
1318 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

SecGrid: A Secure and Efficient SGX-Enabled
Smart Grid System With Rich Functionalities

Shaohua Li, Kaiping Xue , Senior Member, IEEE, David S. L. Wei, Senior Member, IEEE,

Hao Yue , Member, IEEE, Nenghai Yu , and Peilin Hong

Abstract— Smart grid adopts two-way communication and rich
functionalities to gain a positive impact on the sustainability and
efficiency of power usage, but on the other hand, also poses
serious challenges to customers’ privacy. Existing solutions in
smart grid usually use cryptographic tools, such as homomor-
phic encryption, to protect individual privacy, which, however,
can only support limited and simple functionalities. Moreover,
the resource-constrained smart meters need to perform heavy
asymmetric cryptography in these solutions, and thus unneces-
sarily increases load on smart grid. In this paper, we present
a practical and secure SGX-enabled smart grid system, named
SecGrid. Our system leverages trusted hardware SGX to ensure
that grid utilities can efficiently execute rich functionalities
on customers’ private data, while guaranteeing their privacy.
With our well-devised security protocols in SecGrid, only the
smart meters need to perform AES encryption. To validate
the superiority of our design, we conduct security analysis and
experimentation. Security analysis shows that SecGrid can thwart
various attacks from malicious adversaries, and the experimental
results show that SecGrid is much faster than the existing
privacy-preserving schemes in smart grid.

Index Terms— Smart grid, Intel SGX, data aggregation, rich
functionalities, security, privacy.

I. INTRODUCTION

SMART grid integrates various information and communi-
cation technologies to achieve efficient and reliable power

generation, transmission, distribution, and control [1]–[3].
Each house will be equipped with a smart meter, which
collects customers’ interval data (typically minute-level or
second-level power usage profile) for billing or analyzing
purpose. On the one hand, these fine-grained data are used to
enable real time analysis, such as dynamic pricing [4], [5] and

Manuscript received March 26, 2019; revised July 21, 2019 and
August 25, 2019; accepted August 26, 2019. Date of publication September 2,
2019; date of current version December 13, 2019. This work was sup-
ported in part by the National Key R&D Program of China under Grant
No. 2016YFB0800301, the National Natural Science Foundation of China
under Grant No. 61972371 and No. 61671420, and the Youth Innovation
Promotion Association Chinese Academy of Sciences (CAS) under Grant
No. 2016394. The associate editor coordinating the review of this man-
uscript and approving it for publication was Dr. Aris Gkoulalas Divanis.
(Corresponding author: Kaiping Xue.)

S. Li, K. Xue, N. Yu, and P. Hong are with the Department of Electronic
Engineering and Information Science, University of Science and Technology
of China, Hefei 230027, China (e-mail: kpxue@ustc.edu.cn).

D. S. L. Wei is with the Computer and Information Science Department,
Fordham University, New York, NY 10458 USA.

H. Yue is with the Department of Computer Science, San Francisco State
University, San Francisco, CA 94132 USA.

Digital Object Identifier 10.1109/TIFS.2019.2938875

load forecasting [6], [7]. On the other hand, this information
raises privacy concerns because it reveals important personal
information and can lead to various cyberattacks [8], [9].
For example, attackers can derive the appliance usage pat-
terns of the householders from fine-grained energy usage
profile [10].

To prevent customers’ fine-grained data from disclosure,
secure data aggregation schemes [11]–[13] have been proposed
to aggregate overall power usage data. In these schemes, each
smart meter encrypts data using homomorphic cryptography,
such as Paillier [14] and BGN [15], and then reports ciphertext
to gateway. The gateway will compute the aggregation result
on ciphertext and then report the result to control center for
further analysis. Data aggregation guarantees that only overall
power usage data will be known by others, thereby protecting
customers’ privacy. However, some important tools, such as
dynamic pricing and load forecasting, which can be used to
ensure grid system’s stability and reliability, require the grid
utilities to compute on customers’ fine-grained data. Dynamic
pricing is used to charge customers with dynamic prices based
on their real time usage. To realize it in a privacy-preserving
way, the existing schemes, like the one in [4], use homo-
morphic encryption and sophisticated design. SecureCloud
project [16] explored sensitive data processing including load
forecasting with Intel SGX. This work partially interacts with
ours in the section of function implementations. However, it is
limited in single task while we aim at a general framework.

Although utilizing homomorphic encryption can realize data
aggregation and dynamic pricing in a privacy-preserving way,
it brings in a heavy computation overhead to the grid utilities,
especially for resource-constrained smart meters [17], [18].
In addition, many useful tools, like load forecasting, are less
likely to be implemented efficiently with privacy protection in
the same way as they always involve computations of high
complexity. Furthermore, if we want to realize multiple tools
in one system, the computation overhead will be even higher.
All these factors make crypto-based schemes impractical to
modern smart grid systems.

We refer to these tools (i.e., data aggregation, dynamic
pricing, load forecasting, etc.) as functionalities. In general,
it is a trade-off between rich functionalities and strong privacy
protection, as it is very hard to achieve both of the features
simultaneously. However, in this paper, we accomplish both
by our novel design. We present SecGrid, a secure and

1556-6013 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0002-4112-6684
https://orcid.org/0000-0003-4417-9316
https://orcid.org/0000-0002-3027-1990

LI et al.: SecGrid: A SECURE AND EFFICIENT SGX-ENABLED SMART GRID SYSTEM 1319

efficient smart grid system that possesses the properties of pri-
vacy preservation and rich functionalities. Our security model
considers malicious adversaries who may control the software
and even the OS of the whole grid utilities (including gateways
and control center) except for the certified physical proces-
sors involved in the computation. In SecGrid, the resource-
constrained smart meters only need to perform AES
encryption, and the gateways can perform rich functionalities
with high efficiency in a privacy-preserving way. In fact, our
system can be treated as a framework, as any functionality that
can be implemented obliviously is compatible with SecGrid.

Our main contribution is the design, implementation, and
evaluation of this practical smart grid system. We use SGX
processor, which is Intel’s trusted hardware capability [19],
as a building block. Indeed, SGX does not guarantee to secure
everything, and we need to cope with many challenges not
addressed by the hardware. The first is to establish a secret
key between a smart meter and a gateway. Since smart meter
is resource-constrained, it cannot perform heavy cryptographic
schemes, such as Diffie-Hellman key exchange and asymmet-
ric encryption [20], [21]. To solve this problem, a user device
is introduced to participate in the initialization phase of a
smart meter, which can only interact once with smart meter
to complete the key exchange.

The second challenge is to guarantee data integrity for the
smart meters’ reports. Since SGX has no non-volatile storage,
the customers’ reports that need to be stored in the storage
of gateway, may be tampered, removed, or rolled back by
a malicious software or compromised OS [22], [23]. The
existing solutions guaranteeing integrity in such case either
bring in heavy overhead or are not suitable for smart grid
architecture [24], [25]. We thus propose a lightweight integrity
guaranteed method for SecGrid. This method is inspired
by count increment technique of literature [26]. During the
processing of gateway, every report will be encrypted together
with unique count and nonce, and the monotonicity and
freshness of which will be verified in our proposed periodic
report protocol. A similar approach to prevent rollback attacks
has also been adopted in Trusted Platform Module (TPM) [27].

The next challenge is to protect the data inside the isolated
memory regions from attacks due to unsafe memory accesses.
SGX provides the isolated memory regions for the programs,
and thus unsafe implementation of programs can easily leak
data or suffer from other attacks. By “unsafe” here means
that the implemented codes may have memory access patterns
or control flows that depend on the values of sensitive data.
We thus provide the safe implementations of three function-
alities, namely, data aggregation, dynamic pricing, and load
forecasting, to show how the functionalities can be securely
supported in SecGrid. Other challenges, such as time synchro-
nization, gateway restart protection, etc., are also solved in our
system. In summary we make the following contributions:
• We present SecGrid, a practical smart grid system sup-

porting rich functionalities while guaranteeing customers’
privacy. In our design, the smart meters only need to
perform AES encryption instead of heavy cryptography.

