
5950 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

MDHE: A Malware Detection System Based on
Trust Hybrid User-Edge Evaluation

in IoT Network
Xiaoheng Deng , Senior Member, IEEE, Haowen Tang, Xinjun Pei , Student Member, IEEE,

Deng Li , Member, IEEE, and Kaiping Xue , Senior Member, IEEE

Abstract— With the coming of the Internet of Things (IoT)
era, malware attacks targeting IoT networks have posed serious
threats to users. Recently, the emerging of edge computing
have paved the way for new data processing paradigms in
IoT networks, but it is still a challenge for deploying malware
detection systems on the IoT devices. This paper develops an
IoT malware detection system based on trust hybrid user-edge
evaluation, namely MDHE. This system decomposes a large and
complex deep learning model into two parts, which are deployed
on edge servers and end devices, respectively. Specifically, a trust
evaluation mechanism is used to select the trusted devices to
participate the model training. Moreover, we develop a private
feature generation that leverages a graph mining technology to
extract the subgraph features, which then are perturbed by lever-
aging the differential privacy technology to prevent user privacy
from leaking. Finally, we reconstruct the perturbed features on
edge server, and propose a Capsule Network (CapsNet) to identify
malware. Experimental results show that MDHE can effectively
detect malware. Specifically, it can reduce sensitive inference
while maintaining the utility of data.

Index Terms— Edge computing, malware detection, trust eval-
uation, capsule network.

I. INTRODUCTION

WITH the continuous development of IoT, a vast amount
of smart IoT devices benefited from the Android

platforms [1]. While IoT devices provide users with con-
venient services, cybercriminals leverage the vulnerabilities
of IoT devices to launch malware attacks in IoT networks.

Manuscript received 20 January 2023; revised 11 July 2023; accepted
24 August 2023. Date of publication 25 September 2023; date of current
version 13 November 2023. This work was supported in part by the National
Natural Science Foundation of China under Project 62172441 and Project
61772553, in part by the National Natural Science Foundation of Hunan
Province under Grant 2023JJ30696, in part by the Local Science and
Technology Developing Foundation Guided by Central Government through
the Free Exploration Project 2021Szvup166, in part by the Key Project
of Shenzhen City Special Fund for Fundamental Research under Grant
JCYJ20220818103200002, and in part by the Opening Project of State Key
Laboratory of Nickel and Cobalt Resources Comprehensive Utilization under
Grant GZSYS-KY-2022-018 and Grant GZSYS-KY-2022-024. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. George Loukas. (Corresponding author: Xinjun Pei.)

Xiaoheng Deng, Haowen Tang, Xinjun Pei, and Deng Li are with the School
of Electronic Information, Central South University, Changsha 410083, China,
and also with the Shenzhen Research Institute, Central South University,
Shenzhen 518000, China (e-mail: dxh@csu.edu.cn; 928571437@qq.com;
pei_xinjun@163.com; d.li@csu.edu.cn).

Kaiping Xue is with the Department of Electronic Engineering and Informa-
tion Science, University of Science and Technology of China, Hefei 230027,
China (e-mail: kpxue@ustc.edu.cn).

Digital Object Identifier 10.1109/TIFS.2023.3318947

Many third-party IoT applications are designed for specific
IoT networks, such as healthcare, monitoring, and autonomous
driving systems. Third-party vendors deploy these applications
on IoT devices with minimal security verification. When
the malware intrudes into IoT networks, personal computers,
corporate hosts, enterprise or national servers, the private
information stored by individuals and the company’s trade
secrets will be completely leaked, which brings huge economic
losses [2], [3]. This motivates us to develop more effective
techniques for malware detection.

Machine learning is an analysis and decision-making tech-
nology with strong self-learning and adaptive capabilities,
which has been widely used in malware detection, showing
superior detection performance. However, directly deploying
malware detection systems to IoT devices may be difficult in
practice. Becuase some IoT devices have limited computing
power. Therefore, it is very important to evaluate the com-
puting capability of a IoT device before it participates in
model training [4], [5]. Moreover, a promising solution is to
implement the parallel computation of neural network through
the segmentation of neural network, which can reduce IoT
device computing overhead. Specifically, some IoT devices
may violate mutually-agreed norms, leading to disruptions
in the training and deployment of malware detection algo-
rithms. There is a need for trust management to evaluate the
trustworthiness of devices through trust and reputation scores.
In this case, the trust management mechanism evaluates the
reliability of the input of the IoT device and timely detects
device anomalies. In this paper, we propose a trust-evaluation-
based hybrid user-edge architecture to ensure the reliability of
participating training IoT devices and use a neural network
segmentation method to reduce the computing overhead of
IoT devices.

Some existing malware detection systems have been
explored in the context of user devices [6]. However,
it is difficult to train models on those resource-constrained
and battery-powered devices. Traditional centralized malware
detection systems use the cloud for model training and testing,
which makes the training and retraining of the detection model
very challenging. Moreover, the back and forth communication
also brings other problems, such as the high communication
overhead and the data transmission delay, especially when
dealing with geographically distributed IoT devices that pro-
duce a large amount of data [2], [7], [8]. Therefore, there is

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2740-8025
https://orcid.org/0000-0003-4772-7525
https://orcid.org/0000-0003-2206-6302
https://orcid.org/0000-0003-2095-7523

DENG et al.: MDHE: A MDHE BASED ON TRUST HYBRID USER-EDGE EVALUATION IN IoT NETWORK 5951

TABLE I
COMPARISON BETWEEN MALWARE DETECTION METHODS

a great need for decentralized detection solutions. In addition,
there are some security issues related to the learning model,
such as unauthorized access, lack of control or availability,
privacy risks, etc. Therefore, we propose extending the mal-
ware detection system to edge computing paradigm, where
computing resources are pushed to edge servers that are closed
to user terminal devices. Edge computing meets the need for
low latency [9] compared to cloud computing. Finally, security
providers can protect users from malware infections.

Although machine learning is practical and essential for
malware detection, traditional shallow machine learning mod-
els (e.g. Linear Discriminant Analysis (LDA)) have limited
learning capabilities in the modeling complex malware behav-
ior patterns, resulting in low detection accuracy. Centralized
collection of Android Package (APK) for high-performance
model training may greatly increase the communication over-
head. How to utilize the large number of iot applications to
build more effective and accurate detection models remains
a challenge. More importantly, the private information of an
app (e.g. Application Programming Interface (API) calls [10]
and permission configurations [11]) could be revealed during
the data upload process, which could be a potential threat.
The adversary can use the exposed private information to infer
users’ interests to target advertising. Also, based on such sen-
sitive information, the adversary can even generate adversarial
samples to avoid detection. Therefore, it is important to protect
user privacy from threats.

In this paper, we develop a trust hybrid user-edge evaluation
based IoT malware detection system (MDHE), which can
effectively model the malicious behaviors. In this system,
user device and edge server collaboratively train a complex
neural network, without divulging specific private information.
Specifically, a Trust Evaluation (TE) mechanism is proposed
to select trusted devices to participate in our model training.
Each user device uses a feature generation module to extract
useful information from a larger number of applications as
the intermediate features. Then, a private attention module
is performed to perturb the extracted features by leverag-
ing the differential privacy technology, which can prevent
adversaries from inferring sensitive information. After that,
MDHE uploads the perturbed features to the edge server for
training and fine-tuning a deep learning model with pow-
erful detection capabilities. Our major contributions are as
follows.

