IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

5911

A Secure and Efficient Blockchain Sharding Scheme
via Hybrid Consensus and Dynamic Management

Meiqi Li, Xinyi Luo, Graduate Student Member, IEEE, Kaiping Xue™, Senior Member, IEEE, Yingjie Xue™,

Wentuo Sun, Graduate Student Member, IEEE, and Jian Li

Abstract— Sharding significantly enhances blockchain scal-
ability by dividing the entire network into smaller shards
that reach consensus and process transactions in parallel.
Nevertheless, two new issues emerge with the adoption of
sharding. One issue involves the shrinking size of consensus
groups, which leads to vulnerability in consensus. Most existing
works introduce periodic shuffle mechanisms to mitigate this
problem. Nevertheless, these measures necessitate stronger
security assumptions and can only offer a probabilistic assurance
of consensus security. Another issue is the challenge in processing
cross-shard transactions posed by the isolation of shards.
Existing approaches utilize two-phase commit (2PC) or relay
transaction mechanisms to handle cross-shard transactions.
However, these approaches are vulnerable to double cross-
shard attacks from malicious shards and are unable to achieve
immediate atomicity. In this paper, to address the vulnerable
consensus issue and achieve instant atomicity in cross-shard
transactions, we design a hybrid consensus mechanism that
embeds a lightweight global consensus into parallel intra-shard
consensus processes. The global consensus allows all consensus
nodes to jointly process cross-shard transactions, achieving
cross-shard transaction instant atomicity. It also records shard
snapshots to facilitate shard auditing to defend against malicious
shards. Furthermore, we consider the performance of the
proposed mechanism, and design a dynamic shard management
mechanism. The dynamic shard management mechanism reduces
transaction congestion and maintains an appropriate number
of shards based on the system’s state. We conduct analyses of
potential attacks and prove that our approach ensures safety
and liveness even in the presence of malicious shards. We also
evaluate the performance of our system and compare it with
both non-sharded and classic blockchain-sharding systems. The
evaluation results demonstrate the efficacy of our approach in

Manuscript received 18 December 2023; revised 21 April 2024;
accepted 16 May 2024. Date of publication 27 May 2024; date of
current version 31 May 2024. This work was supported in part by Anhui
Province Key Technologies Research and Development Program under Grant
20222a05020050, in part by the National Natural Science Foundation of China
under Grant 61972371 and Grant 62372425, in part by the Youth Innovation
Promotion Association of the Chinese Academy of Sciences (CAS) under
Grant Y202093, and in part by Guangzhou-The Hong Kong University
of Science and Technology [HKUST (GZ)] Joint Funding Program under
Grant 2024A03J0630. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Angelo Spognardi.
(Corresponding author: Kaiping Xue.)

Meiqi Li, Xinyi Luo, Kaiping Xue, Wentuo Sun, and Jian Li are
with the School of Cyber Science and Technology, University of
Science and Technology of China, Hefei, Anhui 230027, China (e-mail:
kpxue@ustc.edu.cn).

Yingjie Xue is with Guangzhou Municipal Key Laboratory of Financial
Technology Cutting-Edge Research and the Thrust of Financial Technology,
The Hong Kong University of Science and Technology (Guangzhou),
Guangzhou, Guangdong 511458, China.

Digital Object Identifier 10.1109/TIFS.2024.3406145

, Senior Member, IEEE

dealing with transaction congestion while astutely controlling the
number of shards.

Index Terms— Blockchain, sharding, distributed consensus.

I. INTRODUCTION

LOCKCHAIN technology has revolutionized various

industries by providing decentralized ledgers with
attributes such as data integrity, immutability, and reliable
execution between untrusted parties [1]. The applications
of blockchain span across diverse sectors, such as health-
care [2], [3], [4], [5], federated learning [6], [7], cloud
computing [8], [9], mobile networks [10], [11], and the
Internet of Things [12], [13], [14], [15]. However, traditional
blockchain systems encounter a significant challenge in terms
of scalability [16]. As the blockchain system scales up, the
participation of each node in the consensus process imposes
substantial communication [17], computation, and storage
costs, hindering the application in large-scale scenarios [18].
To address the scalability limitation, sharding has emerged
as a promising approach to improve consensus efficiency
and overcome the scalability constraints of blockchain
systems [19], [20], [21], [22], [23]. The basic idea of sharding
is to divide the network into multiple disjoint shards. Each
shard comprises a group of nodes forming a consensus
group that processes transactions in parallel. The consensus
achieved within a shard, known as intra-shard consensus,
involves a smaller number of consensus nodes and a reduced
volume of transactions to be processed [24]. Consequently,
the communication, computation, and storage overhead are
significantly reduced.

However, the sharding architecture introduces two main
issues. On the one hand, the reduction in the number of nodes
participating in a consensus process compared to non-sharding
blockchain systems, referred to as consensus shrinkage, leads
to vulnerable consensus security [25]. Since the upper limit of
the number of Byzantine nodes that a consensus can sustain
decreases as the number of consensus nodes decreases [26],
it is much easier for adversaries to control or attack a
single shard than the whole system. On the other hand, the
state of each shard is opaque to nodes outside the shard in
blockchain sharding systems, since shards process disjoint sets
of transactions and reach consensus independently, we refer to
it as shards isolation. Unfortunately, cross-shard transactions
involve the state of multiple shards and require collaborative

1556-6021 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0003-1421-5427
https://orcid.org/0000-0002-6979-4510

5912

verification and execution by all relevant shards [20]. The
isolation of shards poses a challenge for a shard to ascertain
the legitimacy of a related cross-shard transaction, as it lacks
knowledge regarding the verification results of other relevant
shards. Besides, due to the segregated nature of the execution
process in relevant shards, achieving instant atomicity in cross-
shard transaction processing becomes arduous. Furthermore,
a malicious shard possesses the ability to generate illegal
cross-shard transactions, such as those involving double-
spending inputs, without detection from other shards, thereby
destroying the security of the affected shards.

Facing the vulnerable intra-shard consensus brought by
consensus shrinkage, existing approaches employ periodic
shard reconfiguration mechanisms to enhance consensus safety
and liveness. For instance, Elastico [19], Omniledger [27],
and Rapidchain [20] periodically replace nodes of each shard
to resist an adversary’s concentrated corruption attacks on
a certain shard. Facing the above cross-shard transaction
processing issue brought by shard isolation, researchers
propose mechanisms, such as two-phase commit (2PC) [22],
[27], relay transactions [28], [29], etc. to handle cross-shard
transactions. The underlying idea of these mechanisms is
to enable the transaction receiver to execute the withdrawal
operation within his/her shard after confirming that the
transaction sender has successfully completed the deduction
or withdrawal within his/her shard. Nevertheless, previous
works still have certain limitations. First, even with periodical
shards shuffle and node selection to prevent collusion, it is
still possible for a shard to be controlled by adversaries. The
shard corruption cannot be perceived by other shards due to a
lack of auditing mechanisms. As a result, the corrupted shard
can perform cross-shard double-spending attacks, destroying
the system’s security. In addition, as the withdrawal and
deposit operations of cross-shard transactions are separately
verified and executed across different shards, synchronizing
their completion or abortion becomes a challenge, which poses
a substantial obstacle to attaining cross-shard transactions’
instant atomicity.

In this paper, we propose a secure and efficient dynamic
blockchain sharding scheme to address the issues discussed
earlier. Our scheme combines a carefully designed hybrid
sharding consensus with a dynamic shards managing mecha-
nism. Specifically, the hybrid consensus embeds a global con-
sensus into multiple parallel intra-shard consensus processes.
One challenge in designing the hybrid sharding consensus is
the massive communication involved in a normal consensus
process, such as PBFT [30], which limits the throughput due to
the leader node bandwidth. Therefore, we only use the global
block to record lightweight contents, including shard snapshots
and cross-shard transactions. Besides, the communication
cost is distributed to each shard. This innovative approach
significantly enhances the efficiency of the standard global
consensus process. To further improve the efficiency of
transaction processing, and also avoid more serious consensus
shrinkage caused by excessive sharding, we introduce a
managing committee to dynamically adjust shard components
based on the shard managing strategy. The dynamic shard
management mechanism alleviates transaction congestion by

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

splitting congested shards and improves shards utilization rate
by merging underloaded shards. Besides, through adjusting
user assignments, the dynamic shard management mechanism
can also reduce the ratio of cross-shard transactions, thereby
enhancing the system’s performance. In summary, our main
contribution can be summarized as follows.