• Our system is compatible with any functions that can be
implemented obliviously in smart grid. To better present

our system, we discuss three case studies, namely data
aggregation, dynamic pricing, and load forecasting, with
strong data obliviousness.

• The security analysis indicates that our design is secure
against malicious adversaries. Also, the experimental
results show that the proposed protocols can be completed
efficiently, and the runtime of three functions has around
103× improvement compared with existing solutions.

The rest of the paper is organized as follows: Section II
enumerates the related works of Intel SGX and rich function-
alities in smart grid. Then we present some preliminaries of
our system in Section III. In Section IV, we introduce our
system model and security model. We illustrate protocols in
detail about initialization, periodic report and gateways/control
center restart in Section V, followed by implementation of
functions in Section VI. In Section VII and VIII, we analyze
the security of our design and evaluate the performance
respectively. Finally, Section IX makes a conclusion.

II. RELATED WORK

A. Functionalities for Smart Grid
To enable rich functionalities in smart grid, customers’

consumption data need to be collected for analysis. However,
customers’ privacy may be leaked out unconsciously during
the procedures. To guarantee privacy and also enable functions
carried out in smart grid at the same time, many cryptography-
driven schemes have been proposed. One popular privacy-
preserving mechanism is secure data aggregation [11]–[13],
which aggregates customers’ consumption data of a spe-
cific region through homomorphic encryption. Another widely
researched topic is dynamic pricing [28]–[30], which uses
flexible pricing strategy based on current market demands.
However, privacy protection schemes, like the one in [4],
can only handle simple pricing models with cryptography
tools. Some real time pricing models [5] are not likely to
realize efficiently in a privacy preserving way due to time
or resource limitation. Other famous functions, such as load
forecasting [6], [31], [32], that are very useful to improve the
grid’s performance, also suffer the same problem. SecureCloud
project [16] showed several use cases such as data aggregation
and load forecasting to show the possibility of implementing
sensitive data processing with Intel SGX in smart grid systems.

B. Intel SGX
Intel SGX provides isolated execution spaces, named

enclaves. Programs in enclaves can process data in plaintext.
But any software or even the OS on the same platform, cannot
observe the data content inside enclaves [33], [34]. There
are also many works aiming at developing privacy-enhanced
applications with SGX. Ohrimenko et al. [33] showed how
to outsource model training to untrusted servers. To make
memory accesses data-independent, which is not protected by
SGX, their system uses padding and other tricks to hide access
pattern. VC3 [34] implements MapReduce in distributed
servers with confidentiality and verifiability. Opaque [35] is an
encrypted data analytics platform over Spark SQL, which uses
oblivious sorting for data processing in an encrypted database.

1320 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 1. General processing flow in enclave.

Iron [36] implements some interesting but heavy primitives
in cryptography. The SGX implementations are efficient and
practical. The access pattern, not protected by SGX, is hid-
den by oblivious comparison functions. Town Crier [37] is
a work that provides authenticated data feed from external
trusted sources for smart contracts. ZeroTrace [24] provides
an oblivious data storage system from SGX to access external
storage, which minimizes the response time. Obliviate [38]
provides an SGX-based file system for oblivious data storage
and access. EnclaveDB [39] is a secure database using SGX,
which guarantees integrity, confidentiality, and freshness for
data and queries.

In aforementioned systems, authors have proposed effective
designs including new system architectures, protocols and
etc., to address possible security issues that may occur when
deploying SGX. In SecGrid, we also develop protocols and
study use cases to address both security and performance
issues in smart grid systems.

III. PRELIMINARIES

A. Enclaves in SGX
SGX refers to Intel Software Guard Extension, a set of

CPU extensions, which can provide isolated execution envi-
ronments, named enclaves, to protect the confidentiality and
integrity of the data against all other software, even a com-
promised OS, on the platform. When a platform is equipped
with a SGX-enabled CPU (such as the gateways and control
center in our system), in addition to the enclave, the memory,
BIOS, I/O and even power are treated as potentially untrusted.
The general processing flow in enclave is shown in Fig. 1.
The encrypted data firstly will be transmitted into enclave for
decryption. Then the decrypted data will be the input of some
function f . Finally, the output of f will be encrypted and then
sent to the outside of the enclave.

SGX provides two core operations, sealing and remote
attestation, which will be used in our system. Sealing is for
storing data securely outside of the enclave. Remote attestation
is for a remote party to verify the legitimacy of the enclave
(i.e., the enclave is created by a legal SGX-capable CPU and
the code is correctly loaded in the enclave). The details are as
follows:
• Sealing. Each SGX-capable CPU has a hardware-

protected sealed key called Root Seal Key that cannot
be stolen or forged. An enclave can derive a Seal Key
from the Root Seal Key using instruction EGETKEY. This
key is specific to the enclave, and other enclaves cannot

Fig. 2. System architecture.

derive the same key. But the same enclave can always
get this key even if it is destroyed and restarted. Seal Key
is used to encrypt and authenticate data stored outside of
the enclave.

• Remote attestation. SGX allows a remote party to check
whether the code is correctly loaded in an enclave. When
an enclave is created, the CPU will generate a hash of
the state of the loaded code and static data, known as
measurement, and a report that contains the measurement
and optional self-defined data (e.g. a new generated public
key). Then the software that created the enclave can
ask for a quote, which consists of a report and its
signature signed with a hardware-protected attestation
key. Remote parties can verify the quote by contacting
the Intel Attestation Server. Such procedure is known as
remote attestation. The detailed operations can be found
in [19].

B. Attacks Against Enclave
The protection of SGX is restricted in CPU. Although

data are encrypted, the memory access patterns may leak
the privacy of data inside enclave [24]. Branches in pro-
gram like if-else make data-dependent running patterns,
and enclaves that are running such programs suffer from
cache-timing attack [33], [34]. Access to storage outside
enclave exposes address to a PCI-e bus listener or an oper-
ating system (OS), who can create page faults. Furthermore,
if the address is data-dependent, there will be page-fault
attacks [23], [24].

Also, rollback attack breaks the freshness of external
data [25]. Some data that requires a long-term preservation
should reside in persistent storage, like disk. These data can
be rolled back to a previous version by a compromised OS.
For example, replacing the reported power usage data at time
slot t with t − 1. In preventing rollback attack, integrity
guarantee from Merkle tree [24] fails when the platform is
restarted, while other methods are either too heavy or unable
to be applied to smart grid architecture [25], [34]. Therefore,
we need to develop new approach in our design to prevent
such attack.

IV. SYSTEM MODEL AND SECURITY MODEL

A. System Model
Our system adopts the typical architecture of smart grid,

which is shown in Fig. 2. It contains a control center,

LI et al.: SecGrid: A SECURE AND EFFICIENT SGX-ENABLED SMART GRID SYSTEM 1321

gateways in residential area, smart meters, and user devices
in home area. Control center and gateways are able to create
enclaves, called the control enclave and the gateway enclave,
respectively. Our design goal is to protect individual user’s
privacy, i.e., the reports generated by smart meters and inter-
mediate results during processing. The final outputs of some
functionalities may leave enclaves. In such case, we need to
guarantee the outputs will not reveal individual user’s private
data. Thanks to SGX’s design, all running or to be run codes
inside enclaves can be verified by anyone. Thus any users
could do the verification to guarantee their privacy is not
leaked.

1) Control Center (CC): CC collects data and responds to
requests from/to each gateway. It has a enclave, called control
enclave (CE). CC also has all the initialization keys of smart
meters (Ki

init for each smart meter i). These keys are used in
the initialization phase of smart meters, and can be accessed
by the control enclave. To prevent the CC or other potential
attackers from knowing the smart meter’s key, the control
enclave takes Merkle tree based techniques to access these
keys.