• We propose a trust-evaluation-based hybrid user-edge
architecture to reduce the communication overhead and
delay, where user devices and edge servers collaboratively
build a malware detection model.

• We integrate a feature generation module and a private
attention module into MDHE to effectively model the
malicious behaviors, while protecting users from malware
infections.

• Extensive experiments on real-world sample data demon-
strate MDHE’s effectiveness for IoT malware detection.
The results indicate that MDHE can improve the detection
performance and provide sufficient privacy and robustness
guarantee.

The rest of this paper is organized as follows. Firstly,
we briefly describe the related work in Section II, and present a
thorough overview of our MDHE in Section IV. Then, we eval-
uate the proposed MDHE model in Section V. Moreover,
we apply MDHE to engineering applications in Section VI.
Finally, this paper summarizes in Section VII.

II. RELATED WORK

A. Deep Learning-Based Malware Detection

To mitigate malware threats in the IoT networks, many
efforts have been devoted to develop DL-based malware
detection systems. Table I lists some representative mal-
ware detection methods. These systems can analyze longer
sequences of system calls and achieve more accurate clas-
sification by extracting higher levels of information. For
example, Sun et al. [12] introduced a malware detection frame-
work called PROPEDEUTICA, which incorporates a novel
deep learning architecture (DEEPMALWARE). This architec-
ture utilizes multistream inputs to combine the strengths of
machine learning (ML) and deep learning (DL) for efficient
and effective real-time malware detection. Chai et. al. [13]
formulated unknown malware detection as a Few-Shot Learn-
ing problem. They presented DPNSA, a malware detection
framework specifically designed for few-shot malware detec-
tion. DPNSA incorporates a dual-sample dynamic activation
function to reduce the impact of irrelevant features. To tackle
the issue of model aging, Xu et al. [14] proposed a novel slow-
aging solution named SDAC, which clusters all APIs based on
their semantic distances. Zhu et al. [15] proposed SHLMD,
a hybrid deep network representation learning method that
captures the relevant features in different levels of granularity

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

5952 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

information. Similarly, Jeon et al. [16] proposed HyMalD,
a hybrid malware detection scheme that combines bidirectional
Long short-term memory (Bi-LSTM) and spatial Pyramid Pool
Network (SPP-Net) for IoT malware detection. However, exist-
ing DP-based malware detectors have difficulties in runtime
detection due to the performance overhead [1], [9]. While
some existing malware detection systems have been explored
in the context of user devices [6], state-of-the-art DL models,
which consist of a large number of parameters and deep
layers, often suffer from slow computations on the resource-
constrained and battery-powered devices. Due to the high
computational requirements of DL models, deploying these
DL-based malware detection systems on such devices becomes
impractical. In this paper, we propose a trust-evaluation-based
hybrid user-edge architecture that decomposes a large and
complex deep learning model into two parts, i.e., the edge-
server part and the end-device part. This design alleviates the
need for computing resources on user devices.

B. IoT Malware Detection

In IoT networks, IoT devices generate large amounts of
data, which are typically processed locally due to limited
transmission capacity. Distributed computing architecture has
the advantages of system scalability, short response time,
data security and privacy. Teerapittayanon et al. [4] used a
distributed deep learning model to implement cloud-edge-end
collaborative inference through the segmentation of neural
network. Similarly, Kang et al. [5] investigated neural network
segmentation to address the requirements of low latency and
energy consumption. These studies achieve parallel computa-
tion by segmenting the neural network. However, this leads to
the transmission of a large number of intermediate features,
greatly increasing the communication overhead. In this paper,
we divide the neural network into two parts and deploy them to
the edge server and the IoT device, respectively. This approach
reduces communication overhead by reducing the amount of
data to be transmitted.

Moreover, cloud-based malware detection methods have
emerged as a promising solution to enhance the security of
IoT devices. To address the increasing malware threats in cloud
environments, Tian et al. [17] proposed a dynamic analysis-
based malware detection method that utilizes a lightweight
agent to collect runtime utilization and memory object infor-
mation from the target virtual machine (VM), and employs
a multi-CNN model for efficient malware detection. This
method can effectively detect malware without any modifica-
tion to the guest VM or hypervisor. Mishra et al. [18] proposed
an introspection based security approach to mitigate malware
attacks in the cloud. They analyzed the run-time behavior of
processes, and extracted the n-gram features. Vahedi et al.
[19] proposed a cloud-based malware detection framework,
which monitors the behavioral characteristics of files within
a sandbox environment, and classifies them into malware
families based on behavioral patterns. While these methods
utilize cloud infrastructure’s computational power and storage
capabilities for malware analysis and detection, they might
not satisfy the real-time needs of IoT users in terms of timely
detection and response. In this paper, we propose extending

the malware detection system to the edge computing paradigm,
which is closed to user terminal devices, aiming to alleviate
the computational burden on IoT devices.

C. Trust Evaluation

Trust evaluation is widely used in peer-to-peer computing
and distributed cloud computing, such as medical networks
and automobile networks. In social media health networks,
Tang et al. [20] proposed a personalized healthcare solution
that provides trusted and privacy-preserving services. This
increases the level of trust between caregivers and patients
by authentic ratings. Moreover, in [21], Tang et al. proposed a
privacy-preserving fog-assisted scheme PFHDS to share health
data. Then, they designed an enhanced attribute-based encryp-
tion method to effectively deliver health care. Blaze et al. [22]
established a trust management system. This paper focuses
on how to improve the security and efficiency of interaction
between user devices and edge server, and how to filter trusted
devices.

D. Privacy Protection

Although edge computing has some advantages in data
analysis, considering the unreliability of edge server, it faces
the risk of privacy disclosure. A recent regulation of European
Union stipulates that companies should carefully collect and
use personal data. Adversaries can use sensitive data on edge
servers to infer users’ private information [20], [21]. For
example, a user uploads the features of a given app to an
edge server. If adversaries gain access to these features, they
can infer some private information (e.g., user’s interests and
preferences). There is a fundamental conflict between protect-
ing the private information and retaining the utility of the
data [23], [24]. Some studies have used encryption to address
this limitation. However, the encryption-based methods are
difficult to deploy on user devices due to the limited resources
and high computing costs [2], [7]. Although many existing
machine learning-based malware detections have achieved
good performance, few efforts have considered protecting user
privacy information. In this paper, we apply differential privacy
to effectively protect user privacy.

III. SYSTEM MODEL

We propose a hybrid architecture MDHE based on edge
computing for malware detection, which includes an edge
layer and an IoT device layer. Each edge server is connected to
a set of IoT devices covering an area. Raw data is transferred to
the edge layer, which is composed of many high-performance
computing nodes or edge servers. This paper embeds a pre-
trained malware detection model (see Section IV-C for details)
into our hybrid architecture MDHE. We choose the middle
layer of model as the pivot and divide the entire MDHE into
two main parts. 1) The first part contains feature generation
module and private attention module. User device and edge
server cooperate to detect malware. Firstly, feature gener-
ation module and private attention module are pre-trained
and deployed on user device, where the feature generation
module performs minimal processing on the raw data to extract

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: MDHE: A MDHE BASED ON TRUST HYBRID USER-EDGE EVALUATION IN IoT NETWORK 5953

features, and the private attention module uses the attention
mechanism to extract key features. Specifically, we use a
private intermediate layer to inject random noise into the
features. Then, user device uploads the intermediate features
to edge server for further processing. Based these features,
the malware classifier on edge server returns the expected
results to user device. 2) The second part uses a CapsNet to
build a robust and accurate malware classifier. By leveraging
the computational resources and storage capacity of the edge
server, we can optimize the performance and effectiveness of
the malware classifier, enabling it to accurately identify and
classify malware.