« We propose a hybrid sharding consensus protocol that
supports shard auditing and enables instant atomicity
in processing cross-shard transactions. This protocol
is capable of addressing vulnerable consensus issues
and effectively defending against attacks from malicious
shards.

o We design a dynamic shard management mechanism that
enhances the efficient processing of potential transaction
congestion while maintaining a balance between shard
security and efficiency.

o The security analysis demonstrates that our system
achieves consensus safety and liveness, as well as cross-
shard transaction instant atomicity, even in the presence of
corrupted shards. Additionally, the performance analysis
supports the effectiveness of our approach in efficiently
accelerating the processing of transaction congestion and
achieving higher shard utilization rates.

Paper Organization: The rest of this paper is organized as
follows. Section II provides preliminaries and related works
for the paper. Section III describes the system model and the
security assumptions. Section IV presents the details of our
proposed blockchain sharding scheme. Section V gives several
theorems on system security and discusses possible attacks.
Section VI analyzes the system performance and evaluates the
proposed system. Finally, we conclude our work in section VII.

II. PRELIMINARIES AND RELATED WORK
A. Transaction Models of Blockchain Systems

There are mainly two transaction models widely used in the
blockchain systems, namely the unspent transaction output
(UTXO) model [31] and the account/balance model [32].
The UTXO model was introduced in Bitcoin and used in
many blockchain systems. In this model, each transaction is
composed of inputs and outputs. An input of a transaction
references a previous transaction’s output and the UTXO is
“spent” by the transaction. Validators keep a database to
record valid UTXOs and use it to verify whether a block
can be accepted. The account/balance model is employed by
Ethereum. In the account/balance model, each user has a pair
of account and balance. Users can use their balance to generate
a transaction that contains a sender account, a receiver account,
and a value.

B. Representative Blockchain Sharding Schemes

In terms of blockchain’s poor scalability issue, researchers
proposed a great number of blockchain sharding schemes.
Elastico [19] is the first sharding-based blockchain system,
which divides nodes into multiple smaller consensus groups
to validate transactions in parallel. However, each node
needs to spread, receive, and store all the blocks of the
system and therefore there still exists heavy communication

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SECURE AND EFFICIENT BLOCKCHAIN SHARDING SCHEME

and storage burden. Omniledger [27] achieves complete
sharding, which includes communication, computation, and
storage sharding. It adopts a client-driven two-phase commit
mechanism to handle cross-shard transactions. Zamani et al.
proposed RapidChain [20] to reduce the overhead during
shards reconfiguration and further speed up the consensus
process. Wang et al. proposed Monoxide, which allows a miner
to create multiple blocks in different shards by solving one
proof-of-work puzzle, thereby amplifying the effective mining
capacity of each shard. OptChain [33] minimizes the number
of cross-shard transactions by using an optimal transactions
placement strategy. Recently, Zheng et al. [29] proposed a
sharding solution for consortium blockchain called Meepo,
which enhances cross-shard efficiency via the cross-epoch
and cross-call. Hong et al. proposed Pyramid [34], a layered
sharding solution that uses bridging shards to validate and
process cross-shard transactions internally. Huang et al.
presented BrokerChain [35] that achieves workload balance
among mining shards by adaptively partitioning account states
using a partition shard.

C. Sharding Security and Cross-Shard Transaction
Processing

Blockchain sharding brings two main challenges: consensus
group size reduction and cross-shard transaction processing.
Some sharding protocols [19], [20], [27] use a reconfiguration
phase to resist adversary adaptive attacks by shuffling all
shards or randomly adjusting some nodes. However, the shard-
ing security is guaranteed by probability and it is still possible
for a certain committee to be controlled by an adversary [25].
For cross-shard transaction processing, Omniledger [27] uses
a two-phase commit mechanism, that allows users to complete
cross-shard transactions by performing lock/unlock operations
on each relevant shard. Liu et al. [36] utilized multiple parallel
cross-shard Byzantine fault tolerance protocols to process
cross-shard transactions more efficiently. RapidChain [20]
splits a cross-shard transaction into multiple sub-transactions
that can be processed in a single shard. Monoxide [28]
adopts a relay transaction based solution, where the deduction
operations and deposit operations are separatly executed
in each related shard. Pyramid [34] introduces bridging
shards that store multiple shards’ states so that can process
cross-shard transactions internally. However, those cross-shard
transaction processing methods are all based on the premise
that each shard remains secure. One shard crash can cause
errors in validating all related cross-shard transactions, and
therefore affect the correctness of other shards. Besides, the
processing of each cross-shard transaction requires multiple
rounds of intra-shard consensus, often resulting in system
performance bottlenecks.

III. SYSTEM MODEL, THREAT MODEL,
AND DESIGN GOALS
A. System Model
This work adopts the UTXO model. All the nodes are

connected by a partially synchronous peer-to-peer network
in which messages can be sent to each other with

5913

: RRRusers Rggusers

| - |
H tXx '
m} transaction pool 1
i verify verify | !
| ee - o |

managing committee > 2. |

i‘ __validators / _ validators / :
Shard, Shardg S
Fig. 1. System model.

optimistic, exponentially increasing time-outs. To prevent
Sybil attacks, all the nodes should establish their identities
(i.e., public/private keys) by solving a computationally hard
puzzle [37] before joining the network. We assume all
messages sent in the network are authenticated with the
sender’s private key.

There are two kinds of entities in the system, namely users
and validators. As shown in Fig. 1, users and validators are
divided into multiple shards. The number of shards in the
system is represented by the variable K. Users trade with each
other and generate transactions both intra-shard and cross-
shard. Validators verify the transactions and keep a ledger
to record them. A group of validators is randomly selected
to form a managing committee (MC), which manages
the shards through a publicly determined shard management
strategy.

B. Threat Model

Most sharding systems [19], [20], [27], [34] limit the
malicious nodes can only be changed between epochs.
We weaken that assumption and adopt an adaptive corruption
model, where the adversaries know the allocation of nodes
to the shards, and are able to adaptively select target shards
to attack. We assume the number of malicious nodes grows
linearly, and the fraction of malicious validators, denoted by
f, remains below 1/3 throughout the entire process. However,
in certain shards, the proportion of malicious validators may
exceed 1/2 due to concentrated attacks from adversaries. Here
gives the threat model in our work as follows:

o Users. Malicious users may generate invalid transactions
by including previously used inputs and launch double-
spending attacks. Our system does not limit the
proportion of malicious users.

o Validators. There are honest and malicious validators in
our system. The honest validators perform all operations
correctly according to the protocol, while the malicious
validators try to interfere with the execution of the
protocol by colluding with each other.

C. Design Goals

Main objective of our work aim to enhance the security
and performance of blockchain sharding systems. In terms
of security, except for consensus safety and liveness under
normal circumstances, we have two further security goals:

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

5914

. InB;
Transaction pool Intra-shard Shord i i
| IntraShard-tx Listy I 1 IntraShard tx Listy
GIB

IntraShard-tx List;
IntraShard-tx Listg

CrossShard-tx List

Snapshot

BlockHash;
BlockHashy
Global -
pS -'l CrossShard-tx List

Fig. 2. Transactions in the transaction pool, the content of intra-shard blocks,
and the global block.

malicious shard resistance and instant atomicity for cross-
shard transactions processing, which are defined as follows.

e Malicious shard resistance refers to detect and process
double-spending cross-shard attacks in the presence of
corrupted shards.

o Instant atomicity for cross-shard transactions processing
refers to the withdraw and deposit operations for a cross-
shard transaction either all occur or none of them occur
at the same time.