2) Gateways (GW): A GW runs a secure enclave, called
gateway enclave (GE), which directly collects and processes
the data reported by smart meters. Many functionalities, such
as data aggregation, dynamic pricing, and load forecasting,
can be performed inside the gateway enclave. The gateway
enclave can establish shared keys with smart meters with the
help of user device.

3) Smart Meters (SM): Every house is equipped with a SM
to collect the power usage data and report the encrypted data to
gateway enclave periodically, e.g., every 15 minutes. Consid-
ering the constrained resource of smart meter, the only cipher
used here is AES-GCM used to guarantee both confidentiality
and integrity of data. Each SM contains an initialization key
Ki

init that is used to establish a new secret key Ki between the
SM and the gateway enclave.

4) User Devices (UD): A user needs a device to help
his/her SM establish a secret key with gateway enclave in the
initialization phase. The device can be a smartphone that is
installed with an official application so that it can participate
in the initialization of a new SM. UD has sufficient computing
capability to run asymmetric cryptography algorithms and
verify remote attestation.

B. Security Model
We assume that a malicious adversary who can control all

the software, including the OS, in the CC and GW, tries to
violate the confidentiality and integrity of customers’ private
data by performing the following attacks. The adversary can
read, block, modify, and replay all messages sent by/to a
secure enclave. The adversary is also able to observe memory
access pattern and infer control flow in an enclave process,
i.e., launching side-channel attacks. In particular, the adversary
may perform rollback attack, that is, to replace the sealed
data with a previous version. In real smart grid scenarios,
CC is often considered as semi-trusted, i.e., they follow the
pre-defined protocols while trying to learn as much users’
privacy as possible. In SecGrid, such assumption can also

be used. But thanks to SGX, SecGrid can work well under
malicious model. We thus assume CC is malicious or may
be compromised by attacker in this paper. SMs and UDs
are assumed to be trusted in SecGrid. Although there exist
practical attacks to break smart meters, there have been
many defense methods [40], [41] proposed to defend against
them, which are compatible with SecGrid and can be directly
utilized.

We assume that the adversary cannot compromise the secure
enclaves and the relevant enclave keys (e.g. Seal K ey and
attestation key). The adversary cannot break cryptographic
primitives used in our system, i.e AES-GCM, Diffie-Hellman
key exchange, etc. Compromising the user device, denial-of-
service and physical attacks, such as power analysis, are out
of the scope of this paper.

The adversary is assumed to not want to trigger alarm.
Although the adversary can perform various attacks, he/she
does not want to be detected by the smart grid system.

Besides, the grid administrator is responsible for the secure
deployment of smart meters. Their keys are sealed by the
control enclaves in advance.

V. SYSTEM DESIGN

A. Overview
Our goal is to guarantee customers’ privacy while enabling

rich functionalities in smart grid. Rich functionalities refer to
various demand side management functionalities that process
customers’ private data to improve the grid’s performance.
These rich functionalities are hard to realized efficiently by
cryptography-based schemes.

In SecGrid, a GW runs rich functionalities inside the
gateway enclave. To prevent side-channel attacks, these func-
tionalities should not contain data-dependent operations, that
is, they need to be implemented obliviously. We discuss the
possible leakage that may be introduced by three popular
functionalities, namely, data aggregation, dynamic pricing,
and load forecasting, and provide the secure implementations,
which will be described in Section VI.

To guarantee the confidentiality and integrity of input and
output data of rich functionalities, in SecGrid, we develop a
new periodic report protocol to secure the transmission and
storage of customers’ private data. Each SM’s reported data is
encrypted using AES-GCM, and contains two new parameters,
nonce and ctr. These parameters are carefully used to
resist various attacks, such as replay attack and rollback
attack, which, however, require more complex measures to
prevent in other solutions. The secret key used in this protocol
is established by our proposed initialization protocols for
SMs and GWs. Considering the robustness of our system
and preventing the adversaries from restarting the gateway
enclave, we propose a status restoring protocol for GW, which
can avoid data loss due to the restart of GW or gateway
enclave.

B. CC/GW Initialization
This initialization phase involves the control enclave and

gateway enclave. The control enclave will be initialized at the

1322 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 3. CC/GW initialization protocol.

system setup, and when the gateway enclave starts to work,
it will interact with the control enclave to authenticate each
other as well as share symmetric/asymmetric keys and time
information.

The initialization protocol is shown in Fig. 3. These six steps
can be divided into two stages: Attest and Key Exchange and
Time Sync. During the first stage, the gateway enclave and the
control enclave attest each other through remote attestation,
and then use Diffie-Hellman key exchange to share a secret
key. In the second stage, the control enclave synchronizes its
time to the gateway enclave as well as confirms the shared
keys. The details are shown as follows.
Stage 1 [Attest and Key Exchange]

1� The gateway enclave generates a public/private key
pair (PKgw, SKgw) for a CCA2-secure public key
cryptosystem.

2� The gateway enclave sends its remote attestation message
to the control enclave, which contains PKgw and a
generated Diffie-Hellman parameter ga .

3� Upon receiving the remote attestation, the control enclave
verifies its legitimacy (the detailed verification phase of
remote attestation is described in Section III-A). Then,
it generates another Diffie-Hellman parameter gb, and
sends back its remote attestation message containing
PKcc, gb and the current wall-clock time.

Stage 2 [Time Sync. and Confirm]

4� Once the message is received, the gateway enclave records
the received time as reference time and starts the time
counter from 0. After verifying the remote attestation,
the gateway enclave obtains the time: the reference time
plus the value of the time counter. Then, it encrypts the
time with gab and signs the ciphertext with SKgw. The
gateway enclave sends the ciphertext and the signature to
the control enclave.

5� The control enclave verifies the signature with PKgw,
decrypts the ciphertext with gab, and then compares
the time with local time. If all the verifications suc-
ceed, the control enclave will seal gab, and return an
ack message, which is encrypted using gab and signed
using SKcc.

Fig. 4. The SM initialization protocol.

6� Upon receiving the ack, the gateway enclave verifies
the signature using PKcc and decrypts the ciphertext
using gab. Then, it seals gab and PKcc.

One thing to note that the time of the system does not need
to be consistent with the Internet, and it just needs to be
consistent within the system.

C. SM Initialization Protocol
The first time when a customer accesses the smart grid,

he/she first installs an official applications on UD to initial-
ize his/her SM. The SM initialization protocol is as shown
in Fig. 4. This protocol can be triggered by the UD or the cus-
tomer manually. We take the initialization of the i-th SM as an
example in the following description. The initialization phase
can be divided into three stages: Attestation, Key Estab-
lishment, and Confirm. The UD will verify the legitimacy
of the gateway enclave according to its remote attestation.
The second stage is used to establish a secret key between the
SM and the gateway enclave, where the UD is used as a bridge.
The SM has a sealed initialization key Ki

init, which is also
known by the control enclave. The secure deployment of smart
meters’ keys is the responsibility of the grid administrator.
To enable the secure use of Ki

init, we utilize Merkle tree based
method, proposed in ZeroTrace [24], to guarantee integrity and
freshness. Note that, after the following procedures, a fresh
nonce will be securely obtained by the SM, and it will be
used as one of the parameters in the first report of the SM.

One significant problem is how the SM sends initialization
message to the UD. We can utilize existing solutions such
as ZigBee based communication protocol (used in OG&E
company [21]) to achieve this purpose.
Stage 1 [UD←GE, Attestation]
1� UD starts and requests a remote attestation from the

gateway enclave.
2� The gateway enclave returns its remote attestation mes-

sage, which contains PKgw, to the UD.
3� Upon receiving the remote attestation, the UD verifies it,

and then triggers the initialization phase of the SM.