A. Threat Model

IoT devices lacking computing resources are facing serious
security threats. We list some of the threats of deploying a
malware detection system in IoT network.
• An adversary can gain access to a user’s private data

through malware attacks, such as using malware to steal
user data or executing a distributed denial of service
botnet. Moreover, the Android system provide some
coarse-grained permissions. Thus, the malware can access
the external device and create some rules to guide cloud
server to interact with the sensing devices.

• As mentioned earlier, the extracted API calls and per-
mission features often implicitly reflect user habits. The
adversary could use this information to infer the gender
and interest of users for targeted advertising [23], and
even generate adversarial samples to avoid detection [24].
It is a challenge to design an effective feature generation
module that retain useful information while protecting
sensitive information from adversaries.

• When a user performs malware detection on a local
device, the device is usually unable to cope with
the resource-consuming malware detection system due
to limited resources and data processing capabilities.
In addition, traditional cloud-based centralized detection
systems may lead to a lot of communication overhead.

• Due to the limited computing power of IoT devices, the
overhead of feature extraction must be minimized. How-
ever, discarding information may also have a negative
impact on malware detection. This requires careful design
of feature reduction schemes.

B. Design Goal

IoT networks are now facing more targeted malware attacks.
To prevent malware attackers from attacking IoT infrastruc-
ture, we propose a trust-evaluation-based hybrid user-edge
architecture. Based on the identity, performance, and behavior
of user devices, the trust evaluation can be used to select
trusted devices to participate in model training, thereby pro-
viding coarse-grained protection for user privacy. To reduce
communication costs and minimize latency in data transmis-
sion, this paper designs a layer separation mechanism, where
end devices and edge servers cooperate to build a malware
detection model. On the end-device side, a private attention
module is used to extract key features by considering the

Fig. 1. The proposed hybrid user-edge architecture.

probability weight distribution. However, these features remain
relatively sensitive, and could be exploited by adversaries to
infer sensitive user information. Consequently, we use the DP
mechanism to perturb the features and upload them to the
edge server. Because of the limited computing power of end
devices, we extend a deep learning model to the edge. On the
edge-server side, we develop a malware detection model based
CapsNet. By utilizing the powerful computing power of edge
servers, we are able to effectively train the CapsNet model on
a large malware dataset.

IV. OUR PROPOSED MDHE

A. Overview

This paper proposes a trusted hybrid user edge evaluation
based malware detection system, which preserves data utility
while reducing sensitive inference and system overhead. Fig. 1
shows the architecture of MDHE. User device and edge server
collaboratively train a complex neural network using user data,
without divulging specific private information. In our system,
a TE mechanism is used to select trusted devices to implement
the model training. Then, each user device uses a feature
generation module to extract useful information from apps
as the intermediate features. Next, a private attention module
leverages the differential privacy (DP) technology to perturb
the features. Finally, user devices upload the perturbed features
to the edge server for training and fine-tuning a deep learning
model.

B. Trust Evaluation

We use edge server with strong computing and storage
capabilities to provide TE for user devices to ensure the
reliability of participating IoT devices and avoid potential
attacks. Eventually, a safe, reliable and efficient malware
detection model is implemented.

Before model training, the edge server screens out trusted
IoT devices. When a device participates, it communicates
with the nearest edge server, which then checks to see if
the device exists in the current list of trusted devices e.g.,
existing historical interaction. After that, the server authorizes
this device to participate in model training. Otherwise, the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

5954 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

server evaluates this device, which includes three evaluation
methods, i.e., Identity Evaluation, Capability Evaluation, and
Behavior Evaluation. Finally, the server adds this device to
the list of trusted devices and authorizes it to participate in
training. These three evaluations are described in detail below.

1) Identity Evaluation (IE): User devices are highly
mobile and dynamic, which makes their identity authen-
tication difficult. Therefore, each user device performs
real-name registration to ensure the authenticity and
uniqueness of identity in the edge network. Specifically,
devices that are added to the system for the first time
are given a unique ID number, and then the system
saves evaluation information. Before the device with
unique ID number participates in the model training,
the edge server authenticates the user device, which
verifies whether it match the corresponding ID number.
If the device obtains the authentication, IE is set to 1.
Otherwise, the device is refused to participate in the
model training.

2) Capability Evaluation (CE): The computing power of
user devices is usually limited. Before the user device
participates in the training, it submits the device per-
formance configuration information to the edge server,
and then it determines whether the device capability
meets the requirements of the model training. In this
paper, we use four representative attribute parameters to
evaluate the user devices, including CPU, Disk, Mem-
ory and Online-time. If all four performance attributes
meet the edge server’s performance requirements, CE=1,
otherwise, the edge server will reject the user device.

3) Behavior Evaluation (BE): The BE can be measured
by all historical interactions between edge servers and
IoT devices. A higher value of BE means less malicious
behavior for the user device to interact with the edge
server. Conversely, a lower value for BE means that the
user device is more likely to be considered a malicious
device. Note BE ∈ [0,1]. When BE is below the preset
threshold, the device will be refused to participate in the
model training.

According to the current behavior and historical behavior,
we update the value of BE of the target user device by weight-
ing BE from two different angles obtained by interaction.
This is because different edge servers may observe behavior
and evaluate target user devices based on different conditions.
With proper weighting, highly accurate values of BE can be
obtained. The value of BE is synthesized by a direct evaluation
value (DV) and an indirect evaluation value (I V). DV is the
trust value generated by the direct interaction between edge
server and user device. Based on satisfaction of the returned
results, the edge server can give a value of DV for this user
device, which can be seen as a direct interactive experience.
Moreover, I V is calculated by collecting the evaluation value
of the edge servers that have historically interacted with the
user device, which can be seen as an indirect experience for
edge servers. Fig. 2 shows the workflow of TE. The main steps
are as follows:

1) When the network system is initialized, for each user
device, the value of BE is set to 0.3.

Fig. 2. The overview of trust evaluation.

2) For a new user device D, based the value of IE, the
edge server adds it to the list of trusted devices list, and
records its performance attribute parameters.

3) After the edge server S enters the network, it declares
the performance parameters required for model training,
and accordingly filters out user device D that meets the
requirements.

4) Before the edge server S interacts with the user device
D, the edge server S queries the value of BE of the user
device D, and decides whether to add user device D.
We set the threshold for BE to 0.2.

5) After the model training is finished, the edge server S
evaluates the user device D, and then uses its evaluation
value as the direct evaluation value to update the value
of BE.

In our proposed TE, based on the BE of the user device,
the edge server S adjusts the priority of the user device D.
Then, the edge server S give a direct evaluation value DVSD
and an indirect evaluation value I VSD for the user device D.
Finally, the edge server S updates the value of BE of the user
device D.

