function receiveAsset() payable public{

payable(address(this)).transfer(msg.value);}

}
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Fig. 5. Essential codes of confidential auction.

Take a simple e-auction whose essential codes are given
in Fig. 5 as an example. The auction is implemented as
an Auction contract, and bidders bid by invoking the bid()
function to input a value. After the auction ends, participants
can invoke the announce() function to learn the winner, i.e.,
the bidder with the highest bid. Finally, the winner transfers
related assets to the contract through receiveAsset() function.
If the auction is public, e.g., a judicial foreclosure, the contract
can be implemented with level-0. If the auction should be
partially protected, e.g., the auction information is public while
the bid is confidential, it can be with level-1 with protected
winner and winnerBid. Bidders invoke bid() function by
encrypting only the bid (bid(Er(b))). Or it can be directly
implemented through a level-2 contract, and bidders should
encrypt the entire invocation calldata (Er(bid(b))). When the
initiator wants the full auction process to be protected, the
contract can be implemented through a level-3 account, and
both r and bid(b) should be encrypted in the invocation
transaction (Er(r∥bid(b)). Moreover, one contract can be
repeatedly used for different auctions with different privacy
requirements by changing the privacy level through policy
transactions.

From the perspective of bidders, a level-0 bidder is public.
Although the bidder can provide an encrypted value during
the bid process, the asset transfer will reveal the bid if the
bidder is the winner. This makes it risky to allow level-0
users to participate in confidential auctions; that is, if the
user is the final winner, it will lead to the disclosure of
the final price. For a level-2 bidder, others will learn his/her

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3418617

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 30,2024 at 14:54:27 UTC from IEEE Xplore.  Restrictions apply. 



11

participation in the auction. But the amount of transferred asset
is protected. A level-3 bidder is completely invisible. Even the
auction contract is public, others cannot learn that the bidder
participants in the auction. To conclude, the confidentiality of
a DApp activity is determined by the privacy level of both the
user (i.e., the sender of the transaction) and the DApp contract.

The announce function (i.e., the winner and winnerBid)
should be combined with an access control policy according to
the privacy requirements of the auction, and there are several
ways to realize it.

• Case 1: sealed auction with published winner. The
auction contract is set to level=1, ⟨winner,winnerBid⟩,
indicating protection of the two data objects. It also
contains a policyReq= (newLevel1∥(winner, 0)) with
acp = (idp:anyone, cp:time>τ), denoting that winner
can be published by anyone when the auction ends (i.e.,
time>τ ). A client can send Tpolicy contains policyReq to
publish winner after the auction ends. Later, anyone can
invoke the announce() function to learn the winner.

• Case 2: sealed auction with protected winner. Then, the
auction contract is set to level=1, ⟨winner,winnerBid⟩.
We add a requirement in the announce function, namely,
require(msg.sender=winner). Thus, a bidder can invoke
account to know whether he/she is the winner. In
addition, bidders should invoke bid() from level-3
accounts. Otherwise, the announce and receiveAsset
functions will reveal the winner.

• Case 3: Anonymous auction. When a bidder invokes
bid from a level-3 account, he/she becomes anonymous,
whatever the privacy policy of the auction contract.

VII. SECURITY ANALYSIS

A. Consensus Security

Consensus security includes safety and liveness. Note that
EtherCloak directly adopts the Ethereum Casper consensus
protocol, except for block generation and validation processes.

Definition 1. (Reliable Block Verification) A block verification
algorithm VerBlock takes a blockchain head Bt−1 and a
new block Bt as input and outputs 0/1. A reliable VerBlock
outputs 1 only when 1) Bt is well constructed, 2) Bt is an
immediate successor of Bt−1, 3) verTransaction(T) outputs
1, and 4) σBt.rh ← Γ(σBt−1.rh, Bt[T]).

A reliable VerBlock ensures that an honest validator
only provides attestations to a block with valid transactions
and correct states. Thus, when VerBlock is reliable, local
correctness is guaranteed.

Lemma 1. Assume a second pre-image resistant hash
function, the eStateCheck algorithm is reliable, namely, it
outputs rh iff. E executes Tc start from σrh.

Proof. During the offline load process, H invokes the query
interface of σrhp to acquire the offline result. Since σrhp is
organized as a Merkle Patricia Trie (MPT) and the query
interface is a classic key-value query of MPT. Since the hash
function adopted by MPT is second pre-image resistant, only
when all account states in σ belong to σrhc , verState will

output 1. Thus, the offline check is reliable. As for the online
load process, E requires the account state of a only when a
is not involved in the offline result. Thus, the online loading
result can be regarded to be acquired during offline loading
process. As a result, even with online loading, it can be
regarded that E executes Tc start from σrh.