LI et al.: SecGrid: A SECURE AND EFFICIENT SGX-ENABLED SMART GRID SYSTEM 1323

Stage 2 [SM↑GE, Key Establishment]
4� The SM starts the initialization phase. It first generates a

new random key Ki, and then encrypts this key and its
identifier IDi with sealed initialization key Ki

init. After
that, the SM sends the Init message to the UD, where
Init = IDi||EKi

init
(IDi||Ki), E(·) is a symmetric

cryptosystem.
(To be noted, the Init message does not need to be
protected from eavesdropping since it has been encrypted.
We will analyze this in detail in Section VII-D).

5� The UD encrypts the IDi in Init message using PKgw
to generate new Init� message, and sends it to the
gateway enclave: Init� = ÊPKgw(Init), Ê(·) is a
public-key cryptosystem.

6� The gateway enclave extracts the IDi with SKgw, gener-
ates a getInitKey() message containing the IDi encrypted
with gab, and then sends it to the control enclave.

7� Upon receiving the message, the control enclave decrypts
it and extracts the IDi. Then, the control enclave obtains
the corresponding Ki

init, void this key and then returns it
after encryption.

8� The gateway enclave can decrypt the Ki
init, and obtain

the Ki from Init� with it. The gateway enclave returns
a Done message to the UD to notify the initialization
has succeeded, and an Echo message to the SM, which
contains an encrypted nonce using Ki.

Stage 3 [SM↑GE, Confirm]
9� The SM decrypts the Echo message, and sets the local

time to time. Then, the SM returns an Ack message to
the gateway enclave. This message contains the encrypted
nonce+ 1.

10� The gateway enclave verifies the Ack message, and then
seals the Ki with IDi as associated data in AES-GCM.

D. Periodic Report Protocol
When the initialization phase is done, the SM shares a

symmetric key with the gateway enclave, which will be used
to secure the report data. In order to ensure the data integrity
and prevent replay attack, we enable a monotonic counter ctr,
which starts from 0, in SM to indicate different reports. Due to
the continuity of the SM’s reports, our use of ctr can resist
rollback attack, which will be proved in our security analysis.
Another parameter nonce is also used here to guarantee the
freshness of reports. Considering that the freshness verification
needs the gateway enclave to store every nonce, which is
difficult since SGX has no permanent storage, we make clever
use of cyclical nature of the reports. By letting the gateway
enclave randomly choose the nonce for the SM to use in the
next report, we avoid the storage of each nonce. The protocol
proceeds as follows:
1� When the i-th SM needs to report, it first increases the

counter ctri = ctri + 1, and then generate the report
ri = IDi||EKi(IDi||mi||nonce||ctri), where nonce
is sent by the gateway enclave during last report period.
The SM reports ri.

2� Upon receiving the report, the gateway enclave decrypts
the report with its sealed key Ki, and extracts data mi,

nonce, and ctri. Next, the gateway enclave verifies the
correctness of nonce and obtains last counter ctroldi
from storage, and then checks if ctri = ctroldi + 1.
If all passed, the gateway enclave will seal ri and process
mi with predefined functions. Otherwise, an error or attack
may happen, the gateway enclave will report this alarm
to CC immediately. Finally, based on the outputs of
functions, the gateway enclave generates a report for CC
and a response for the SM.

3� The control enclave can process these reports in the same
way as what the gateway enclave does, and generate a
response.

In both control enclave and gateway enclaves, there needs
a secure database to store data. Here we can utilize secure
database techniques based on SGX, like EnclaveDB [39],
to achieve this purpose.

There might be failed reports caused by network error,
adversarial attacks, etc. In such scenarios, the corresponding
gateway enclave can simply ask the failed smart meter to
re-report, and trigger an alarm if it fails again.

One key challenge of above protocol is how to design and
program the functions executed inside the enclaves to prevent
privacy leakage. As we illustrate before, SGX is not perfectly
secure. For example, software-based side channel attacks can
violate the data confidentiality even if the data is inside the
gateway enclave. So we should take fully account of the secure
design and implementation of these functions. We will discuss
this issue in Section VI.

E. GW/CC Restart Protocol
When a gateway enclave restarts, it needs to restore its

previous state, i.e., security keys, latest reports, and time.
At restart Security keys are unsealed securely from local
storage to establish secure channels. The gateway enclave
loses all previously unsealed data and has to request these data
from SMs or control enclave. The restart protocol is detailed
as follows:
1� The gateway enclave unseals Ki, SKgw, PKgw, PKcc,

gab and all latest sealed reports from storage. If the
unsealing procedure fails, the alarm will be triggered.
Otherwise, the gateway enclave sends newly generated
nonces and requests to all SMs to ask for report as well
as to the control enclave to ask for time. These new
nonces will replace the old nonces and be used in new
reports.

2� a. Each SM returns its latest report to the gateway
enclave.

b. The control enclave returns current time to the
gateway enclave.

3� Upon receiving responses, the gateway enclave verifies the
time then sets the local time. Then it checks the freshness
of nonces and if ctri in each report satisfies ctri =
ctroldi or ctri = ctroldi +1. If all passed, the gateway
enclave restores successfully. Otherwise, the restore phase
may encounter a problem, and the gateway enclave will
trigger alarm to notify the grid administrator.

When a control enclave restarts, it also needs to restore its
previous state. It firstly unseals private key SKcc and public

1324 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

keys PKgw of each gateway enclaves. There may exist reports
that have not sealed yet. In such cases, the control enclave
could ask gateway enclaves to report again, just like the
restart phase for gateway enclaves. To restore time, the control
enclave should ask at least one gateway enclave to report its
time, and it thus requires at least one live gateway enclave.

VI. FUNCTIONS

The protocols have secured the data submission from SMs to
the gateway enclave and the control enclave. However, SGX is
shown to be vulnerable to several types of attacks, in particular,
cache timing and page table side-channel attacks, as well
as speculative attacks [33], [35], [36]. Although Intel SGX
excludes side-channel from its security model, many schemes
like Varys [42] and SCONE [43] have been proposed to protect
programs running in SGX enclaves from side-channel attacks.
Grid developers should use or refer to these schemes for
secure function implementations. We discuss three distinct
case studies where the security of users’ data is put at risk
due to data-dependent calculations. These functions are chosen
because their secure implementations have been well studied
for many years. Here we want to show how they could be
securely implemented in a simple way in SecGrid. We also
want to highlight that all these functions could be deployed
simultaneously with SecGrid while other schemes could not
be or are strictly limited due to performance reasons.

A. Case Study 1: Data Aggregation
Secure data aggregation is used to aggregate overall power

usage of all customers over a timespan as follows:

PowerUsageT
area(t) =

∑
i∈S

t+T−1∑
�=t

PowerUsagei (�), (1)

where S is the customer set in this area. Compared with
cryptography-based schemes [11], [13] that uses Paillier or
BGN cryptosystem for homomorphic computation, our system
only requires symmetric encrypted data for submission and
computation. To make the aggregation oblivious, the gateway
enclave follows by the order of the arriving reports to add up
the power usage data, and thus no additional leakage exists.

B. Case Study 2: Dynamic Pricing
Typical dynamic pricing models include Time-of-Use

(ToU), Critical Peak Pricing (CPP), and Real Time Pricing
(RTP) [2], [5]. We here introduce the secure implementation
of them.

ToU: Electricity prices are different at peak time and at off-
peak time. Peak time prices are higher than off-peak time for
demand control. GW takes the price from a piecewise function:

PricePerUnit(t) =
{
p ift ∈ off-peak time

p+�p ift ∈ at-peak time
, (2)

where t is the current time. The dynamic pricing does not
have sensitive patterns, because the condition for the piecewise
function (2) is time t , which is open.

But a secure and reliable time [36], [37] needs extra
efforts, since timestamp in gateway BIOS can be tampered.
As mentioned in Section V-B, gateway enclaves can obtain
time from control enclave, i.e., gets time from a trusted source
during initialization.