B E = αDVSD + β I VSD, (1)

where α and β are two tunable parameters, satisfying
α + β = 1, When β > α, the server S pays more attention to
historical interactions. On the contrary, when β < α, the rater
server S pays more attention to current interactions between
the server and devices. This means that the value of BE is
calculated based on current and historical behavior.

The edge server S can directly give the direct evaluation
value DVSD(0 < DVSD ≤ 1) after the user device D
participates in the model training. The indirect evaluation value
is the evaluation value given by the edge server that has a
history of interaction with the user device D. I VSD can be
calculated by:

I VSD =
1
n
∗

n∑
i=1

T (ti)DVi D, (2)

where T (ti) = e−δ(t−ti). n is the number of edge servers that
have a history of interacting with user device D, and DVi D
indicates the direct evaluation value of i-th edge server. Here,
T (ti)(1 ≤ i ≤ n) is a time decay factor that measures the
freshness of the evaluation. We use a predefined parameter δ

to control the effect of the time decay factor T (ti). t indicates
the current time. In historical interactions, the latest evaluation
value is given a higher weight.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: MDHE: A MDHE BASED ON TRUST HYBRID USER-EDGE EVALUATION IN IoT NETWORK 5955

C. Malware Detection

In this section, we use the Malicious Subgraphs (MSGs) and
permissions as features. Our system consists of three stages:
feature generation, private attention, and malware classifica-
tion. In feature generation stage, we extract the MSGs and
permissions from APK and then merge them into feature vec-
tors. In private attention stage, we extract important features
and inject noise into them. Finally, in malware inference stage,
we use a malware classifier to detect malware.

1) Feature Generation Module on User Device: In order to
characterize the program semantics of an application, we use
a disassembly tool (such as ApkTool) to get the Dalvik code
from the APK files. Android malware usually calls some
sensitive APIs and permissions for manipulating sensitive
data. We use the Pscout tool to get a set of sensitive APIs
S AS = {v1, v2, . . . , v8910, v8911} and a set of permissions
{p1, p2, . . . , p455}. By doing this, a total of 8911 sensitive
APIs and 455 permissions can be available.

To distinguish the importance of different sensitive APIs,
each sensitive API is assigned an importance weight. Based
on the TF-IDF, we make the maliciousness degree of sensitive
API vk be in positive correlation with the percentage of
malware that invoke the sensitive API vk and in negative
correlation with the percentage of all apps that invoke the
sensitive API vk . In our case, the maliciousness degree md(vk)

of a sensitive API vk is calculated by:

md(vk) = Pm(vk) ∗ log
Numm + Numb

Nm(vk)+ Nb(vk)
, (3)

where Pm(vk) denotes the percentage of malware samples
that invoke sensitive API vk . Numb and Numm denote the
number of benign and malware samples, respectively. Nb(vk)

and Nm(vk) denote the number of benign and malware samples
that invoke the sensitive API vk , respectively.

Moreover, we use two common tools, Androguard and
graph visualization software (Gephi), to create Function Call
Graph (FCG), which contains methods (i.e., nodes in FCG)
and corresponding call relationships (i.e., edges in FCG)
between them. Then, we extract the program semantics and
the structural information to describe the malicious behavior
of the malware.

After careful analysis of numerous malware samples,
we found that benign samples and malware samples have
different sensitive API call patterns. The analysis of the whole
FCG is very complicated and inefficient because the FCG has
thousands of nodes. Typically, malicious behavior is reflected
in only a small part of FCG. In order to describe the malicious
behavior, we extract sensitive API nodes and their neighbor-
ing nodes from FCG to construct the Malicious Subgraphs
(MSGs). Algorithm 1 and Fig. 3 shows the generation of a
M SG.

In order to build MSG, FCG and S AS are used as
inputs to Algorithm 1. For each sensitive API vk in the
set of sensitive APIs S AS, we define its neighbor set to
be N (vi). Also, we define a distance function dis(vk, v

k
i),

which returns the length of the shortest path. To reduce the
size of FCG, we only consider the 1-hop neighbors of each
sensitive API node vk , which are recorded in Vk , as described

Algorithm 1 The generation of M SGs
Input: FCG = (V, E), S AS;
Output: M SG;
1: M SG ← ∅;
2: for each vk ∈ S AS do
3: N (vi)← {v

k
1, vk

i , . . . , vk
n};

4: Vk ← ∅;
5: for each vk

i ∈ N (vi) do
6: if dis(vk, v

k
i) ≤ 1 then

7: Vk = Vk ∪ {v
k
i };

8: end if
9: end for
10: Vk ← RemoveLibNodes(Vk);
11: Ek ← RemainingEdge(Ek);
12: M SGk ← (Vk, Ek);
13: M SG = M SG ∪ {M SGk};
14: end for
15: FV (s)

← ∅;
16: for each M SGk ∈ M SG do
17: SFk ← {I (M SGk) · md(M SGk)};
18: FV (s)

= FV (s)
∪ {SFk};

19: end for
20: FV (p)

= {P1, P2, . . . , Pm};
21: FV = {FV (s), FV (p)

};
22: return M SG

Fig. 3. The generation of MSGs.

in Algorithm 1 (Line 2-9). In Algorithm 1 (Line 10-14),
we first use a function RemoveLibNodes(Vk) to remove
nodes that represent the third-party libraries, and then use a
function RemoveEdge(Ek) to keep the edges corresponding
to the remaining nodes in Vk . Next, Algorithm 1 (Line 16-22)
extracts the MSG feature FV .

Specifically, we measure the maliciousness degree of
M SGk by:

md(M SGk) =
∑

vk∈SS A(M SGk)

md(vk), (4)

where md(vk) is the maliciousness degree of k-th sensitive
API nodes. Considering that each MSG’s contribution to the
detection model should be different, the accuracy of malware
detection may be affected if the same weight is assigned to
each MSG. To solve this problem, we adaptively add a weight
I (M SGk) to the maliciousness degree of M SGk , which is

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

5956 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 4. The private attention module on user device.

calculated by:

I (M SGk) = max{1,
|Vk | ∗ n∑n

j=1v j
}, (5)

where |Vk | denotes the number of nodes in M SGk , and n
denotes the number of all MSGs. Finally, we can obtain the
subgraph feature vector FV (s) as follows.

FV (s)
= {SF1, SF2, . . . , SFn} (6)

SFk = {I (M SGk) · md(M SGk)} (7)

where SFk is the subgraph feature of M SGk . Next, we extract
permission features FV (p) to provide more comprehensive
malicious behavior information as follows.

FV (p)
= {P1, P2, . . . , Pm} (8)

Specifically, permission features are complementary to the
MSG features. Finally, we integrate permission features into
MSG feature extraction as follows.

FV = {FV (s), FV (p)
} (9)

After that, FV is used for private attention module on user
device.

2) Private Attention Module on User Device: In this part,
we introduce the details of attention mechanism and privacy
protection on user devices in MDHE. Fig. 4 shows an overview
of our private attention module. In the feature generation mod-
ule, we extract the feature set FV , consisting of the subgraph
or permission features, each of which contributes differently to
the program semantics. For knowledge distillation, we stacked
an attention mechanism on the feature generation module to
extract such features that are important to the meaning of the
semantic expression.