In terms of performance, our aim is to dynamically adapt

to the varying transaction rates of the system, fulfilling the
throughput requirements.

IV. PROTOCOL DESIGN
A. Overview

The proposed sharding protocol runs in fixed time periods
called epochs as other blockchain sharding schemes [20],
[34], [35]. At the beginning of each epoch, validators and
new users establish their identities and join the network by
solving a hash-based puzzle. Validators generate unpredictable
randomness via public-verifiable and unbiased verifiable
random functions (VRF) [38]. A group of validators is
randomly selected based on epoch randomness to form a
managing committee (MC), which dynamically adjusts users
and validators assignment to shards based on the system status.

There are two phases that cyclically alternate in the system:
namely the transaction processing phase and the shards
managing phase. The transaction processing phase involves
the processing of user transactions using the hybrid sharding
consensus mechanism. The shard managing phase includes
auditing the shards and dynamically adjusting user and
validator assignments. In the following, we provide a detailed
description of the two phases.

1) Transaction Processing Phase: In the transaction
processing phase, users generate transactions and put them into
the transaction pool. As shown in Fig. 2, the transactions in the
transaction pool are divided into intra-shard transactions and
cross-shard transactions. Intra-shard transactions are verified
by the corresponding shard validators, processed during the
intra-shard consensus process, and recorded in intra-shard
blocks. In contrast, cross-shard transactions are processed
by all validators in the system and recorded in the global
block along with all the snapshots BlockHash of intra-
shard blocks, which enables shards auditing. During each
consensus round, validators verify intra-shard transactions and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

their related cross-shard transactions and broadcast a global
message that contains the BlockHash and the related cross-
shard transaction verification result. Then, they use fragmented
global messages from each shard to calculate the legal cross-
shard transaction list and perform a hybrid sharding consensus.
For brevity, the detailed processing method for cross-shard
transactions and the hybrid sharding consensus process are
described in section IV-B and section IV-C respectively.

2) Shard Managing Phase: The shards managing phase
comprises two key functions: adjustment and auditing.
The shards adjustment is performed periodically. Specifi-
cally, the managing committee (MC), which is randomly
selected at the beginning of each epoch, monitors the status
of each shard and implements a dynamic shard management
mechanism to make necessary adjustments to validators and
users. To address transaction congestion issues, congested
shards are split into smaller sizes to accelerate transaction
processing. Besides, a graph partition algorithm is employed
to reduce the proportion of cross-shard transactions by
transferring users among shards strategically. Conversely,
underloaded shards, which possess transaction processing
capabilities that surpass the actual transaction volume, are
merged together to improve the shards’ utilization ratio. In the
meantime, when the system remains idle, MC can propose a
shard auditing, which aims to detect potential malicious shard
behaviors, such as cross-shard double-spending attacks, and
punish the malicious validators. During the shard auditing
phase, each shard’s intra-shard transactions are verified by
other validators, and the snapshots recorded in the global
block is used to prevent malicious shards from tampering with
history transactions.

The subsequent subsections introduce the essential com-
ponents of the proposed system, including -cross-shard
transactions processing, hybrid sharding consensus, shards
auditing, and dynamic shard management mechanism.

B. Cross-Shard Transactions Processing

In the proposed sharding protocol, a cross-shard transaction
crTx involves inputs consuming UTXOs from designated
input shards and outputs generating new UTXOs in designated
output shards and is considered valid only if all inputs
are unspent and all the outputs are valid. The input shards
and output shards are both referred to as related shards.
To achieve instant atomicity across all shards, cross-shard
transactions are processed globally and recorded in global
blocks. Consequently, the verification process of cross-shard
transactions consists of two stages. The first stage is referred to
as partial verification, involving each related shard checking
for local legality. The second stage is the final verification,
where all validators summarize the partial verification results

to determine the overall legitimacy of cross-shard transactions.
o Fartial verification. Each related shard verifies the legality

of the corresponding inputs/outputs within its domain,
defined as the local legality of crTx. Specifically, the
input shard examines whether the corresponding UTXOs
are unspent outputs of valid transactions within its
domain, and the output shards verify the integrity and
validity of the output UTXOs, i.e. whether the sum of

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SECURE AND EFFICIENT BLOCKCHAIN SHARDING SCHEME

inputs is not less the sum of outputs. The related shard
leaders broadcast the partial verification results and the
signatures of intra-shard validators to all validators.

o Final verification. Upon a validator obtaining the partial
verification outcomes from all related shards, he/she can
verify the overall legitimacy of crTx by checking if
it passes all the partial verifications. Conversely, if any
partial verification result is deemed invalid, cr T'x will be
classified as an invalid transaction.

Cross-shard transactions that pass the final verification can
be executed and packed into the global block through the
hybrid sharding consensus mechanism. More detailed infor-
mation about this mechanism can be found in Section I'V-C.
Conversely, invalid cross-shard transactions are discarded.

C. Hybrid Sharding Consensus

The system running time is divided into multiple fixed
lengths, called epochs. Each epoch consists of a number of
slots, and each slot corresponds to a consensus round. In a
slot, each shard randomly selects its leader based on epoch
randomness and runs a hybrid sharding consensus.

1) Hybrid Sharding Consensus Process: Generally speak-
ing, a lightweight global consensus is embedded into general
intra-shard consensus processes that operate in parallel.
The intra-shard consensus is used to process intra-shard
transactions. Also, similar to most leader-based consensus
protocols, such as PBFT [30], PoS [39]. Intra-shard consensus
can be abstracted into three stages:

1) Block generation. The leader packs valid transactions

into a raw block and broadcasts it to other validators.

2) Block verification. Validators verify the proposed raw
block and send their signatures to the leader if the raw
block is validated.

3) Block commit. After receiving enough signatures, the
leader can generate the final block with confirmation
proof and broadcast it to all validators. In our work,
a collective signing protocol [40], [41] that can generate
a multi-signature co-signed by a decentralized group of
nodes is used for scalability concerns.

The global consensus is used to handle cross-shard
transactions and record shard snapshots. To realize a
lightweight and efficient global consensus, the communication
cost is distributed to every shard. Specifically, during the
global block generation stage, global messages {m1, ..., mg},
where K is the number of shards in the system, are sent
from each shard leader. Each global message m; contains
shard S;’s related cross-shard transaction list crTxL; and the
shard snapshot BlockHash;, which is the hash of the intra-
shard block header. Given {m, ..., mg}, the valid cross-shard
transaction list can be calculated by using the cross-shard
transaction verification method mentioned in subsection I'V-B.
Validators calculate the global block and subsequently wait
for the majority of nodes within a shard to confirm its m;.
Once all shards send confirmations for their global messages
(or timeout), the global block verification stage is completed.
Besides, there is an error-handling mechanism to deal with
abnormal cases and correct the global block. After the majority

5915
—_——————————— ———— —— — — — — —— — —— —— -~

(RawInB InBy Gle \

| l Header ‘ Header Header |

I [IntraShard-tx List 1 ‘ IntraShard-tx List 1 CrossShard-tx List_| |

| CoSi(RawInB1) BlockHash 1 |

f BlockHash 2

Intra-shard c Y E—— 2 |

|Intra-s ard B . . CoSi(RawGIB) |
| .~ [RawInBy, my] .7 CoSi(RawInBy) N

| leader A —— —— SN |

M~ CoSi(my)™, CoSi(Raw6GIB) “~~_) I

I Global \ 1 * _— |

| my _.-° CoSi(myz) .-~ |

| leader B—<— g .
| \[RawInBy, my] *+_ CoSi(RawInBy) |
Y

|Intra-shard B |

| e Time |

| intra-shard block generation intra-shard block verification Bl intra-shard block commit | |

\ global block generation global block verification I global block commit]

____________________________ P

Fig. 3. The process of the hybrid sharding consensus for a two-shards
blockchain system.

of nodes sign the global block, a leader can aggregate the
signatures and commit the global block.