CPP: Peak time is not fixed. In holidays or the days
with special events, it may not be suitable to use ToU
pricing model, which is generally for regular days. Therefore,
CPP is developed to also handle such case, which can be
implemented in a way that is similar to ToU in our system,
where days become the condition of specialized piecewise
function [2], [4].

RTP: Real time pricing schemes allow the grid to charge
customers with the nearest real time price, i.e., the price at
each particular interval of time (e.g. one hour). The price
can be announced one hour or a day ahead. We implement
a day ahead RTP scheme proposed in paper [5] in our system,
in which the grid utility releases the predicted prices of the
next 24 hours.

Let mh denote the reported power usage at hour h, and the
pricing function which depends on three parameters ah , bh ,
m0 ≥ 0 be as follows:

RealTimePricing(mh) =
{

ah, if0 ≤ mh < m0,

bh, ifmh ≥ m0.
(3)

In this scheme, m0 is a fixed value, while ah and bh change
every hour and every day. In order to allow customers to
have sufficient time to schedule their electricity consumption,
the GW should predict the prices of the next 24 hours
(i.e. 24 ah and bh) and broadcast the prices to the SMs. Let
â[t][h] and b̂[t][h] denote the predicted parameters for the
upcoming price tariff for each hour h on day t , the prediction
model is formulated as follows:{

â[t][h] = k1a[t − 1][h] + k2a[t − 2][h] + k3a[t − 7][h],
b̂[t][h] = k1b[t − 1][h] + k2b[t − 2][h] + k3b[t − 7][h].

(4)

Note that â[t][h] and b̂[t][h] are just predicted parameters.
The true values (a[t][h] and b[t][h]) will be known when
the hour h comes, and be used to charge customers. As the
condition for piecewise function is power usage x , the access
pattern of a naïve implementation is data-dependent. To hide
the access pattern, we use oblivious assembly functions
O_greater() and O_move() [33], [36]. The function
Real_Time_Pricing in Fig. 5 is executed in the gate-
way enclave, which avoids if-else branches and has no
data-dependent operations. Thus it can thwart aforementioned
side-channel attacks.

C. Case Study 3: Load Forecasting

Current commonly used load forecasting models include
statistical based model and artificial intelligence based
model [2], [44]. Next, we describe the secure implementation
of stochastic time series method [6] and neural network based
algorithm [44].

LI et al.: SecGrid: A SECURE AND EFFICIENT SGX-ENABLED SMART GRID SYSTEM 1325

Fig. 5. Data oblivious real time pricing function.

1) Stochastic Time Series: This method uses a fit function
to calculate a prediction of next moment (e.g. hourly) load
from previous records. An example model is [6]:

Load(t) = φ1Load(t − 1)+ φ2Load(t − 2)

+ . . .+ φkLoad(t − k)+ noise(t). (5)

To implement this model, the cryptography-based methods
have to use computationally expensive homomorphic multipli-
cation and addition. While in our system, the GW can compute
the predicted load inside the gateway enclave with decrypted
data directly.

2) Neural Network: Neural network based algorithms can
figure out the relationship between referring variables and
power consumption by supervised learning [44]. Referring
variables may include history consumption, day (e.g. holiday),
and weather (e.g. temperature). Similarly, these data items
are obtained from the control enclave. Compared with pure
cryptography schemes that need to leverage homomorphic
encryption, we can run oblivious machine learning algo-
rithms [33] on plaintext data in the gateway enclave.

D. General Functions

Besides the three functions we described above, there are
many other functions often performed by the grid to improve
the system performance. Many of them require customers’
private data as inputs. All these functions can be denoted
as f (x, y), where x is the privacy-related input, and y is the
remaining input, such as electricity price, time, and weather
conditions. In general, f (x, y) can be seen as a combina-
tion of simple functions. The three implemented functional-
ities contain basic mathematic operations, like addition, and
general functions, like piecewise function, unary function,
multi function, so they provide an implementation reference
for f (x, y).

For example, UDP [4] is a usage-based dynamic pricing
scheme. For individual electricity usage ei,t of user i and
community-wise electricity usage es,t at time slot t , pricing

function F(ei,t) is defined as:

F(ei,t) =

⎧⎪⎨
⎪⎩

p1, ifes,t < em ,

p2, ifes,t > em , ei,t ≤ ea,

a + bei,t + ce2
i,t , ifes,t > em , ei,t > ea,

(6)

where es,t is calculated based on electricity usage of whole
community, em and ea are pre-defined parameters. When
ei,t ≤ ea , user i has static price p1 or p2. When ei,t > ea ,
the dynamic price is applied. In this case, F(ei,t) is referred as
f (x, y), es,t and ei,t are referred as x, {p1, p2, a, b, c, em, ea}
are referred as y. To perform f (x, y) in a privacy-preserving
way, the enclaves in our system collect x from SMs, and
request y from a trusted data source via HTTPS [37]. For
example, the grid administrator can post the latest pricing strat-
egy on a website, where the public can easily verify and the
enclaves can obtain the data they need. From this prospective,
our SecGrid system is able to support rich functionalities with
privacy protection, and this feature is not available in other
cryptography-based smart grid systems.

It is worth noting that SGX has a limited working memory
in the current design and exceeding memory may have serious
impacts on performance. Loading large libraries like machine
learning toolsets when running is possible to exceed such
memory. There are works like SCONE [43] can be used to
reduce required memory of large libraries while maintaining
security guarantees. In fact, as shown in [45], compared with
homomorphic encryption-based schemes, SecGrid would still
be much faster even if the running codes exceed working
memory.

VII. SECURITY ANALYSIS

Our system, SecGrid, aims to protect customers’ privacy
and execute functions securely against malicious adversaries.
Specifically, our system should guarantee (1) confidentiality,
(2) integrity, and (3) availability. And we will describe how
the various attacks are prevented by our proposed secure
protocols and oblivious operations. In addition, we analyze
the security for initialization phases, which are the foundation
of our system security.

A. Confidentiality
Theorem 1: Customer data from the periodical report pro-

tocol will never leak outside the enclave. Only the outputs of
data aggregation, dynamic pricing, and load forecasting are
revealed to the power grid company.

Proof: Data confidentiality comes from (a) secure com-
munication protocols for periodic report to hide data on the
fly; (b) oblivious operations in gateway enclave to hide access
pattern.

(a) Outside Enclave: Periodic reports from SM are
encrypted with AES-GCM under key Ki shared between SM
and GW enclave. This encryption is IND-CCA2 and any
p.p.t (probabilistic polynomial-time) adversary cannot break
the confidentiality without Ki. For key establishment, SM and
the gateway enclave initialize key Ki using the protocol of
Section V-C. SM generates the key and notifies the gateway
in Init� encrypted with PKgw. Only the gateway enclave can

1326 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

decrypt Init� and reveal Ki with CC’s keyring. The sealing
of data uses SealKey to protect confidentiality.

(b) Inside Enclave: The functions are implemented on the
top of oblivious operations of Section VI. The memory and
execution patterns are no longer data-dependent.
• Data Aggregation. Reports are summed up according to the

order of arrival. The aggregation is independent from the
electricity consumption data in SM reports.

• Dynamic Pricing. ToU and CPP use the piecewise function
but the condition is timestamp, which is not private. When
RTP is used for leveled price, the condition becomes the
usage x which is private. We use oblivious assembly func-
tions [33], [36] O_greater() and O_move() to make RTP
function oblivious.

• Load Forecasting. Both regression and neural network
systems leverage oblivious learning algorithms [33].

It shows the confidentiality throughout user data lifecycle. �

B. Integrity
Theorem 2: Integrity and freshness of periodic reports from

SM are achieved in the secure communication protocol.
Proof: AES-GCM = (K, E,D) provides existential

unforgeability. Any p.p.t. adversary A should fail to forge a
ciphertext:
Advexist

A,(K,E,D)
def= Pr

[
sk ← K; y← AEsk(·) : Dsk(y) 	=⊥

]
≤ ε,

where A should never receive the ciphertext y in return from
the encryption oracle Esk(·). The advantage ε is negligible.