The attention mechanism can be viewed as a composite
function that highlights the impact of key features by calcu-
lating the probability distribution of attention. The attention
mechanism structure is shown in Fig. 5. We fed FV into the
attention mechanism to generate new features, i.e., FV ′ =
ATT(FV). In the attention mechanism, the context vector ci
for the attention allocation coefficient ai j can be calculated as
follows:

ci =

n∑
j=1

αi j FV, (10)

Fig. 5. The attention mechanism used in MDHE.

Then, we calculate the attention allocation coefficient ai j as
follows.

αi j =
exp(ei j)∑n

k=1 exp(eik)
, (11)

where ei j is an alignment model that scores how well the
inputs around position j and the output at position i match,
which is calculated by:

ei j = a(hi−1, FV), (12)

where ann j denotes the j-th annotation. Finally, the attention
mechanism generates new features FV ′ = { f ′1, f ′2, . . . , f ′n},
which enhances the representations of important features.
Algorithm 2 (Line 1-2) presents the procedure of the private
attention module.

Algorithm 2 Private attention module on the user device
Input: Privacy budget ϵ, P I layer
Output: The extracted features FV
1: Calculate the importance weight scores ai j using
Eqs. (11)-(12) and extract context vector ci using Eq. 10;
2: Generate new features FV ′ = { f ′1, f ′2, . . . , f ′n} by paying
close attention to key features;
3: Inject random noise into weights of the private intermediate
(PI) layer;
4: FV ′′ = (f ′1, f ′2, . . . , f ′n)+ ⟨Lap(1 f/ϵ)⟩d ;
5: return FV ′′.

The extracted MSG features can retain useful information
that contains a lot of user privacy. These features are collected
and sent to the data center for centralized processing. However,
the transmission of data introduces privacy concerns, because
they are vulnerable to privacy inference attacks, such as mem-
ber inference attacks, model inversion attacks, etc. It becomes
essential to ensure the secure and efficient transmission of this
data.

Moreover, we construct a private intermediate (PI) layer
which applies Differential Privacy (DP) to protect user privacy,
where user devices perturb their feature vectors before trans-
mitting them to the edge server. The DP serves as a rigorous
and principled approach to privacy protection, enabling the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: MDHE: A MDHE BASED ON TRUST HYBRID USER-EDGE EVALUATION IN IoT NETWORK 5957

analysis and utilization of sensitive data while preserving the
privacy of individuals.

As shown in Algorithm 2 (Line 3-5), we use a Laplace
Mechanism (LM) to implement ϵ-DP, where the DP noise is
obtained from the appropriate Laplacian distribution. Now we
give the formal definition of the DP as follows.

Definition 1 (ϵ-Differential Privacy): A randomized
algorithm M satisfies ϵ-DP, where ϵ ≥ 0, iff for any two
neighboring databases D, D′ differing in a single item, and
for all possible output set O ⊆ Range(M), we have:

Pr[M(D) ∈ O] ≤ eϵ Pr
[
M

(
D′

)
∈ O

]
where ϵ represents the privacy budget, which controls the
privacy-utility trade-off.

A smaller value of ϵ offers a stronger privacy guarantee,
but at the expense of data utility. This implies that the prob-
ability of producing a specific outcome from the randomized
algorithm M on dataset D should be similar to the probability
of producing the same outcome on dataset D′, regardless of the
presence or absence of any individual’s data. This guarantees
the preservation of individuals’ privacy. Moreover, we formally
define the LM as follows.

Definition 2 (Laplace Mechanism): Let f be a function f :
D← Rd , we have:

O(D) = f (D)+ ⟨Lap(1 f /ϵ)⟩d , (13)

where 1 f = maxD,D′ || f (D)− f (D′)|| is the l1-sensitivity of
f , and d is the feature dimension.

For a random training batch, we inject Laplace noise into
each feature f ′i , which is represented as:

FV ′′ = FV ′ + ⟨Lap(1 f/ϵ)⟩d

= (f ′1, f ′2, . . . , f ′n)+ ⟨Lap(1 f/ϵ)⟩d , (14)

where FV ′′ denotes the perturbed features, i.e., the interme-
diate features. Algorithm 2 summarizes the LM of MDHE.
Finally, Eq. 14 can be rewritten as

FV ′′ = (f ′′1 , f ′′2 , . . . , f ′′n) (15)

3) Malware Classifier on Edge Server: After constructing
the intermediate features FV ′′ in the privacy neural layer on
user devices, we upload them to an edge server where we
train a CapsNet-based classifier for malware detection. Com-
pared to the standard Convolutional Neural Network (CNN),
the CapsNet introduces a novel approach by transforming
scalar inputs into vectors, facilitating more effective storage
of features. CapsNet employs capsules, which are groups of
neurons that encapsulate vectorized information, to provide
a more expressive and informative method of encoding. The
vectorized representation enables capsules to perform complex
internal calculations on inputs, and learn how to represent and
reconstruct a given sample like an autoencoder.

In our case, the perturbed feature vectors are fed to CapsNet.
Then, the filters W = w1, . . . , wv are used to encapsulate the
features from the same position across different windows into
their corresponding capsules. CapsNet preserves and manipu-
lates complex patterns by capturing the spatial relationships
and hierarchical structure of features embedded in vectors.

Algorithm 3 Malware classifier on the edge server
Input: Perturbed features FV ′′ = (f ′′1 , f ′′2 , . . . , f ′′n), hidden
layers H , privacy budget ϵ;
Output: The trained malware detection model;
1: Obtain the perturbed features FV ′′;
2: while not converged do
3: Reconstruct the perturbed features FV ′′ =
(f ′′1 , f ′′2 , . . . , f ′′n) and extract the latent deep information
using Eqs. (16)-(20);
4: Update model parameters;
5: end while

Algorithm 3 illustrates the learning process of the CapsNet
model. Here, the capsule vector is calculated as follows.

ui j = zi · w j , (16)
ui = g([ui1, ui2, . . . , uiV]), (17)

where zi denotes the i-th operation result in the previous layer,
and g is a non-linear squashing function.

Furthermore, the dynamic routing algorithm is used to
ensure the generation of accurate outputs in the form of low-
level capsule vectors to higher-level parent capsules within the
CapsNet. Through dynamic routing, the CapsNet can encode
and encapsulate the inherent spatial relationships that exist
between individual parts and their collective representation as
a whole. Specifically, a squashing function is used to constrain
the length ∥ pi ∥ in the interval [0, 1].

g(x) = squash(x) =
∥ x ∥2

1+ ∥ x ∥2
x
∥ x ∥

, (18)

û j |i = W ui , (19)

Then, we calculate the capsule v j by the weighted sum of
all û j |i .

v j = g(
∑

i

c j |i û j |i), (20)

where c j |i denotes the coupling coefficients.

D. Security Analysis

In this paper, we extract M SGs from the FCG which
retains only sensitive API nodes with their neighbors, while
discarding unimportant information. By doing this, the detec-
tion accuracy can be guaranteed, and the feature generation
time is reduced. Moreover, we use the trust evaluation mech-
anism to manage the credibility data of user equipment from
three levels of identity evaluation, capability evaluation and
behavior evaluation. Then, the edge server selects trusted
devices for model training. In summary, the trust evaluation
mechanism can ensure that the learning model is not interfered
by malicious devices in the training process, while preventing
the detection accuracy from being affected.