Lemma 2. EtherCloak provides a reliable block verification.

Proof. Assume an honest validator V has a blockchain head
Bt−1. Suppose that A corrupts the current proposer (P), the
host of the T-validator (H), and a client (C). A constructs
a block Bt=⟨preHash, rh′,T, eo⟩, where T=Tc∥Tp and
eo=⟨DT , rh,a∥σ′∥rh′c, sig⟩, as defined in Section V-B, and
submits it to V . It is insignificant for A to break the former
two check items (i.e., the block construction and preHash)
since they can be easily checked. Thus, we focus on A trying
break the third item, denoted by the ErrorTransition game.
If A makes verBlock(Bt−1, Bt) outputs 1 when σBt.rh ̸=
Γ(σBt−1.rh, Bt.T), we claim that A breaks the reliability of
EtherCloak block verification.

Since Tc is executed by E and Tp is by P , we divide the
state transition process into two sub-transitions, i.e.,

σ1 ← ΓE(σ0,Tc), σ2 ← ΓP(σ
′
1,Tp).

Thus, A can succeed only when one of the following cases
occurs.

• Case 1: σ0 ̸= σBt−1.rh, or Tc ̸= Bt.Tc;
• Case 2: An invalid T is contained in Tc;
• Case 3: σ1 ̸= ΓE(σ0,Tc);
• Case 4: σ′

1 ̸= σ1, or Tp ̸= Bt.Tp;
• Case 5: An invalid T is contained in Tp;
• Case 6: σ2 ̸= ΓP(σ

′
1,Tp);

• Case 7: σBt.rh ̸= σ2;
Next, we show all the above cases cannot occur, thus A

cannot break the reliability of block verification. For case 1,
the verEO function checks eo.rh? =Bt−1.rh to determine σ0

and hash(Bt.Tc)? =eo.DT to determine Tc. Thus, case 1
occurs only when the hash function used by MPT (according
to Lemma 1) or hash(Tc) is not secure. For case 2 and
case 3, since verTransaction(Tc) and ΓE are both executed
in the enclave, they occurs only when the integrity of
enclave is broken or the remote attestation fails. For case
4, the genBeacon function updates σ0 to σ′

1 according to
eo.(a∥σ′∥rh′c). Thus, σ′

1 ̸= σ1 only when the integrity of
enclave is broken or the remote attestation fails. Besides,
since V executes verTransaction(Tp) and ΓP by itself,
Tp ̸= Bt.Tp will not occur, case 4 and case 5 will not occur.
Finally, case 7 will not occur since V can acquire the digest
of σ2 after executing ΓP and compare it with Bt.rh.

Theorem 1. (Safety) EtherCloak inherits the safety of the
Ethereum Casper consensus, namely, for each slot t, only one
block Bt can be finalized.

Proof. According to Casper [34], as long as more than two-
thirds validators obey the two Casper commandments, safety
is guaranteed. The Casper commandments are 1) a validator
must not publish two distinct votes for the same target height
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and 2) a validator must not vote within the span of its other
votes. Notably, although EtherCloak adopts different block
generation and verification processes, it brings no effects on
the Casper commandments, and thus directly inheriting the
safety of Casper.

Theorem 2. (Correctness) If Bt−1 and Bt are both finalized,
then verBlock(Bt−1, Bt) outputs 1.

Proof. When verBlock(Bt−1, Bt) outputs 0, honest validators
will not vote Bt. Thus, Bt has no chance to be finalized.

Theorem 3. (Liveness) There exists a limited τ s.t. Bt.rh
p ̸=

Bt+τ .rh
p and Bt.rh

c ̸= Bt+τ .rh
c.

Proof. First, EtherCloak inherits the liveness of Ethereum
Casper consensus since the two Casper commandments are not
obeyed (Theorem 1). Thus, each slot t will have a finalized
block Bt = ⟨preHash, rh′,T, eo⟩. The problem is that if T is
always empty, although there are always blocks to be finalized,
the world state remains unchanged. According to the block
generation phase, when A corrupts all T-validators in the T-
committee, A can lead to no valid eo being generated. In that
case, Tc will be discarded by the new blocks. Thus, only σrhp

will be updated. Or rather, only the state of level-0 accounts
will be updated. Thus, liveness is breached.

However, the crash recovery mechanism solves the above
problem and guarantees liveness. When no valid eo is
generated for τc slots straight, the crash recovery mechanism
will select a new T-committee. As we assume that at least one
honest T-validator can join the T-committee within a limited
number of attempts, denoted by k, then we have τ = k·τc.