The existential unforgeability guarantees the message origi-
nates from SM. To prevent rollback attacks, we use monotonic
GW counter nonce and SM counters ctri to prevent any
steal packet of ctroldi ≤ ctri to forge a packet for ctri.
If a steal report is replayed, gateway enclaves can trigger an
alarm. �

Theorem 3: Integrity (and freshness) of the external data-
base in gateway enclaves and control enclave is guaranteed.

Proof: Gateway enclaves seal Ki and ctri with identifier
IDi as the associated data in AES-GCM. The ciphertext itself
is binded with IDi. We only need to consider rollback attacks.
An attack that changes ctri to a steal value ctrsteali
triggers an alarm to CC because a new packet from i -th SM
with ctri>ctrsteali + 1 indicates the gateway has been
rollbacked.

The control enclave which stores all SM initialization keys
accesses the database with Merkle tree. The root hash is
inside the enclave. During SM initialization, key Ki

init is
labeled as “void” to avoid double registration. This requires
freshness which is guaranteed by Merkle tree and control
enclave. �

C. Availability
We provide robustness to increase system availability by

the GW restart protocol of Section V-E. During short-term
abrupt failures, the GW can restart the enclave and recollect
the data feed from control enclave. Lost periodic reports will
be retried upon GW request. If an adversary prevents GW
from restarting successfully, e.g. keep restarting a gateway any

number of times, CC will not receive regular report and alarm
will then be triggered.

D. Security for Initialization
The security of our system relies on the initialization

phases, including CC/GW initialization and SM initialization.
The initialization of CC and GW is actually the setup of
the gateway enclave and the control enclave. The setup
phase of enclaves is secure according to our security model.
Therefore, the CC/GW initialization cannot be broken by the
adversary.

The UD takes an important role in the SM initialization
phase, which involves four entities, the SM, the UD, the gate-
way enclave and the control enclave. As the communications
between enclaves are secure and the SM cannot be compro-
mised by the adversary, the security for the UD is essential
for the initialization. Due to the limited resource of the SM,
there cannot be a secure channel establish between the SM and
the UD. But, the UD’s role is to forward the message between
the SM and the gateway enclave, and prove the legitimacy
of the gateway enclave for the user. Therefore, even if the
UD is compromised, the adversary cannot break the system,
because he/she has no decryption key and cannot forge any
message.

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
system. We first describe the experimental environment and
performance benchmarks. Then, we evaluate the networking
and processing overhead of the proposed protocols. Finally,
experimental results show that the functions implemented in
our system represent a significant performance improvement
over the existing cryptography-based solutions.

A. Experimental Setup & Performance Benchmarks
1) Experimental Setup: Our experimental platform runs

Windows10 enterprise on Intel Kaby Lake i5-7500@3.40GHz
processor, with 8 GB RAM and 128 GB SSD. We developed
and compiled our code in Visual Studio 2015 with Intel(R)
SGX SDK 1.8 and Intel(R) SGX PSW 1.8. The asymmet-
ric cryptography used in our system for signing is 256-bit
ECDSA. We use Diffie-Hellman key exchange to establish
shared keys, and 128-bit AES-GCM for symmetric message
encryption and authentication. In the following analysis, each
experiment has been repeated 100 times and average results
are reported.

2) Performance Benchmarks: TABLE I provides the time
complexity of the basic operations used in SGX. From this
table, we can see that symmetric encryption and decryption
are very fast (less than 1 microsecond). The most expensive
operation is remote attestation. The main reason is that the
verifier needs to interact with Intel Attestation Server via
network.

B. Performance of the Protocols
The protocol performance is determined mainly by network

complexity and time complexity. Since the size of network

LI et al.: SecGrid: A SECURE AND EFFICIENT SGX-ENABLED SMART GRID SYSTEM 1327

TABLE I

TIME COMPLEXITY OF OPERATIONS IN SGX

TABLE II

PERFORMANCE OF PROTOCOLS

packages in these protocols is relatively small (typically,
< 100 bytes), we only consider the number of communica-
tions (message complexity) for the network complexity. The
time complexity of each protocol is contributed by the time
complexity of operations shown in TABLE I. The complexities
of time and network of the proposed protocols are shown in
TABLE II.

1) System Initialization Protocol: Both gateway enclave and
control enclave need remote attestation, which is the most
expensive operation in this protocol (about 39 ms each). The
protocol requires key exchange between the two enclaves.
We can ignore the computational cost of key generation.
The most expensive parts are signing and verifying, which
take 0.69 ms and 1.21 ms, respectively. Other operations are
relatively faster, e.g. sealing, which need less than 0.1 ms in
total.

2) SM Initialization Protocol: This protocol involves all
four entities in our system. The SM needs to generate
a symmetric key and encrypt the Init message with it.
This procedure takes less than 10μs. The UD verifies the
remote attestation of the gateway enclave and encrypts the
Init� message with PKgw, which takes about 32 ms and
0.69 ms respectively. The gateway enclave verifies signatures
received from the UD and the control enclave, decrypts Init�,
seals key, and generates a signature of Echo. All of these
operations require only 9.5 ms. The control enclave needs
one signing and a key access procedure, which totally take
about 2.1 ms.

3) Periodic Report Protocol: SM encrypts every report
before sending it to the gateway enclave, which, as we
analyzed before, has almost no cost. The gateway enclave
needs to decrypt and seal these reports, and encrypts a new
report for the control enclave as well as a response for the SM.
These operations take about 2.1 ms. We do not include the cost

Fig. 6. Time complexity of data transmission.

Fig. 7. Time complexity of data aggregation.

of executing functions here, which will be fully evaluated in
Section VIII-C. The control enclave follows the same steps.

4) GW Restart Protocol: Once a GW restarts, the gateway
enclave needs to restart, too. It will send a request to the
control enclave to obtain fresh time, and ask each SM to
send a new report to avoid losing report without sealing. This
procedure requires a gateway enclave to communicate n + 2
times with SM and control enclave. It takes 3.1 ms to process
a report, and the gateway enclave requires n times processing.

C. Performance Analysis of Functions
Before the functions being executed, the encrypted data

need to transmit into the gateway enclave from outside. We test
the time complexity of data transmission, the result is shown
in Fig. 6. We can see that the time complexity is very low,
around 1.5 ms per 1000 users.

We implement the three functions mentioned in our paper,
namely, data aggregation, dynamic pricing, and load forecast-
ing. Existing cryptography-based schemes usually use Paillier
or BGN cryptosystem to realize homomorphic operations
in ciphertext. To compare our implementations with them,
we also implement these three functions with Paillier and BGN
cryptosystem, which are denoted as the Paillier and the BGN
in the following description. Details are described as follows.

Data Aggregation: As shown in Fig. 7, our SecGrid has the
lowest cost among all schemes. When the number of users
is 2000, the time complexity of ours is 0.011 ms, which
is 1100× and 2700× faster than the Paillier and the BGN,
respectively.

1328 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 8. Time complexity of dynamic pricing.

Fig. 9. Time complexity of load forecasting.

Dynamic Pricing: We implement two dynamic pricing algo-
rithms, ToU and RTP. As for Paillier and BGN, we use fixed-
price scheme, i.e., they only need to perform homomorphic
multiplication, which in fact has less time complexity than
existing dynamic pricing schemes. As shown in Fig. 8, the time
complexity of our scheme is stable around 1μs, which is 105×
faster than that of the Paillier and the BGN.

Load Forecasting: Our load forecasting model is free from
using Paillier and BGN that need to perform homomorphic
addition and multiplication. From Fig. 9, we can see that our
implementation is 2500× and 7500× faster than the Paillier
and the BGN, respectively, and the time complexity of our
protocol does not increase as the number of users increases.