The hybrid consensus protocol is run by all the shards in a
consensus round. As shown in Fig. 3, a simple blockchain
system contains two shards, named shard A and shard B,
is used as an example to describe the specific process of the
hybrid sharding consensus. Both shard A and shard B execute
the same procedures. Therefore, we use shard A and its intra-
shard consensus leader L 4 to describe the consensus protocol.

1) Intra-shard block generation. L4 verifies intra-shard

transactions of shard A in the transaction pool, packs
valid ones into IntraShard — txList), and generates a
raw intra-shard block

RawlInB :=< header, IntraShard — txList; >

, and computes BlockHash; = Hash(header). The
block header contains the hash of the parent block
and the Merkle tree root of the body. Then L, sends
RawlInBj to shard A’s other validators.

2) Global block generation. Upon verifying related cross-
shard transactions in the transaction pool, L4 packages
ones satisfying local legality, which is defined in
Section IV-B, into the cross-shard transaction list
crTxLy, and generates the global message

my = [crTxLy||BlockHash].

Then L 4 broadcasts m.

Validators collect {m, m>} and use them to calculate the
raw global block, which contains snapshots of the two
shards and a valid cross-shard transaction list.

3) Intra-shard block verification. Validators in shard A
verify RawInB; and reply L, with their signatures
Sig(RawlInBy) if RawlInBy is valid.

4) Global block verification. Validators in shard A verify
my and reply L, with their signatures Sig(RawInBy)
and Sig(mp) if these components pass the validation
process. Upon receiving more than 1/2 of Sig(mp)
sent from shard A, L4 generates a collective signa-
ture CoSi(m;) and broadcasts it. Validators collect
CoSiim1), CoSi(my) to confirm the raw global block
RawGlIB before the timeout. Then use the error
handling mechanism (see the next paragraph) to correct

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

5916

RawGlIB, and send all shards’ leaders their signatures
Sig(RawGlIB).

5) Intra-shard block commit. L, generates a collective
signature after collecting more than 1/2 Sig(RawlInB)
and sends it to other validators in shard A so that they
can add it to RawIn By and get the final valid intra-shard
block InBj.

6) Global block commit. A shard leader L; generates a
collective signature CoSi(RawGIB) on the global block
after receiving more than half of the signatures and
broadcasts CoSi(RawGlIB). Validators add it to the raw
global block and get the final valid global block GIB.

2) Error Handling Mechanism: In the above design,

a normal global consensus requires each shard leader
to correctly broadcast a global message and its shard
confirmation in time. Suppose there is a shard leader L;
that did not send m; or its confirmation of m; before
the timeout. Once the confirmation timeout has transpired,
validators calculate the global block utilizing other global
messages that are already confirmed. The corresponding shard
snapshot of S; in the global block is set as null and S;’s related
cross-shard transactions cannot be processed in the consensus
round.

D. Shards Auditing

The shards auditing mechanism is designed to prevent mali-
cious shards from performing cross-shard double-spending
attacks. It is started when the system is idle and requires
each validator to submit a deposit before joining the system.
In general, during the shards auditing phase, all validators
synchronize the intra-shard blocks to detect malicious shard
behaviors. The detecting results and the punishment of
malicious shards’ validators are processed through a global
consensus.

In detail, after synchronizing all the intra-shard blocks that
were generated during the previous transaction processing
phase within the system, validators verify the global blocks
and the intra-shard blocks of each shard. Firstly, they confirm
whether the intra-shard block matches the corresponding shard
snapshot recorded in the global block, preventing malicious
shards from tampering with the intra-shard block. Then,
validators examine whether there are cross-shard double-
spending attacks by checking whether there are intra-shard
transactions using the same input as cross-shard transactions
on the global block. Note that transaction recipients can
identify intra-shard double-spend attacks by checking intra-
shard blocks. As a result, these types of attacks fall outside
the purview of shards auditing. Upon detecting cross-shard
double-spending attacks, the malicious validators who signed
for the double-spending transactions recorded on the intra-
shard block will not be allowed to join the system. Besides,
part of their deposit will be transferred to the victim user(s)
based on the auditing regulations, which can be flexibly
formulated according to the system’s actual needs. The
remaining validators and users will be randomly assigned to
other shards by the managing committee. Finally, validators
in the system reach a global consensus on the shards auditing

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

results, including malicious shards detecting results and the
punishment of malicious validators.

1) Cost Analysis of Shards Auditing: During the shards
auditing phase, all shards are merged into one single chain, and
all intra-shard transactions are synchronized and confirmed
between shards. The cost of shards auditing is similar to
using non-sharding blockchain to process these transactions.
Therefore, our solution is most applicable for systems with
peak and low trading periods and an overall sufficient average
computing power. The system sharding occurs during peak
trading periods to speed up transaction processing, and shards
consolidation and auditing are performed during low trading
periods.

E. Dynamic Shard Management Mechanism

1) Motivation: The number of shards in the system and
the method of assigning validators and users can both have an
impact on the system’s performance and security. For example,
the system’s transaction processing capacity increases as the
number of shards grows. However, it also leads to a greater
security threat to each single shard. Therefore, it is essential to
dynamically achieve a balance between performance cost and
security cost based on the system’s current needs. We model
the system cost, which is divided into performance cost and
security cost. The performance cost Clagency is measured by the
average transaction confirmation latency, and the security cost
Csecurity 18 quantified by the expected proportion of validators
who are in malicious shards in the system. Given that the
total number of validators in the system is N, the proportion
of corrupt validators is f. Validators are assigned to K
shards, with the number of validators in each shard denoted
as {Np,..., Nx}. The average transaction arrival rate in the
system is set as varrival, and the average transaction processing
speed is Vprocess- Then the performance cost can be calculated
as Cratency = max (Varrival/ Uprocess — 1, 0). The security cost is
calculated as:

c NN (f}N) . ((1&{) ..N)
Csecurity = Z Z .

< (%)

The overall cost of the system Coyerall = w1 - Clatency + W2 -
Csecurity, Where w; and wy are weight factors assigned to
balance the influence of performance and security costs. Our
goal is to reduce the overall system cost and achieve a balance
between performance and security.

2) Shard Management Strategy: To enhance transaction
processing speed and alleviate congestion during transaction
bursts, an intuitive idea is to reduce the number of cross-
shard transactions that are processed by global consensus
and further accelerate intra-shard consensus through shard
splitting. Besides, it is also important to merge shards when
the system’s transaction arrival rate is low, therefore increasing
consensus capacity and enhancing security. Building upon
the prior analysis, a dynamic shard management mechanism
is designed to adjust the shard component according to
the system status, avoiding transaction congestion and also
more serious consensus shrinkage brought by excessive

i=1j=|N;/2]

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SECURE AND EFFICIENT BLOCKCHAIN SHARDING SCHEME

sharding. In the dynamic shard management mechanism, shard
adjustment is divided into the following three types:

Spli

e Shards split. S; —=> {S.....S;}. Spliting S;
means randomly reallocating S; users and validators into
multiple smaller shards {S;,,...,S;,}. Note that each

shard needs to have enough validators after the division.
M
o Shards merge. {S;, ..., S;} Zeres S!. Merging the shards

means combining the shards’ validators to collectively
process transactions for the shards’ users.

o Reassign users. Users are reassigned to shards by
utilizing graph-partitioning tools to reduce cross-shard
transactions.