The attention mechanism gives higher weights to important
features, which can improve the detection accuracy. In addi-
tion, CapsNet discards the pooling layer used in the CNN to
ensure that the required performance can be achieved with
less training data. Similarly, CapsNet is a local prediction

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

5958 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

TABLE II
MAIN DATASETS USED IN OUR EVALUATION STUDIES

of the whole and can extract important features through the
dynamic routing mechanism. Therefore, the effectiveness of
the CapsNet can be demonstrated. Finally, we use differential
privacy to perturb features to ensure that the users’ privacy can
not compromised. In our hybrid user-edge architecture, user
devices and edge servers can cooperate to detect malware,
thereby reducing communication costs, improving detection
performance, and protecting user privacy.

V. EVALUATION

In this section, we first introduce datasets and metrics used
in our experments. Then, we compare our MDHE with other
methods. Afterward, we evaluate the run-time of our method,
and discuss the effectiveness of private attention module.

A. Datasets and Metrics

We used four well-known baseline datasets to evaluate the
performance of MDHE, including AndroZoo [25], Drebin
[26], MalDroid [27] and VirusShare. The dataset descrip-
tion is shown in Table II. The first dataset, AndroZoo [25]
dataset, consists of all published applications from 2010 to
the present. The labels for this dataset were assigned based
on the results given by dozens of different Anti-Virus (AV)
scanners. In our experiments, we used 12,121 malware sam-
ples. Specifically, all benign samples were collected from
the official Google Play app market. For the Drebin dataset,
the malware samples were obtained from [26], and were
collected from 2010 to 2012. Each sample was labeled as
one of 179 malware families, such as Geinimi, FakeDoc, and
others. Another dataset, MalDroid [27], is a recent Android
malware dataset that encompasses five distinct categories:
Banking malware, SMS malware, Riskware, Adware, and
Benign. We randomly selected 8,955 malware samples for our
experiments. VirusShare is an online platform that hosts a wide
range of malware samples. To evaluate the performance of
MDHE, we utilized 10,456 malware samples from VirusShare,
each of which was analyzed through various AV scanners.

We randomly select 80% samples and 20% samples as the
training set and the test set, respectively. All experiments do
not involve any re-sampling, which avoids the occurrence of
bias or overfitting. Therefore, training and test set do not
have any common samples. Finally, we used four datasets
to evaluate the effectiveness of MDHE and its generalization
ability. As shown in Table III, we use some common evaluation
metrics to evaluate MDHE’s detection performance numer-
ically, such as accuracy (ACC), precision (P), recall (R),
F-measure (F).

TABLE III
PERFORMANCE EVALUATION METRICS

TABLE IV
DETECTION PERFORMANCE OF THE MDHE VERSUS BASELINE MODELS

FOR MALWARE DETECTION ON FOUR BENCHMARK DETASETS

TABLE V
MDHE VERSUS OTHER PROPOSED SYSTEMS FOR MALWARE DETECTION

B. Malware Detection With Different Classifiers

In this part, we use five neural networks as the baseline
models, which include Capsule Network (CapsNet) [29], Deep
Neural Network (DNN) [30], Convolutional Neural Network
(CNN) [31], Gated Recurrent Unit (GRU) [32] and Long Short
Term Memory (LSTM) [33]. Moreover, Receiver Operating
Characteristic (ROC) curve is used to quantify the detec-
tion performance of all baseline models on four benchmark
datasets. Fig. 6 and Table IV summarize the comparison
results. We can see that CapsNet achieves the best perfor-
mance. Compared with the baseline model CNN, CapsNet
abandons the pooling layer, thus requiring less training data to
achieve the expected effect. Also, CapsNet relies on a dynamic
routing mechanism to extract detailed features, in which the
nonlinear compression function is used to compress the short
vector almost to 0, while the length of the long vector is scaled
up to approximately 1. As a result, the model can better detect
subtle differences in data.

C. Method Comparison With Other Methods

To verify the effectiveness of MDHE, we compared the
detection performance of MDHE with the two state-of-the-art
approaches, i.e., [11] and [28].

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: MDHE: A MDHE BASED ON TRUST HYBRID USER-EDGE EVALUATION IN IoT NETWORK 5959

Fig. 6. ROC curve of the MDHE versus baselines for malware detection on four benchmark detasets.

Fig. 7. Experimental results of different feature comparisons.

TABLE VI
THE TRADE-OFF BETWEEN DATA UTILITY AND PRIVACY

Fig. 8. Experimental results of different model comparisons.

• Perimission [11]: Arora et al. constructed a permission-
based malware detection, and used machine learning
models to identify malware.

• API [28]: Zou et al. proposed an API-based malware
detection method, which uses a static analysis mechanism
to extracted API features to describe the threat behavior
of Android malware.

Fig. 7 and Table V show results comparing the detection
accuracy of MDHE with that of two state-of-the-art methods
[11] and [28]. As we expected, the results in Fig. 7 and
Table V demonstrate that our MDHE consistently outper-
forms the two methods [11] and [28]. Typically, sensitive
API calls are controlled by permissions, which can be used
to access sensitive information (such as user’s location or
other personal information) and perform some sensitive tasks
(such as changing WiFi status or sending messages). More
specifically, malware tends to use some specific sensitive API
calls, and thus malicious activities can be reflected by specific
combinations of permissions and API calls. The AUC of
the proposed MDHE achieves 0.99, which is better than the

two methods [11] and [28]. This is because Arora et al. [11]
only utilizes the permission features. Similarly, Zou et al. [28]
only uses API features. As a result, our approach combines
permissions and API features to help us analyze malware more
effectively. This explains why our method achieves the best
detection performance.

D. Evaluation on Privacy Budget ϵ

In this section, a series of experiments were conducted
to validate the effectiveness of the proposed privacy atten-
tion mechanism in MHDE. Table VI presents the impact
of different privacy budgets ϵ on detection performance of
MHDE. When the value of ϵ is small, MHDE exhibits poor
performance, indicating that excessive noise has been added
into the input features, leading to a deterioration in model per-
formance. As ϵ increases, the detection performance improves,
demonstrating the effectiveness of our method in preserving
privacy and utility.

To evaluate the effectiveness of DP, we conducted exper-
iments on five classifiers, i.e., CapsNet [29], CNN [31],

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

5960 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

TABLE VII
MDHE VERSUS BASELINE MODELS FOR MALWARE DETECTION

Fig. 9. Experimental results of different feature comparisons.

TABLE VIII
DETECTION PERFORMANCE COMPARISON WITH OTHER PROPOSED SYSTEMS

Fig. 10. Ablation studies of MDHE on the four benchmark datasets.

DNN [30], GRU [32], LSTM [33]. Fig. 8 and Table VII present
the accuracy results of each model across varying privacy
budgets ϵ. Notably, with an increase in ϵ, the performance of
all baseline models saturates and exhibits notable improvement
on all benchmark datasets. It is evident that various models
exhibit distinct behaviors concerning their tolerance towards
the amount of noise added to the input data.

Additionally, we assess the utility and privacy implications
of the proposed privacy attention for different baseline meth-
ods, [11] and [28]. As shown in Fig. 9 and Table VIII, when
ϵ increases (corresponding to less noise), the enhanced data
utility enables more accurate learning for the two baseline
methods. However, their performance is still not comparable
to our MHDE. This observation emphasizes the importance of
selecting an appropriate privacy budget to achieve a trade-off
between data utility and privacy.