In summary, the system and SM initialization can be
finished within 100 ms and 50 ms, respectively, and the
processing of periodic report including three functions can also
be completed within around 3×n ms, where n is the number of
reports or users. The most expensive operation in this system is
remote attestation, followed by ECDSA signing and verifying.
Other operations usually take less than 10 ms. Overall, com-
pared to cryptography-based solutions, our SecGrid system has
much better performance.

IX. CONCLUSION

In this paper, we presented a practical smart grid system,
named SecGrid, to enable rich functionalities without leakage
of customers’ private data. With our system, smart meters
only need to support AES-GCM instead of heavy complex
cryptography. Also, the gateway can use rich functionalities to
process customers’ private data at a high speed with privacy
preserving. We proved that our design is sufficiently secure

against malicious adversaries. We also implemented SecGrid,
and thoroughly evaluated its performance. The experimental
results show that our system is very efficient, as the imple-
mented functionalities far outperform existing solutions in
terms of time complexity.

ACKNOWLEDGEMENTS

The authors sincerely thank the editor, Dr. Aris Gkoulalas
Divanis, and all the anonymous reviewers for their valuable
suggestions that have led to the present improved version of
the original manuscript.

REFERENCES

[1] M. Erol-Kantarci and H. T. Mouftah, “Energy-efficient information and
communication infrastructures in the smart grid: A survey on interac-
tions and open issues,” IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 179–197, Mar. 2015.

[2] A. R. Khan, A. Mahmood, A. Safdar, Z. A. Khan, and N. A. Khan,
“Load forecasting, dynamic pricing and DSM in smart grid: A review,”
Renew. Sustain. Energy Rev., vol. 54, pp. 1311–1322, Feb. 2016.

[3] D. He, S. Chan, and M. Guizani, “Win-win security approaches for
smart grid communications networks,” IEEE Netw., vol. 31, no. 6,
pp. 122–128, Nov./Dec. 2017.

[4] X. Liang, X. Li, R. Lu, X. Lin, and X. Shen, “UDP: Usage-based
dynamic pricing with privacy preservation for smart grid,” IEEE Trans.
Smart Grid, vol. 4, no. 1, pp. 141–150, Mar. 2013.

[5] A.-H. Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load
control with price prediction in real-time electricity pricing environ-
ments,” IEEE Trans. Smart Grid, vol. 1, no. 2, pp. 120–133, Sep. 2010.

[6] I. Moghram and S. Rahman, “Analysis and evaluation of five short-term
load forecasting techniques,” IEEE Trans. Power Syst., vol. 4, no. 4,
pp. 1484–1491, Nov. 1989.

[7] M. Q. Raza and A. Khosravi, “A review on artificial intelligence
based load demand forecasting techniques for smart grid and buildings,”
Renew. Sustain. Energy Rev., vol. 50, pp. 1352–1372, Oct. 2015.

[8] S. Mishra, X. Li, A. Kuhnle, M. T. Thai, and J. Seo, “Rate alter-
ation attacks in smart grid,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr./May 2015, pp. 2353–2361.

[9] Y. Liu, S. Hu, and T.-Y. Ho, “Leveraging strategic detection techniques
for smart home pricing cyberattacks,” IEEE Trans. Dependable Secure
Comput., vol. 13, no. 2, pp. 220–235, Mar./Apr. 2016.

[10] J. Zhao, T. Jung, Y. Wang, and X. Li, “Achieving differential privacy of
data disclosure in the smart grid,” in Proc. 33th IEEE Int. Conf. Comput.
Commun. (INFOCOM), Apr./May 2014, pp. 504–512.

[11] S. Li, K. Xue, Q. Yang, and P. Hong, “PPMA: Privacy-preserving
multisubset data aggregation in smart grid,” IEEE Trans. Ind. Informat.,
vol. 14, no. 2, pp. 462–471, Feb. 2017.

[12] M. A. Rahman, M. H. Manshaei, E. Al-Shaer, and M. Shehab, “Secure
and private data aggregation for energy consumption scheduling in
smart grids,” IEEE Trans. Dependable Secure Comput., vol. 14, no. 2,
pp. 221–234, Mar./Apr. 2017.

[13] T. W. Chim, S.-M. Yiu, V. O. K. Li, L. C. K. Hui, and J. Zhong,
“PRGA: Privacy-preserving recording & gateway-assisted authentication
of power usage information for smart grid,” IEEE Trans. Dependable
Secure Comput., vol. 12, no. 1, pp. 85–97, Jan./Feb. 2015.

[14] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptograph. Techn.
(EUROCRYPT), 1999, pp. 223–238.

[15] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas
on ciphertexts,” in Proc. 3rd Theory Cryptogr. Conf. (TCC), 2005,
pp. 325–342.

[16] M. D. O. R. Keiko and V. O. Fonseca„ Demonstrator for the End-to-End
Secure and Privacy-Friendly Applications for Smart Metering Data.
Accessed: Aug. 21, 2019. [Online]. Available: https://ec.europa.eu/
research/participants/documents/downloadPublic?documentIds=
080166e5b8e57b48&appId=PPGMS

[17] V. Y. Pillitteri and T. L. Brewer, “Guidelines for smart grid
cyber security,” NIST, Gaithersburg, MD, USA, Interagency/Internal
Rep. NISTIR-7628 Rev1, 2014.

[18] D. He, S. Chan, and M. Guizani, “Cyber security analysis and protection
of wireless sensor networks for smart grid monitoring,” IEEE Wireless
Commun., vol. 24, no. 6, pp. 98–103, Dec. 2017.

LI et al.: SecGrid: A SECURE AND EFFICIENT SGX-ENABLED SMART GRID SYSTEM 1329

[19] V. Costan and S. Devadas, “Intel SGX explained,” IACR
Cryptol. ePrint Arch., Tech. Rep., 2016, vol. 2016, no. 86,
pp. 1–118. Accessed: Sep. 6, 2019. [Online]. Available:
https://eprint.iacr.org/2016/086.pdf

[20] S. Tan, D. De, W.-Z. Song, J. Yang, and S. K. Das, “Survey of security
advances in smart grid: A data driven approach,” IEEE Commun. Surveys
Tuts., vol. 19, no. 1, pp. 397–422, 1st Quart., 2017.

[21] K. Sha, N. Alatrash, and Z. Wang, “A secure and efficient framework
to read isolated smart grid devices,” IEEE Trans. Smart Grid, vol. 8,
no. 6, pp. 2519–2531, Nov. 2017.

[22] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside SGX enclaves with branch
shadowing,” in Proc. 26th USENIX Secur. Symp. (USENIX Secur.),
2017, pp. 557–574.

[23] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
controlled-channel attacks against enclave programs,” in Proc. 24th
Annu. Netw. Distrib. Syst. Secur. Symp. (NDSS), 2017, pp. 1–16.

[24] S. Sasy, S. Gorbunov, and C. Fletcher, “ZeroTrace: Oblivious memory
primitives from intel SGX,” in Proc. 25th Annu. Netw. Distrib. Syst.
Secur. Symp. (NDSS), 2018.

[25] S. Matetic et al., “ROTE: Rollback protection for trusted execu-
tion,” in Proc. 26th USENIX Secur. Symp. (USENIX Secur.), 2017,
pp. 1289–1306.

[26] R. Strackx and F. Piessens, “Ariadne: A minimal approach to state
continuity,” in Proc. 25th USENIX Secur. Symp. (USENIX Secur.), 2016,
pp. 875–892.

[27] L. F. G. Sarmenta, M. Van Dijk, C. W. O’Donnell, J. Rhodes, and
S. Devadas, “Virtual monotonic counters and count-limited objects using
a TPM without a trusted OS,” in Proc. 1st ACM Workshop Scalable
Trusted Comput. (STC), Nov. 2006, pp. 27–42.