B. Privacy and Data Availability

Theorem 4. (Identity Privacy) Assume an IND-CCA secure
E(·) and a one-way hash function H(·), A cannot win IDPA
with a non-negligible advantage.

Algorithm 2: IDPA

1 Let a0 and a1 be two level-3 accounts;
2 Generate cr = Eab

(ab∥db), cf = Ee(ab);
// Ea(·): defined in Section V-A2

3 Generate T := ⟨∗, cr, cf ⟩, b
$← {0, 1};

4 Send (T, a0, a1) to A;
5 Obtain b′ from A, accept iff b′ = b;

Proof. A can extract b directly from T , or execute T with the
assistance of enclave and extract b from rhc.

• Case 1: extract from T , namely, given cr=Eab
(ab∥d) and

cf=Ee(ab), A guesses b. According to the IND-CCA
security of E(·), A cannot distinguish a0 and a1 through
cf . As for cr, let m0=a0∥d0, m1=a1∥d1. Then A has
cr, (pk0,m0), (pk1,m1) to guess whether cr=Epk0(m0)
or cr=Epk1(m1), which is also infeasible under the IND-
CCA secure assumption.

• Case 2: extract from rhc, namely, A can execute T by the
enclave and extract b from the outputted rhc. Note that rhc

is the roothash of a MPT and (a0, σ[a0]), (a1, σ[a1]) are
two key-value pairs stored on the MPT. If ab is contained
in T , after the execution, rh′c = σrhc .update(ab, σ[ab]

′).
Since σrhc consists of numerous (a, σ[a]) pairs where
σ[a] is unknown toA, it is impossible forA to distinguish
a0 and a1 from (rhc, rh

′
c) due to the one-way property of

hash function.

Theorem 5. (Data Privacy) Assume an IND-CCA secure E(·),
a second pre-image resistant hash function H(·), and an EUF-
CMA secure signature scheme S(·). When a has a (state, acp)
policy, A cannot learn σ[a] when acp is not satisfied. When
a has a (storage, do, acp) policy, A cannot learn v[do] when
acp is not satisfied.

Proof. The access control policy acp consists of an identity
policy idp and a condition policy cp, where idp is verified from
signatures and cp is a piece of code run by the enclave. When
A does not possess an account which is in idp, according
to the security of the signature scheme, A can neither acquire
eska during key distribution nor passes the policy check during
data query. Furthermore, without eska, A cannot acquire σ[a]
from Ea(σ[a]) or acquire v[do] from Ea(v[do]). Therefore, A
cannot acquire protected data when it has no account included
in idp. In addition, assume A satisfies idp while cp is not
satisfied, A still cannot acquire protected data. This is because
when cp is not empty, A can only query data from an enclave,
and the check of cp is reliably executed by the enclave. Thus,
A cannot acquire the protected data when acp is unsatisfied.

Theorem 6. (Data Availability) Assume a second pre-image
resistant hash function H(·) and an EUF-CMA secure
signature scheme S(·). When acp is satisfied, a client C can
acquire the correct data from validators or T-validators.

Proof. C has two possible ways to acquire data, including
getting public data (which might be encrypted) from validators
or requesting protected data from T-validators. The target data
can be σ[a] or v[do] when a is a contract. When querying σ[a]
and a is level-0 or level-1, C can always get σ[a] through the
σrhp . query() interface and verify the result by verState(),
according to the security of hash function. When a is level-2
with policy (state, C ∈ idp, cp=ϕ), C can acquire eska during
key distribution if cp = ϕ. When cp ̸= ϕ or a is level-3, C
can get σ[a] from a T-validator when cp outputs 1 and verify
the results through remote attestation of TEE. Similarly, C can
verifiably acquire v[do] when a is level-0, or is level-1 where
do is not protected. And when a is level-1 with protected do,
C can acquire Ea(v[do]) for a level-1 a and decrypt it when
owning eska; otherwise, C can request v[do] from a T-validator
and verify the results through remote attestation.

VIII. PERFORMANCE ANALYSIS

We focus on evaluating the additional overhead caused
by EtherCloak’s additions compared to Ethereum, mainly
including the transaction, enclave output eo, and T-validator
execution. In Section VIII-A, we evaluate the data size of
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transactions and blocks with different privacy levels. Since
the contract invocation can be arbitrarily complex, to make the
evaluation concrete, we take the e-auction application given in
Fig. 5 as an example. In Section VIII-B, we evaluate the cost
of generating a beacon block, mainly including T-validator
execution and enclave output.