The details of the dynamic shard management strategy
are introduced in the following. Algorithm 1 illustrates the
approach, with the input of the current shards’ composition,
including validator and user lists for each shard, the
unprocessed transactions within the transaction pool, and
system parameters, it outputs an adjusted shards composition.
First, it checks whether each shard is a congested shard,
which is defined as a shard whose number of unprocessed
transactions, including intra-shard transactions and related
cross-shard transactions, is higher than the threshold number
n¢. Subsequently, it splits each congested shard into several
smaller shards and keeps the shards with more than s
validators. Then it checks for wunderloaded shard, whose
number of unprocessed transactions is less than r - n., r €
(0, 0.5). For all underloaded shards, it sorts them according
to the transaction queue size, merges the first and last shards,
and loops. Finally, it uses the unprocessed transactions to build
the transaction graph, where each vertex represents a user’s
address, and the edge weight is defined as the number of
transactions that involve the corresponding pair of addresses
as inputs and outputs. It is supposed to use graph-partitioning
tools, such as Metis [42], to partition the transaction graph
into non-overlapping K parts with a reduced number of cross-
shard transactions. The division of vertexes in the transaction
graph into subgraphs corresponds to the users divided into
corresponding shards.

3) Shards Adjustment: In the shard managing phase, MC
leader broadcasts the current state of the system and the shard
adjustment result, which is calculated based on the dynamic
shard management algorithm, to other MC members. Upon
verifying the correctness of the shard management result,
other members in MC sign it and return the signatures to
the leader. Once the leader collects signatures from more
than half of the MC members, a valid MC intra-block is
generated, which includes the shard adjustment result and
a collective signature from the majority of MC members.
Subsequently, the leader broadcasts the block to all nodes in
the system, and the validators in the adjusted shard perform
the corresponding operations based on the type of shard
adjustment after receiving the block.

Split

e Shards split. S; — {S;,,..., S, }. For S;’s validators
who are reassigned to S; , x € {1,...,m}, they update
their UTXO lists and only keep UTXOs belonging to

users of S;. .

5917

Algorithm 1 Dynamic Shard Management

Input: Current shards composition;

Transaction pool state;

System parameters n,r,s ;

Output: Adjusted shards composition;

US_SET <« @

for each shard S; do

if S;’s transactions queue size is above n. then
| Split S; into min([(nix/ne)1, Lny/s]) shards;

end

if S;’s transactions queue size is below r - n. then
‘ Add S; into US_SET;

end

AN B LB S R

end

Sort the shards in US_SET according to the average
transaction queue size;

11 while US_SET is not empty do

12 Merge the first and the last shard and remove them

from US_SET;
13 end
14 Use the graph partition tool to reassign users to shards.

—
=4

o Shards merge. {S;, ..., S} % Slf. Validators of shard

{Si, ..., S;} synchronize their UTXO datasets with each
other.

o Reassign users. For each reassigned user, if user U;
is reassigned from shard S; to shard §;, the process
requires S;’s validators to send all UTXOs owned by the
user to S;’s validators. Subsequently, the validators of
S; download the UTXOs and update their local UTXO
dataset.

V. SECURITY ANALYSIS

In this section, we first prove the global consensus always
achieves safety and liveness. Safety indicates honest validators
agree on the same valid block in each consensus round and
liveness indicates every block will be finally committed or
aborted. We then analyze possible attacks and how our system
defends against them.

A. Analysis of Hybrid Sharding Consensus

Theorem 1: The global consensus achieves safety if the
fraction of malicious validators in the system is less than 1/2.
Proof: To generate a valid global block with a collective
signature, the global consensus leader must collect signatures
from more than half of the validators. All honest validators can
use the confirmed global messages to calculate the contents of
the global block and send their signatures to shard leaders.
Given that the fraction of malicious validators within the
system 1is less than 1/2, the global consensus leader cannot
receive more than 1/2 of validators’ signatures on a global
block with invalid contents. Therefore, the global consensus
achieves safety.]
Theorem 2: The global consensus achieves liveness if the
fraction of malicious validators in the system is less than 1/2.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

5918

Proof: Note that a global block, which contains the
cross-shard transaction list and BlockHash of each shard,
is calculated based on confirmed global messages that are
agreed upon by more than half of the shard validators.
According to our hybrid sharding consensus protocol in
Section IV, all honest validators can use the global messages
and the error handling mechanism to calculate a consistent
global block and send their signature on the global block to
shard leaders. Our partially synchronous peer-to-peer network
assumption ensures the signatures can be received by leaders
within an optimistic bounded time. Since the shard leaders
are chosen randomly and the randomness is unbiased, there
will be K /2 honest leaders, where K is the number of shards,
every round in expectation. The honest leaders will generate
the valid global block with collected signatures and broadcast
it to each node. Thus, all honest nodes will receive the finalized
global block at the end of the global consensus process. [l

Theorem 3: The intra-shard consensus achieves safety and
liveness if the fraction of malicious validators within the shard
is less than 1/2.

Proof: To generate a valid intra-shard block InB;,
a shard consensus leader L; needs to acquire signatures from
a majority of validators within the shard. Given that the
proportion of malicious validators in the shard is less than
1/2, L; cannot collect enough signatures on invalid InB;
since honest validators only sign on blocks containing valid
transactions. Therefore, the intra-shard consensus achieves
safety. Similarly, drawing parallels to our proof on the
liveness of the global consensus, the completion of intra-shard
consensus is reliant upon the presence of an honest intra-shard
consensus leader. As the shard leaders are randomly selected
within the shard, it can be deduced that each shard will have
an honest intra-shard leader approximately every 1.5 rounds
on average. Consequently, all honest nodes are able to finalize
the block within a bounded timeframe. (]
Therefore, the hybrid sharding consensus implemented within
our system attains both safety and liveness, given that the
fraction of malicious validators is less than 1/2 in the entire
system, as well as within each shard. It is noteworthy that
even if certain shards surpass the security threshold in terms
of the proportion of malicious validators, the intra-shard
consensuses within other shards remain unaffected. Besides,
the global consensus can also be effectively achieved through
the utilization of the error handling mechanism elucidated in
section IV, as long as the system has less than 1/2 malicious
validators.

B. Instant Atomicity for Cross-Shard Transactions Processing

Monoxide [28] handles cross-shard transactions by using
relay transactions to allow the withdraw operation to be
executed first and the corresponding deposit operation to
be settled later. It achieves the eventual atomicity, which
means the deposit operation must be executed eventually
once the withdraw operation is confirmed. However, the
confirmation time is not limited. BrokerChain [35] introduces
brokers to process cross-shard transactions and also allows the
withdraw operation and its corresponding deposit operation to
be executed separately. BrokerChain ensures the time between

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

the two operations is limited within a predefined time, so that
reaches duration-limited eventual atomicity.

In our system, by contrast, a cross-shard transaction can
be executed only if it is verified by all related shards and is
recorded on a global block. Thus, the withdraw and deposit
operations for a cross-shard transaction either all occur or none
of them occur at the same time. Therefore, our cross-shard
transaction handling mechanism achieves instant atomicity.

C. Tackling Potential Attacks

In the following, we list some potential attacks and analyze

how our system handles them.
Attack 1: A malicious shard leader broadcasts an incorrect
global message m; during the global consensus process.
Suppose the shard has no more than 1/2 malicious
validators.

Honest validators in the shard will verify m; and not sign on
it after noticing that m; is incorrect, i.e. containing an incorrect
shard snapshot or double-spending cross-shard transactions.
As a result, the leader cannot collect enough signatures to
generate a valid collective signature. Then other validators will
discard the global message and recalculate the global block
after timeout according to the error handling mechanism. Thus,
the global consensus will not be affected, only the shard’s
intra-shard consensus will fail.

Attack 2: Malicious shards launch double-spending cross-
shard attacks. (Generate cross-shard transactions with an
input that has spent intra-shard.)

We denote the cross-shard transaction and the intra-shard
transaction that have a shared input as ¢Tx and i T x separately.
Suppose iTx is recorded on an intra-shard block /nB;. The
malicious shard deceive other shards by broadcasting a global
message m; = [crTxL;||BlockHash;] during the consensus
round processing cT x.

e Case 1: BlockHash; = Hash(InB;).