[28] W. Tushar, C. Yuen, D. B. Smith, and H. V. Poor, “Price discrimination
for energy trading in smart grid: A game theoretic approach,” IEEE
Trans. Smart Grid, vol. 8, no. 4, pp. 1790–1801, Jul. 2017.

[29] F. Ye, Y. Qian, and R. Q. Hu, “A real-time information based demand-
side management system in smart grid,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 2, pp. 329–339, Feb. 2016.

[30] S. Misra, S. Bera, and T. Ojha, “D2P: Distributed dynamic pricing
policyin smart grid for PHEVs management,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 3, pp. 702–712, Mar. 2015.

[31] A. Ahmad, N. Javaid, M. Guizani, N. Alrajeh, and Z. A. Khan,
“An accurate and fast converging short-term load forecasting model
for industrial applications in a smart grid,” IEEE Trans. Ind. Informat.,
vol. 13, no. 5, pp. 2587–2596, Oct. 2017.

[32] S.-C. Chan, K. M. Tsui, H. Wu, Y. Hou, Y.-C. Wu, and F. F. Wu,
“Load/price forecasting and managing demand response for smart grids:
Methodologies and challenges,” IEEE Signal Process. Mag., vol. 29,
no. 5, pp. 68–85, Sep. 2012.

[33] O. Ohrimenko et al., “Oblivious multi-party machine learning on trusted
processors,” in Proc. 25th USENIX Secur. Symp. (USENIX Secur.), 2016,
pp. 619–636.

[34] F. Schuster et al., “VC3: Trustworthy data analytics in the cloud
using SGX,” in Proc. 36th IEEE Symp. Security Privacy (SP), 2015,
pp. 38–54.

[35] W. Zheng et al., “Opaque: An oblivious and encrypted distributed
analytics platform,” in Proc. 14th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2017, pp. 283–298.

[36] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
Functional encryption using Intel SGX,” in Proc. 24th ACM SIGSAC
Conf. Comput. Commun. Secur. (CCS), Oct. 2017, pp. 765–782.

[37] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town
crier: An authenticated data feed for smart contracts,” in Proc. 23th
ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), Oct. 2016,
pp. 270–282.

[38] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data
oblivious filesystem for intel SGX,” in Proc. 25th Annu. Netw. Distrib.
Syst. Secur. Symp. (NDSS), Feb. 2018, pp. 1–15.

[39] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A secure database
using SGX,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 264–278.

[40] M. Esmalifalak, R. Zheng, and L. Liu, “Detecting stealthy false data
injection using machine learning in smart grid,” IEEE Syst. J., vol. 11,
no. 3, pp. 1644–1652, Aug. 2014.

[41] Y. He, G. J. Mendis, and J. Wei, “Real-time detection of false data injec-
tion attacks in smart grid: A deep learning-based intelligent mechanism,”
IEEE Trans. Smart Grid., vol. 8, no. 5, pp. 2505–2516, Sep. 2017.

[42] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer, “Varys:
Protecting SGX enclaves from practical side-channel attacks,” in Proc.
USENIX Annu. Tech. Conf. (ATC), vol. 2018, pp. 227–240.

[43] S. Arnautov et al., “Keeffe, M. L. Stillwell, “SCONE: Secure linux
containers with intel SGX,” in Proc. 12th USENIX Symp. Operating
Syst. Design Implement. (OSDI), 2016, pp. 689–703.

[44] F. L. Quilumba, W.-J. Lee, H. Huang, D. Y. Wang, and R. L. Szabados,
“Using smart meter data to improve the accuracy of intraday load
forecasting considering customer behavior similarities,” IEEE Trans.
Smart Grid, vol. 6, no. 2, pp. 911–918, Mar. 2015.

[45] L. V. Silva, P. Barbosa, R. Marinho, and A. Brito, “Security and privacy
aware data aggregation on cloud computing,” J. Internet Services Appl.,
vol. 9, no. 1, p. 6, Dec. 2018.

Shaohua Li received the B.E. degree from the
Department of Information Security, University of
Science and Technology of China (USTC), in 2016,
and the M.S. degree from the Department of Elec-
tronic Engineering and Information Science (EEIS),
USTC, in 2019. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
ETH Zürich, Switzerland. He was a Graduate Stu-
dent with the Department of Electronic Engineering
and Information Science, USTC. His research inter-
ests include network security protocol design and
analysis.

Kaiping Xue (M’09–SM’15) received the bache-
lor’s degree from the Department of Information
Security, University of Science and Technology of
China (USTC), in 2003, and the Ph.D. degree
from the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007. From
May 2012 to May 2013, he was a Postdoctoral
Researcher with the Department of Electrical and
Computer Engineering, University of Florida. He is
currently an Associate Professor with the Depart-
ment of Information Security and the Department

of Electronic Engineering and Information Science, USTC. His research
interests include next-generation Internet, distributed networks, and network
security. He serves on the Editorial Board of several journals, including the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC), the IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT (TNSM),
Ad Hoc Networks, IEEE ACCESS, and China Communications. He has served
as a Guest Editor for the IEEE JOURNAL ON SELECTED AREAS IN COMMU-
NICATIONS (JSAC) and a Lead Guest Editor for the IEEE Communications
Magazine.

David S. L. Wei (SM’07) received the Ph.D. degree
in computer and information science from the Uni-
versity of Pennsylvania in 1991. From May 1993 to
August 1997, he was with the Faculty of Computer
Science and Engineering, University of Aizu, Japan,
as an Associate Professor and then a Professor. He is
currently a Professor with the Computer and Infor-
mation Science Department, Fordham University.
He has authored or coauthored over 100 technical
articles in various archival journals and conference
proceedings. His research interests include cloud

computing, big data, the IoT, and cognitive radio networks. He was a Guest
Editor or a Lead Guest Editor for several special issues in the IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS, the IEEE TRANSACTIONS

ON CLOUD COMPUTING, and the IEEE TRANSACTIONS ON BIG DATA.
He served as an Associate Editor for the IEEE TRANSACTIONS ON CLOUD

COMPUTING from 2014 to 2018 and of the Journal of Circuits, Systems and
Computers from 2013 to 2018.

1330 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Hao Yue received the B.Eng. degree in telecommu-
nication engineering from Xidian University, Xi’an,
China, in 2009, and the Ph.D. degree in electrical
and computer engineering from the University of
Florida, Gainesville, FL, USA, in 2015. He is cur-
rently an Assistant Processor with the Department
of Computer Science, San Francisco State Univer-
sity, San Francisco, CA, USA. His research inter-
ests include cyber-physical systems, cybersecurity,
wireless networking, and mobile computing.

Nenghai Yu received the B.S. degree from the
Nanjing University of Posts and Telecommunica-
tions, Nanjing, China, in 1987, the M.E. degree from
Tsinghua University, Beijing, China, in 1992, and
the Ph.D. degree from the Department of Electronic
Engineering and Information Science (EEIS), Uni-
versity of Science and Technology of China (USTC),
Hefei, China, in 2004. Since 1992, he has been a
Faculty Member with the Department of Electronic
Engineering and Information Science, USTC, where
he is currently a Professor. He is also the Executive

Director of the Department of Electronic Engineering and Information Sci-
ence, USTC, and the Director of the Information Processing Center, USTC.
He has authored or coauthored over 130 articles in journals and international
conferences. His research interests include multimedia security, multimedia
information retrieval, video processing, and information hiding.

Peilin Hong received the B.S. and M.S. degrees
from the Department of Electronic Engineering and
Information Science (EEIS), University of Science
and Technology of China (USTC), in 1983 and 1986.
She is currently a Professor and an Advisor for
Ph.D. students with the Department of Electronic
Engineering and Information Science, USTC. Her
research interests include next-generation Internet,
policy control, IP QoS, and information security. She
has published two books and over 150 academic arti-
cles in several journals and conference proceedings.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