Processes related to clients and validators are implemented
in Golang, and T-validator-related processes are implemented
in C++ and Intel SGX. We use the Microsoft Enclave
EVM as the eEVM. Addresses and signatures are based on
the secp256k1 curve, just the same as Ethereum, and the
encryption is implemented by RSA-1024 with PKCS #1 v2.0.
Cryptographies are implemented with Openssl and Sgxssl. All
the measurements are taken on a machine with an Intel i5-8500
CPU at 3.0 GHz with 16 GB of RAM (representing a client,
validator, or T-validator).

A. Transactions and Blocks

Most fields in a transaction have a fixed size, i.e., n, v, and
gas-related fields (three fields) are scalar values (supposed as
8 bytes), r is a 20-byte address, s is the signature consisting
of [R][S] with 65-byte length. Therefore, the above fields are
a total of 125 bytes. However, data is an unlimited-size byte
array that contains the invocation command or contract code.
This makes it complex to analyze the total size of a transaction.
We, therefore, take the auction contract given in Section VI
as an example, and the essential codes are shown in Fig. 5.
For a public contract, the calldata size of invoking the bid()
function is 36 bytes.
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Fig. 6. Size of transactions.

Fig. 6 shows the transaction size with different sender and
recipient levels, and data is represented by invoking bid()
function. The 0-0 transaction equals the original Ethereum
transaction and is 161 bytes consisting of v, n, s, r, d, and gas-
related fields. The transaction size is mainly affected by two
factors, i.e., the number of confidential participants and the
data. When both participants are confidential, the transaction
contains two ciphertexts, while if only one participant is
confidential, there’s only one ciphertext. For instance, the
difference of 253 bytes for 00-02 and 365 bytes for 02-02
is caused by the additional ciphertext. The impact of data is
not obvious in the result because the calldata of the auction

contract is relatively short (146 bytes for bid(E(b)) and 128
bytes for E(bid(b))). However, when a contract requires a
large size of input, it will be useful to adopt the data offloading
mechanism, fixing the transaction size to 157 bytes, because
the data field becomes a 32-byte hash value.

To conclude, without calldata offloading, the transaction size
of EtherCloak is less than triple that of Ethereum, which is a
relatively small cost compared with those ZKP-based schemes
such as Zexe, with a transaction size around 1000 bytes
[9]. And when adopting the calldata offloading mechanism,
the transaction size of EtherCloak becomes smaller than
Ethereum. Apart from the transaction format, our scheme
introduces no additional overhead in the block, except for
the eo.checksum, consisting of three hash values and one
signature. This is a trivial cost compared to a block. Therefore,
the change in block size is consistent with transactions.

B. Transaction Execution and Block Generation

It takes three phases to generate a beacon block, i.e.,
proposer ordering, T-validator execution, and beacon block
generation. To evaluate the performance of the block
generation process, according to the average transaction per
block value of Ethereum [35], which is 160, we generate
200 transactions for each slot/block with half public and half
confidential, all of them are invoking bid(b). And assume that
both public and confidential sets have 20 invalid transactions,
the final transaction number in the block is 160.

1) Proposer Ordering: During the proposer ordering
phase, the proposer orders received transactions and sends a
confidential transaction list (Tc) to each T-validator in the
T-committee. The transaction ID is a byte array of length
32, which is the hash of the transaction. Given that the
number of confidential transactions is kc and kt validators
form a T-committee, the communication cost of the proposer
is (kckt+1) ·32 bytes where the additional 32 bytes is for the
DT (i.e., DT = hash(Tc)). When there are 100 confidential
transactions, the size of Tc is about 3KB.
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Fig. 7. The runtime of eStateCheck.

2) T-validator Execution: The T-validator execution phase
consists of offline state load, decryption of state and
transactions, eEVM execution with online state load, and eo
output. During offline state load, H queries required account
states through σrhp . query(), loading the results and proofs
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to E , and E verifies the results by verState(). The runtime
is affected by the total number of accounts on σrhp (denoted
by N ) and the size of a (denoted by n). Roughly, as Fig. 7
shows, the offline state load phase requires only tens of
milliseconds even when N reaches one million. After the
offline load, E decrypts account states and transactions and
executes transactions in EVM. Fig. 8 shows the runtime of
eEVM execution. When there are 200 transactions in Tc,
it takes around 1.5s to execute all transactions. Notably, the
transaction execution time is affected by the complexity of the
invoked contract. In our experiment, all transactions are used
to invoke bid() in the auction contract.
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Fig. 8. The runtime of eEVM execution.