During the audit phase, /nB; needs to be broadcast to
other shards. Otherwise, other validators can compute
the hash of the block and detect the malicious behavior
by comparing Block Hash. Then other validators can be
aware that ¢Tx and iTx compose a double spending
attack. The deposit of validators from the malicious shard
will be transferred to the victim user(s) as per the auditing
regulations.

o Case 2: BlockHash; # Hash(InB;).

The malicious shard may try to fake an intra-shard block
InB; without iTx and broadcast Hash(InB}) to cheat
other shards’ validators to avoid being punished during
the shards auditing phase. The recipient of iTx (or
any node within the shard) can discover the malicious
behavior by comparing the BlockHash recorded in the
global block and Hash(InB;). Then he/she can be aware
that the shard is malicious and avoid real-world financial
losses due to the invalid transaction.

In conclusion, the correctness of global messages and
the processing of intra-shard transactions are guaranteed by
the safety of the corresponding shard. Moreover, the global
consensus consistently maintains safety as long as the overall

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SECURE AND EFFICIENT BLOCKCHAIN SHARDING SCHEME

system has a limited number of corrupted nodes that fall below
the safety threshold. Consequently, even with the appearance
of corrupted shards, other shards possess the capability to
resist their malicious attacks and safeguard users’ funds by
leveraging the recorded BlockHash on the global block
during the shards auditing phase.

D. Analysis of the Managing Committee

Since the managing committee (MC) is randomly selected
from all validators at the beginning of each epoch, there is
a certain probability that more than half of the validators in
the MC are malicious. In this case, the security of the MC(C’s
consensus process is compromised. Suppose at the beginning
of epoch e, there are a total of N validators in the system,
with a corruption ratio of f, and the number of validators in
the MC is Ny,.. The probability that the majority of validators
in the MC are malicious can be calculated as:

N (f'N).((l—f%N)
mc : N ~_i
> AL At

()

The possible behavior and impact on the system when MC
consists of more than half malicious validators are analyzed
below.

1) Lazy MC: A lazy MC fails to make necessary shard
adjustments during the shard managing phase. This lazy
behavior results in the inability to optimize system costs in
epoch e, leading to higher average transaction confirmation
latency or lower shards security.

2) Malicious MC: Malicious validators in MC may
collude with each other and send malicious shard adjustment
instructions to the system, which can compromise both the
security and performance of the system. The specific malicious
shard adjustment instructions and their impacts are shown in
the following.

« Concentrates malicious validators in individual shards to
create more malicious shards, which may launch double-
spending cross-shard transaction attacks. The malicious
shard behavior can be detected and punished during the
shard auditing phase.

e A malicious MC can manipulate the allocation of
validators and users to shards, leading to a greater
imbalance in the workload across shards or an increased
proportion of cross-shard transactions. Consequently,
it results in reduced transaction processing efficiency
and worsened transaction congestion. The degradation
in system performance can be addressed when the next
honest MC accurately adjusts the shards.

To quantitatively assess the impact of introducing MC to the
system, we calculate the expected change in the overall cost
of the system under different system states in Section VI. The
evaluation results illustrate the significant effect of introducing
MC in reducing the system cost, even in rare epochs where
MC is malicious.

Pyaticious =
i=[Nmc/2]

5919

40 = ~=500 20
ot == N=750 20
=200 === N=1000| 200
= %0 == N=1500 180

Transaction Per
z 88 E
——

Transaction Per Second (TPS)
2 2 B E

=
£ 607\\.\‘*“-‘-‘-‘ 60 |-
Ava ul

L L L
0.0 02 04 06 08 00 02 04 0.6 0.8

The proportion of cross-shard transactions.

(a) K=30

The proportion of cross-shard transactions.

(b) K=50

Fig. 4. Remove the dynamic shard management mechanism, system
throughput varies with shard number, validator number, and the proportion
of cross-shard transactions.

VI. EVALUATION RESULTS AND PERFORMANCE ANALYSIS

A. Implemention and Settings

We implement an experimental prototype for performance
evaluation using C++. To separately evaluate the effectiveness
of our proposed approaches, we evaluate the system
performance with and without the dynamic shard management
mechanism. Besides, for comparison, we also implement
a non-sharding prototype and a representative sharding
prototype [28]. Similar to RapidChain [20], to simulate
distributed nodes in P2P networks, we set the bandwidth of all
connections between nodes to 20 Mbps and add random links
latency of 100 £ 10 ms. Based on the historical transaction
data of Bitcoin, we set the average size of a transaction to
300 bytes, and the average number of related shards for cross-
shard transactions is set as 4.

B. Performance of Hybrid Sharding Consensus

We evaluate the performance of the hybrid sharding consen-
sus by measuring the transaction throughput in transactions
per second (TPS) for our refined system that removes the
dynamic shard management mechanism. We set varying shard
numbers K, validator numbers N, and the proportion of
cross-shard transactions o« and observe the corresponding
impact on the TPS. As shown in Fig. 4, the shard numbers
are set as 30 and 50 separately, validator numbers are set
to {500, 700, 1000, 1500}, and the proportion of cross-shard
transactions varies from [0, 0.8]. Through the evaluation result,
it is evident that the throughput experiences a decline as the
proportion of cross-shard transactions increases. Given a fixed
shards number K = 50 and validator nodes number N = 500,
when the proportion of cross-shard transactions « is set to 0,
the throughput achieves 236.59 TPS. However, as the cross-
shard transaction ratio « rises to 0.8, the throughput diminishes
to 125.26 TPS, reflecting a reduction of approximately 47.06%
compared to the non-cross-shard transactions scenario. This
decline can be attributed to the involvement of all validator
nodes in handling cross-shard transactions and the broadcast
of local verification results across all nodes in the system,
which brings additional communication time. Besides, the
shards number and the validator nodes number decide the
size of consensus groups, thereby impacting the efficiency
of intra-shard transactions’ processing and the overall system

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

5920
600 | | RSN 40000 TXs/Sec
B 30000 TXs/Sec
500
—_
@n
-
= 400
N
N
2
= 300
o0
=
2
= 200
=
100
0
before 4000 4000 4000 2000 2000 2000
adjustment 20 10 8 20 10 8
n, (top), s (bottom)
Fig. 5. Throughtput of the system varies with different system threshold

parameters: n., s, and transaction arrival rate.

throughput. A smaller consensus group size corresponds to a
higher system throughput.

C. Comprehensive Performance With Dynamic Shard
Management Mechanism

In this subsection, we conduct comprehensive simulations
to evaluate system performance with the dynamic shard
management mechanism. In the first group of simulations,
we investigate the impact of the congested shards threshold
transaction number n., and the minimum number of validators
per shard s on the efficiency of the dynamic shard management
mechanism under various transaction arrival rates. It is
suggested to set n, based on the average number of
transactions in a block n;,, the average block generation time
tp, and the desired transaction confirmation latency time (¢),
using the equation n, = "’;; *and set s based on the security
needs. A higher value of s corresponds to a smaller probability
of an adversary gaining control over a shard. By varying
the values of n., s, and the transaction arrival rate, while
keeping other parameters constant, we measure the transaction
throughput in terms of transactions per second (TPS).

For the initialization, 20000 users and 500 validators are
evenly divided into 10 shards, the transaction arrival rate
is set to 40000, 80000 transactions per second separately,
ne is set to 2000, 4000, and s is set to 20, 10,8. The
result is illustrated in Fig. 5, under a fixed transaction
arrival rate, a smaller value for n. and s, leads to more
shard splits and therefore a higher throughput. Under fixed
ne and r, a faster transaction arrival rate will bring more
unprocessed transactions per shard and a greater number of
shard splits, thereby achieving higher throughput. The result
shows that the dynamic shard management mechanism can
flexibly provide higher throughput under stronger transaction
processing requirements. Besides, by adjusting the parameters
n. and s, one can strike a balance between ensuring the
security of individual shards and maximizing the overall
throughput of the system.