E. Effectiveness of Private Attention Module

In this section, different components should have different
contributions to the detection performance. As shown in

TABLE IX
EFFECT OF DIFFERENT COMPONENTS

Fig. 10 and Table IX, we designed a series of baseline models
to demonstrate the effectiveness of the private attention module
used in the MDHE model, where the differential privacy (DP)
approach is used to prevent inference attacks on users’ data,
and thus better protecting the privacy of users. We show the
performance of MDHE under different privacy budgets ϵ.
It can be seen that a smaller privacy budget (e.g. ϵ = 0.1)
results in lower detection accuracy because too much noise
is introduced into the input data. In addition, MDHE can
achieve better performance on the four benchmark datasets
without using the DP mechanism (i.e., MDHE without DP).

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: MDHE: A MDHE BASED ON TRUST HYBRID USER-EDGE EVALUATION IN IoT NETWORK 5961

Fig. 11. The runtime for processing one sample.

This shows that the introduction of DP reduces the final
detection accuracy of the learning model, which is consistent
with our expectations.

As mentioned earlier, MDHE decouples a large model into
two parts. Although the proposed separation model effec-
tively protects user privacy, it inevitably leads to model
performance degradation. Therefore, we also evaluated MDHE
performance without separation mode (i.e. MDHE without
private attention). The model achieves optimal performance on
four benchmark datasets. This verifies that model separation
actually degrades detection performance. Moreover, we believe
that a small performance penalty is acceptable because our
model protects user privacy.

F. Processing Time Evaluation

In this part, we conduct experiments to evaluate the average
run time of our method for detecting arbitrary malware.
As previously noted, our method is mainly divided into three
phases: 1)

1) De-compilation and MSG construction. The Dalvik
code is decompiled from the APK file of a given
application. Then, we construct the FCG to generate
MSG using graph analysis.

2) Private attention. We use a DP-based attention mech-
anism to give higher weights to important features and
then injected Laplace noise into the features.

3) Classification. We load the trained model on the device
and classify each sample.

Fig. 11 displays the run time of each phase, with the X-
axis representing the APK size for a given sample and the
Y-axis representing the corresponding run-time. The construc-
tion of the MSG is affected by the APK size, as evident
from Fig. 11 (a). This is because a larger APK file contains
more sensitive APIs. It is evident that processing an MSG
with thousands of nodes will take more time. In most cases,
our method takes less than 100 seconds to process a single
sample. Fig. 11 (b) and (c) demonstrate that private attention
module and model classification are almost unaffected by the
APK size.

Additionally, we measured the training and testing times
of MDHE, and the results are presented in Table X. In our
experiments, we found that the MDHE model achieves optimal
performance after approximately 20 iterations. This implies

TABLE X
EXECUTION TIME COMPARISON

that after a finite number of iterations, the model has success-
fully captured the underlying malicious patterns and features.
As a result, training the MDHE takes less than 30 minutes.
Although there is a slight increase in training time compared
to CNN and DNN, the outstanding detection accuracy of
MDHE more than compensates for its computational overhead,
as evidenced by its consistently superior detection accuracy
when compared to other baseline methods (see Section V-B
for details). In addition to the commendable training efficiency,
the time spent on model inference/testing is almost negligible.
For example, the average inference time lies at just 13 ms
for processing a single sample. This rapid inference speed
is crucial in real-time malware detection as it enables quick
response to effectively mitigate potential malware threats.
Based on the above facts, we can confidently claim that our
MDHE demonstrates exceptional performance and efficiency
in malware detection.

VI. ENGINEERING APPLICATIONS

We apply our proposed MDHE to a city edge computing
scenario with many edge servers and user devices (such
as smart cars, smart phones and intelligent hospitals, etc.).
As shown in Fig. 12, each edge server connects to a set of local
user devices, is responsible for these user devices, typically
covering an area, and performs timely data analysis. Before
deploying the malware detection system, edge server screened
a set of trusted training devices through TE mechanism, and
trained a well-performing malware detection model. Moreover,
the edge server deploys the feature generation module and
private attention module on the users’ end devices. When a
user want to install a new app on the end device, the APK
files of the app is first processed locally, then feature extraction
and Laplacian noise injection are carried out. After that, the
generated intermediate features are passed to the edge server

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

5962 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 12. Engineering applications of smart city.

covering the corresponding area. Finally, the edge server
returns the result of model inference to the user, which
indicates whether or not the app has malicious intent. If the
app is malware, the user refuses to install it on the terminal
device. In fact, the process is very fast. In our case, edge
servers can protect user devices from malware attacks, while
protecting users’ privacy.

VII. CONCLUSION

In this paper, we propose a hybrid user-edge architecture
(MDHE) for malware detection, which decomposes a large
complex deep neural network into two parts and deploys
them to the user device and the edge server respectively.
The proposed MDHE can effectively detect malware while
protecting user’s privacy. Then, we deploy a feature generation
module and a private attention module on the user device,
where the feature generation module is used to generate
features, and the attention mechanism is used to extract key
features. Finally, the malware classifier is deployed on edge
server to reconstruct the disturbed features and detect malware.
The results show that our method has strong generalization
ability, and is better than other existing methods. Finally, our
method can protect the privacy of users’ sensitive data. In the
future, we can design a end-edge-cloud architecture to improve
the accuracy of malware detection. Moreover, we consider
combining dynamic information (such as network flow and
data flow) to detect malware.

REFERENCES

[1] R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu,
“A performance-sensitive malware detection system using deep learning
on mobile devices,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 1563–1578, 2021.

[2] G. Zhang et al., “TSDroid: A novel Android malware detection frame-
work based on temporal & spatial metrics in IoMT,” ACM Trans. Sensor
Netw., vol. 19, no. 3, pp. 1–23, Aug. 2023.

[3] X. Deng, J. Zhu, X. Pei, L. Zhang, Z. Ling, and K. Xue, “Flow
topology-based graph convolutional network for intrusion detection in
label-limited IoT networks,” IEEE Trans. Netw. Service Manag., vol. 20,
no. 1, pp. 684–696, Mar. 2023.

[4] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in Proc.
ICDCS, 2017, pp. 328–339.

[5] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 1, pp. 615–629, 2017.

[6] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium
blockchain for secure energy trading in industrial Internet of Things,”
IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3690–3700, Aug. 2018.

[7] X. Pei, X. Deng, S. Tian, L. Zhang, and K. Xue, “A knowledge transfer-
based semi-supervised federated learning for IoT malware detection,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 3, pp. 2127–2143,
May/Jun. 2023.

[8] P. Jiang, X. Deng, L. Wang, Z. Chen, and S. Zhang, “Hypergraph
representation for detecting 3D objects from noisy point clouds,” IEEE
Trans. Knowl. Data Eng., vol. 35, no. 7, pp. 7016–7029, Jul. 2023.

[9] X. Deng, X. Pei, S. Tian, and L. Zhang, “Edge-based IIoT malware
detection for mobile devices with offloading,” IEEE Trans. Ind. Infor-
mat., vol. 19, no. 7, pp. 8093–8103, Jul. 2023.

[10] X. Chen et al., “CruParamer: Learning on parameter-augmented API
sequences for malware detection,” IEEE Trans. Inf. Forensics Security,
vol. 17, pp. 788–803, 2022.