According to the above results, the entire T-validator process
can be finished within 2s when there are 200 transactions in
Tc. This is far less than the average block generation time,
i.e., around 10s, meaning that the additional execution cost
caused little impact on the consensus process. This result is
inevitable because the main consensus bottleneck is generated
by the transmission of data over the network. The processing
cost on a single machine becomes negligible after using SGX
to replace expensive cryptographic algorithms such as zero-
knowledge proofs. Therefore, we should pay more attention to
whether the new data structures, especially the enclave output
eo, will have too much impact on the consensus.

3) Communication Overhead: EtherCloak introduces two
impacts on communication overhead compared to Ethereum,
including the confidential transactions and enclave output eo.
As discussed in Section VIII-A, the size of an EtherCloak
transaction is less than triple that of an Ethereum transaction.
This section evaluates the communication overhead caused by
eo. The enclave output eo consists of outp and checksum.
outp contains the invalid transaction list Tinv, the updated
account state σ′ and rh′c. Among them, the size of Tinv is ki ·32
bytes where ki in the number of invalid transactions, rh′c is a
32-byte hash value. checksum consists of three 32-byte hash
values and one 65-byte signature. The most significant part
is σ′, including multiple account states and data objects. The
account privacy level and invoked function affect the size of
σ′. TABLE IV shows the output content of different accounts.
For an external account a, when a is level-0, σ[a] is included;
when level-2, Ea(σ[a]) is included. For a contract account,
when a is level-0, σ[a] and the used data objects (winner and

winnerBid, simplified to w and wb) are included; when a is
level-1, w and wb are encrypted; when a is level-2, Ea(σ[a])
is included. Notably, level-3 accounts are not included in σ′.

TABLE IV
INCLUDED CONTENTS OF σ′ OF DIFFERENT ACCOUNT LEVELS

type external contract
level 0 2 0 1 2

format σ[a] Ea(σ[a]) σ[a]∥(w∥wb) σ[a]∥Ea(w∥wb) Ea(σ[a])

size (B) 128 128 180 256 128

The total size of eo represents the additional communication
overhead of EtherCloak compared to Ethereum. To evaluate
the total size of eo, we create four auction contracts with
level-0 to 3 and three external accounts with level-0, 2,
and 3, respectively. We let Tc include 40, 80, 120, and
160 confidential transactions with different combinations of
sender-recipient level and evaluate the size of eo. As Fig. 9
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Fig. 9. Size of the enclave output eo.

shows, the maximum size of eo can reach 50KB when all
160 transactions have level-2 sender and level-1 recipient.
And when only level-3 accounts are included, the size of
eo is as small as 0.1KB. When Tc consists of all 11
types of confidential transactions with the same proportion,
the size of eo is around 5KB, 10KB, 15KB, and 20KB
when there are 40, 80, 120, 160 confidential transactions.
To conclude, given that the Ethereum average block size
is around 100 KB [35] with about 160 transactions per
block, the additional communication overhead of EtherCloak
compared to Ethereum is around 5%, 10%, 15%, 20% when
the confidential transaction portion is 25%, 50%, 75%, and
100%. It should be noted that the above results are acquired
when all transactions are used to invoke the bid(b) function. If
the calldata becomes more complex or the size of involved data
objects increases, the communication cost may also increase.
However, the data offloading (Section V-E1) mechanism can
be adopted to reduce the cost, and the final cost may be smaller
than that of Ethereum when the calldata is large.

IX. CONCLUSION AND FUTURE WORK

Aiming at the limitations of existing privacy solutions for
blockchain, including lack of generality and customizability,
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we proposed EtherCloak, which enables users to conceal
any on-chain information according to their demands or
willingness. We first proposed the four-level confidential
account mechanism. Then, we designed the TEE-assisted
block generation protocol, adopting the enclave state check
and crash recovery mechanisms to defend against corrupted
enclave hosts. We also proposed an access control mechanism
to ensure the security of policy management and data query.
We discussed practical use cases in a typical confidential
auction scenario to show the capability of privacy protection
and flexibility. We proved the security of EtherCloak in
terms of consensus security, privacy, and data availability.
Our performance analysis shows that the transaction size
of EtherCloak is less than triple that of Ethereum, and the
communication cost is about 10% when half of the transactions
are confidential, supporting the practicability.

Limitations and Future Work. Several mechanisms are
expected to be supplemented to make the proposed EtherCloak
blockchain more practical. Gas should be well-designed to be
fair for both T-validators and validators, as well as public and
protected users. Besides, the compiler and Ethereum virtual
machine (EVM) are expected to be upgraded to make it more
convenient for users to write and deploy confidential contracts
(especially the level-1 contract). For example, users can simply
mark the protected variables or functions and their access
policies in Solidity contracts.
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