We then study the ratio of shard utilization, defined as the
transaction arrival rate divided by the shard throughput, both

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

296.35

8

113253

2
T

8
T

171.23

g
T

&

8
T
|

30213

Shard utilization ratio (%)
Shard utilization ratio (%)

g
2
>

°

Shsard
(b) After shard adjustment.

2 3
Shard

(a) Before shard adjustment.

Fig. 6. Shards utilization before and after shard adjustment.

2.0X10° 7

[—=—Non-adjustment
—e—n,~1000, s =20
——n,~500,5 - 10

f~=—Non-adjustment] 100 [
fe=n,=1000, s = 20 ‘

ft—n_= 500, = 10

ize

1.5X10° |3

10X 10°

Transaction queue si
Number of shards

X

200 400 600 800 1000 1200 1400 1600 1800
Time (s)

(b) The number of shards.

P .
0 200 400 600 800 1000 1200 1400 1600 0
Time (s)

(a) Queue size of the transaction pool.

Fig. 7. Queue size of the transaction pool and the number of shards vary
with time after a transaction burst.

before and after the shard adjustment process. The number
of shards is set as 10, with transaction arrival rates varying
from [50, 2000], to simulate unbalanced workload scenarios.
The threshold parameter n. is set to 500, r is set to 0.2, and
s is set as 20. We select four shards in the above process and
calculate the number of unprocessed intra-shard transactions
divided by the intra-shard transaction processing speeds as
the shard utilization ratio, as shown in Fig. 6. The average
distance to the perfect 100% utilization is shortened from
3.44 to 0.86, indicating the efficacy of the dynamic shard
management mechanism in improving shard utilization.

In the next group of simulations, to evaluate the performance
of our system in efficiently handling transaction bursts
under different managing parameters n. and s, we use
200, 000 transactions to feed the transaction pool with an
arrival rate of 2000 transactions per second. We set the
number of users to 20000, the number of validators as 1000,
the initial number of shards K as 20, parameter r to 0.2,
and record the queue size of the transaction pool and the
shards numbers in the system. There are three system settings
in these simulations: a). without shard adjustment. b). n.
is set to 1000, s is set to 20. ¢). n. is set to 500, s is
set to 10. For the last two situations, we adjust the shards
at time = 50,200, 1000 seconds. As shown in Fig. 7a,
the queue size keeps growing when the transactions are
continually injected at the first hundred seconds, and after
all the transactions are consumed, the queue size begins to
shrink for all three settings. For comparison, we can see it
takes about 1551.9 seconds to process all the transactions
for the non-adjustment situation, and only 784.3 seconds
and 371.5 seconds for the last two settings, reducing the
processing time by 49.5% and 76.1% respectively. Besides,
Fig. 7b illustrates the shard numbers in the system over
time. In the first adjustment when there is a transaction

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SECURE AND EFFICIENT BLOCKCHAIN SHARDING SCHEME

400

B Non-sharding|
B Our work

w

1=

S
T

Transaction Per Second (tps)
_ [)
(=3 =3
(=} (=}

200 200 200 400 400 400 1000 1000 1000
5 8 10 8 16 20 20 40 50

Number of nodes (top), Number of shards (bottom)

Fig. 8. Compare the transaction throughput with the traditional non-sharding
scheme.

burst, situations » and ¢ split shards into 50 shards and
100 shards respectively. As the transaction queue subsequently
diminishes below the predetermined threshold, situations b
and ¢ merge shards and reduce the shards number to
13 and 25 respectively. The experiment results demonstrate
the dynamic shard management mechanism can effectively
accelerate the processing for congested transactions and also
reduce the number of underloaded shards when the transaction
load decreases.

We calculate the overall cost of the system using the
model described in Section IV-E, considering different system
states such as peak, plateau, and low transaction periods.
Specifically, we set the transaction arrival rate range as
{50, 500, 2000}, with weight factor wq set to 10 and w; set
to 100 for normalization. The system parameters used in the
dynamic shard management mechanism are set to n. = 1000,
r = 0.2, and s = 20. We test the transaction processing
rate and calculate the overall system cost before and after
the adjustment. In addition to the normal shard adjustment
based on the dynamic shard management mechanism, we also
consider a malicious adjustment carried out by a malicious
managing committee. The malicious adjustment aims to
maximize the number of malicious shards and increase the
consensus group size for other normal shards, thus reducing
the transaction processing efficiency. The results are shown in
Table I, where Cy represents the overall system cost before
the adjustment, C; represents the overall cost after a normal
adjustment, and C; represents the overall cost after a malicious
adjustment. Furthermore, we calculate the expected change in
the overall system cost by introducing the managing committee
as follows:

E(AC) = (1 - p) - ACoveran — P - AC,

overall’

where p represents the probability that most validators in
the managing committee are malicious, ACqyerall TEpresents
the reduction in the overall cost achieved by adjusting the
shards normally according to the dynamic shard management
mechanism, and AC (/)Vf:rall represents the increment in the
overall cost when the managing committee is malicious.

Table I shows that introducing the managing committee- has

5921

TABLE I

THE SYSTEM OVERALL COST UNDER DIFFERENT TRANSACTION
ARRIVAL RATES BEFORE/AFTER ADJUSTMENTS

Transaction arrival rate 50 500 2000
Co 0.87 42.85 198.81

C1 0.53 27.14 90.83

Ca 79.56 285.57 972.25
E(AC)/Co 0.23% 34.04% 52.38%

8 Non-sharding
- Hybrid sharding
LE== Standard sharding
N\ Hybrid sharding with
dynamic shards managing

'S
=3
S

[w
=3 =3
S S

S

Transaction Per Second (tps)
S

W/

100 200 500 800 1000
1 2 5 8 10

Number of nodes (top), Number of shards (bottom)

Fig. 9. Comparison of transaction throughput of non-sharding scheme, hybrid
sharding scheme, the standard Sharding scheme and hybrid sharding scheme
with dynamic shard management.

a positive impact on reducing the overall system cost under
different system statuses, particularly during transaction bursts.

To figure out our work’s transaction processing capacity and
efficiency relative to these existing approaches, we compare
the throughput of the proposed system with the traditional
single blockchain (non-sharding) scheme and a representative
sharding scheme named Monoxide [28], which uses relay
transaction mechanism to process cross-shard transactions.

We first test the system transaction throughput under
different shard numbers and consensus node numbers and
compare our work with the traditional single blockchain (non-
sharding) scheme. The number of consensus nodes ranges
from {200, 400, 1000}, and the number of shards varies from
[5, 50]. To achieve a fair comparison of the system structures’
influence on the throughput, the non-sharding system takes the
same consensus process as our system’s intra-shard consensus.
As shown in Fig. 8, the throughput of the non-sharding system
drops seriously as the number of nodes increases. In contrast,
our system has a much higher increasing throughput with the
number of shards. When there are 1000 consensus nodes in
the system, the TPS of a traditional non-sharding scheme is
8.74, while ours (50 shards) is 260.39, which is about 30 times
its throughput.

D. Comparison Results

Then, we compare our work with the representative
sharding scheme. There are two main differences between
our system and the standard sharding system. One is the
shard components, Monoxide is a static sharding scheme

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

5922

with a fixed number of shards, while ours uses a dynamic
shard management mechanism. The other difference is the
way to handle cross-shard transactions. Our system uses
the refined global consensus to reach joint cross-shard
transaction processing, while Monoxide uses relay transactions
to process cross-shard transactions, which can be referred
to in section II. To evaluate the throughput under different
system capacities, we set the number of consensus nodes to
vary from {100, 200, 500, 800, 1000}, the initial size of each
shard is set as 100, and the smallest shard size s is set as
20. As shown in Fig. 9, both our solution and the standard
sharding scheme can improve the system throughput of a
traditional non-sharding blockchain system by multiple times
as the number of nodes increases. Besides, note that standard
sharding systems have limits on the minimum size of shards to
reduce the possibility of shard corruption caused by consensus
shrinkage. In contrast, in our solution, the security of shards
is guaranteed by the security of the entire system, therefore
enabling to splitting of smaller shards. Therefore, when the
number of nodes remains at or below 500, our solution
exhibits a superior throughput compared to the standard
sharding scheme, primarily due to the more and smaller shards
employed in our approach. However, as the number of nodes
grows, the standard sharding scheme demonstrates greater
efficiency in terms of performance. This discrepancy arises
from the tradeoff we made to prioritize and enhance the
security of the sharding system.