[11] A. Arora, S. K. Peddoju, and M. Conti, “PermPair: Android malware
detection using permission pairs,” IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 1968–1982, 2020.

[12] R. Sun et al., “Learning fast and slow: Propedeutica for real-time
malware detection,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33,
no. 6, pp. 2518–2529, Jun. 2022.

[13] Y. Chai, L. Du, J. Qiu, L. Yin, and Z. Tian, “Dynamic prototype network
based on sample adaptation for few-shot malware detection,” IEEE
Trans. Knowl. Data Eng., vol. 35, no. 5, pp. 4754–4766, May 2023.

[14] J. Xu, Y. Li, R. H. Deng, and K. Xu, “SDAC: A slow-aging solution
for Android malware detection using semantic distance based API
clustering,” IEEE Trans. Dependable Secure Comput., vol. 19, no. 2,
pp. 1149–1163, Mar. 2022.

[15] H.-J. Zhu, L.-M. Wang, S. Zhong, Y. Li, and V. S. Sheng, “A hybrid
deep network framework for Android malware detection,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 12, pp. 5558–5570, Dec. 2022.

[16] J. Jeon, B. Jeong, S. Baek, and Y.-S. Jeong, “Hybrid malware detection
based on Bi-LSTM and SPP-net for smart IoT,” IEEE Trans. Ind.
Informat., vol. 18, no. 7, pp. 4830–4837, Jul. 2022.

[17] D. Tian et al., “MDCD: A malware detection approach in cloud using
deep learning,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 11,
p. e4584, Nov. 2022.

[18] P. Mishra et al., “VMShield: Memory introspection-based malware
detection to secure cloud-based services against stealthy attacks,” IEEE
Trans. Ind. Informat., vol. 17, no. 10, pp. 6754–6764, Oct. 2021.

[19] K. Vahedi and K. Afhamisisi, “Cloud based malware detection through
behavioral entropy,” in Proc. IEEE Int. Conf. Big Data (Big Data),
Dec. 2021, pp. 6046–6048.

[20] W. Tang, J. Ren, and Y. Zhang, “Enabling trusted and privacy-preserving
healthcare services in social media health networks,” IEEE Trans.
Multimedia, vol. 21, no. 3, pp. 579–590, Mar. 2019.

[21] W. Tang, J. Ren, K. Zhang, D. Zhang, Y. Zhang, and X. Shen, “Efficient
and privacy-preserving fog-assisted health data sharing scheme,” ACM
Trans. Intell. Syst. Technol., vol. 10, no. 6, pp. 1–23, Nov. 2019.

[22] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” in Proc. IEEE Symp. Secur. Privacy, May 1996, pp. 164–173.

[23] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas,
“Adnostic: Privacy preserving targeted advertising,” in Proc. NDSS,
2010, pp. 1–23.

[24] M. Shahpasand, L. Hamey, D. Vatsalan, and M. Xue, “Adversarial
attacks on mobile malware detection,” in Proc. IEEE 1st Int. Workshop
Artif. Intell. Mobile, Feb. 2019, pp. 17–20.

[25] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo: Col-
lecting millions of Android apps for the research community,” in Proc.
13th Int. Conf. Mining Softw. Repositories, May 2016, pp. 468–471.

[26] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of Android malware in your
pocket,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[27] S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, and
A. A. Ghorbani, “Dynamic Android malware category classification
using semi-supervised deep learning,” in Proc. IEEE Int. Conf Depend-
able, Autonomic Secure Comput., Int. Conf Pervasive Intell. Comput.,
Int. Conf Cloud Big Data Comput., Int. Conf Cyber Sci. Technol. Congr.
(DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020, pp. 515–522.

[28] D. Zou et al., “IntDroid: Android malware detection based on API
intimacy analysis,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 3,
pp. 1–32, 2021.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: MDHE: A MDHE BASED ON TRUST HYBRID USER-EDGE EVALUATION IN IoT NETWORK 5963

[29] S. Wang, G. Zhou, J. Lu, and F. Zhang, “A novel malware detection
and classification method based on capsule network,” in Proc. ICAIS,
vol. 11632, 2019, pp. 573–584.

[30] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep
learning method for Android malware detection using various features,”
IEEE Trans. Inf. Forensics Security, vol. 14, no. 3, pp. 773–788,
Mar. 2019.

[31] N. Lachtar, D. Ibdah, and A. Bacha, “Toward mobile malware detection
through convolutional neural networks,” IEEE Embedded Syst. Lett.,
vol. 13, no. 3, pp. 134–137, Sep. 2021.

[32] B. Athiwaratkun and J. W. Stokes, “Malware classification with LSTM
and GRU language models and a character-level CNN,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017,
pp. 2482–2486.

[33] M. Sewak, S. K. Sahay, and H. Rathore, “LSTM hyper-parameter
selection for malware detection: Interaction effects and hierarchical
selection approach,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2021, pp. 1–9.

Xiaoheng Deng (Senior Member, IEEE) received
the Ph.D. degree in computer science from Central
South University, Changsha, Hunan, China, in 2005.
Since 2006, he has been an Associate Professor
and then a Full Professor with the Department of
Communication Engineering, Central South Univer-
sity, where he is currently a Joint Researcher with
the Shenzhen Research Institute. He is a Senior
Member of CCF, a member of CCF Pervasive Com-
puting Council, and a member of ACM. He has
been the Chair of CCF YOCSEF CHANGSHA

from 2009 to 2010. His research interests include network security, edge
computing, the Internet of Things, online social network analysis, data mining,
and pattern recognization.

Haowen Tang was born in Changsha, Hunan, China,
in 1998. He received the B.Sc. degree in information
security from Central South University, Changsha,
in 2019, where he is currently pursuing the M.Sc.
degree with the School of Computer Science and
Engineering. His major research interests are the IoT
security and edge computing.

Xinjun Pei (Student Member, IEEE) is currently
pursuing the Ph.D. degree with the School of
Computer Science and Engineering, Central South
University, Changsha, China. Since 2017, he has
been engaged in the direction of information secu-
rity. His research interests include deep learning,
edge computing, and the IoT security.

Deng Li (Member, IEEE) received the B.S. degree in
computer science from Hunan University, Changsha,
China, in 1999, and the M.S. and Ph.D. degrees
in computer science from Central South University,
Changsha, in 2002 and 2008, respectively. He is
currently an Associate Professor with the School of
Computer Science and Engineering, Central South
University. His current research interests include
autonomic communications, mobile computing, and
the Internet of Things.

Kaiping Xue (Senior Member, IEEE) received the
bachelor’s degree from the Department of Informa-
tion Security, University of Science and Technology
of China (USTC), in 2003, and the Ph.D. degree
from the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007. From
May 2012 to May 2013, he was a Post-Doctoral
Researcher with the Department of Electrical and
Computer Engineering, University of Florida. Cur-
rently, he is a Professor with the School of
Cyber Science and Technology, USTC. His research

interests include next-generation internet architecture design, transmission
optimization, and network security. He serves on the Editorial Board Member
for several journals, including IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING, IEEE TRANSACTIONS ON WIRELESS COM-
MUNICATIONS, and IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT. He has also served as a (Lead) Guest Editor for many
reputed journals/magazines, including IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS, IEEE Communications Magazine, and IEEE Network.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:38:38 UTC from IEEE Xplore. Restrictions apply.