E. Discussion

1) Theoretical Performance Analysis and Comparison:
Assuming a system consists of N validators, divided into K
shards, with n transactions, where the proportion of cross-
shard transactions is ¢, and the average number of related
shards for each cross-shard transaction is x. Using our
proposed protocol, the average time comslexity for transaction

0 (n SN (U2 £5)). In contrast, the

processing is 72

average time complexity for transaction processing in classical
blockchain sharding protocols is 0(”1'(—1;/) and in non-sharding
single-chain systems, it is O(n - N). Therefore, in the
worst case, where the proportion of cross-shard transactions
approaches 1, the time complexity for our solution is 0("'%*),
still resulting in a K/x fold reduction in time compared to
non-sharding single-chain systems. In the best case, when
o approaches 0, the proposed protocol has the same time
complexity as classical blockchain sharding protocols, both
being 0(';'(—1!).

2) Optimal Application Scenario: The proposed solution
improves transaction processing efficiency by performing
system sharding during transaction bursts and merging shards
to do global auditing when the system is idle. It is most
applicable for systems with both high and low transaction
peaks and a sufficient average computational power. Addition-
ally, compared to most existing sharding schemes that ensure
security through probabilistic methods [20], [27], our proposed
solution is more tolerant towards the probability of malicious
shards. Therefore, it supports smaller shard sizes, allowing

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

blockchain systems with fewer nodes to be split into more
parallel shards, resulting in greater efficiency improvements.

VII. CONCLUSION

In this work, we presented a dynamic blockchain sharding
scheme with stronger security. Our core objective is to
address the consensus shrinkage and shards isolation issue
within blockchain sharding systems without compromising
the efficiency improvements brought by sharding. To achieve
this goal, we first proposed a hybrid sharding consensus
mechanism that seamlessly integrates global consensus into
multiple parallel intra-shard consensuses. By leveraging global
consensus, we fixed the sharding security issue by facilitating
shards auditing, which defended against cross-shard double
spending attacks from malicious shards, and achieved cross-
shard transaction atomicity. Moreover, we designed a dynamic
shard management mechanism, which reduces transaction
congestion, improves the utilization of shards, and avoid
security degradation caused by over-sharding. The security
analysis proved our system can achieve consensus safety and
liveness even with corrupted shards. Finally, the evaluation
results show that our work achieved significant improvement
in increasing transaction throughput and handling transaction
bursts, surpassing the performance of traditional blockchain
systems.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
for their invaluable suggestions that have led to the present
improved version of this article.

REFERENCES

[1] K. Wiist and A. Gervais, “Do you need a blockchain?” in Proc. Crypto
Valley Conf. Blockchain Technol. (CVCBT), Jun. 2018, pp. 45-54.

[2] L.-Y. Yeh, W.-H. Hsu, and C.-Y. Shen, “GDPR-compliant personal
health record sharing mechanism with redactable blockchain and
revocable IPFS,” IEEE Trans. Dependable Secure Comput., early access,
2023, doi: 10.1109/TDSC.2023.3325907.

[3] B. Chen, T. Xiang, D. He, H. Li, and K. R. Choo, “BPVSE:
Publicly verifiable searchable encryption for cloud-assisted electronic
health records,” [EEE Trans. Inf. Forensics Security, vol. 18,
pp- 3171-3184, 2023.

[4] G. D. Bashar, J. Holmes, and G. G. Dagher, “ACCORD: A scalable
multileader consensus protocol for healthcare blockchain,” IEEE Trans.
Inf. Forensics Security, vol. 17, pp. 2990-3005, 2022.

[5] J. Xu et al., “HealthChain: A blockchain-based privacy preserving
scheme for large-scale health data,” IEEE Internet Things J., vol. 6,
no. 5, pp. 8770-8781, Oct. 2019.

[6] Y. Miao, Z. Liu, H. Li, K. R. Choo, and R. H. Deng, “Privacy-
preserving Byzantine-robust federated learning via blockchain systems,”
IEEE Trans. Inf. Forensics Security, vol. 17, pp. 2848-2861, 2022.

[71 J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “DeepChain:
Auditable and privacy-preserving deep learning with blockchain-based
incentive,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 5,
pp. 2438-2455, Sep. 2021.

[8] C. Lin, D. He, X. Huang, and K. R. Choo, “OBFP: Optimized
blockchain-based fair payment for outsourcing computations in
cloud computing,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 3241-3253, 2021.

[9] J. Zou, D. He, S. Zeadally, N. Kumar, H. Wang, and K. R. Choo,
“Integrated blockchain and cloud computing systems: A systematic
survey, solutions, and challenges,” ACM Comput. Surv., vol. 54, no. 8,
pp. 1-36, Nov. 2022.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2023.3325907

LI et al.: SECURE AND EFFICIENT BLOCKCHAIN SHARDING SCHEME

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

K. Xue, X. Luo, Y. Ma, J. Li, J. Liu, and D. S. L. Wei, “A distributed
authentication scheme based on smart contract for roaming service in
mobile vehicular networks,” IEEE Trans. Veh. Technol., vol. 71, no. 5,
pp. 5284-5297, May 2022.

K. Xue, X. Luo, H. Tian, J. Hong, D. S. L. Wei, and J. Li, “A blockchain
based user subscription data management and access control scheme in
mobile communication networks,” IEEE Trans. Veh. Technol., vol. 71,
no. 3, pp. 3108-3120, Mar. 2022.

A. Vangala, A. K. Das, A. Mitra, S. K. Das, and Y. Park,
“Blockchain-enabled authenticated key agreement scheme for mobile
vehicles-assisted precision agricultural IoT networks,” IEEE Trans. Inf.
Forensics Security, vol. 18, pp. 904-919, 2023.

L. Zhou, A. Fu, G. Yang, Y. Gao, S. Yu, and R. H. Deng, “Fair cloud
auditing based on blockchain for resource-constrained IoT devices,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 5, pp. 4325-4342,
May 2023.

Y. Jiang and J. Zhang, “Distributed detection over blockchain-aided
Internet of Things in the presence of attacks,” IEEE Trans. Inf. Forensics
Security, vol. 18, pp. 3445-3460, 2023.

V. Mishra and D. Sadhya, “Height and punishment: Toward accountable
IoT blockchain with network sanitization,” IEEE Trans. Inf. Forensics
Security, vol. 18, pp. 5665-5677, 2023.

D. Khan, L. T. Jung, and M. A. Hashmani, “Systematic literature review
of challenges in blockchain scalability,” Appl. Sci., vol. 11, no. 20,
p. 9372, Oct. 2021.

L. Zhang, H. Xu, O. Oniretii M. A. Imran, and B. Cao,
“How much communication resource is needed to run a wireless

blockchain network?” [EEE Netw., vol. 36, no. 1, pp. 128-135,
Jan. 2022.
M. Kuzlu, M. Pipattanasomporn, L. Gurses, and S. Rahman,

“Performance analysis of a hyperledger fabric blockchain framework:
Throughput, latency and scalability,” in Proc. IEEE Int. Conf. Blockchain
(Blockchain), Jul. 2019, pp. 536-540.

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 17-30.

M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
blockchain via full sharding,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2018, pp. 931-948.

H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
“Towards scaling blockchain systems via sharding,” in Proc. Int. Conf.
Manage. Data (SIGMOD), 2019, pp. 123-140.

A. Liu et al., “CHERUBIM: A secure and highly parallel cross-
shard consensus using quadruple pipelined two-phase commit for
sharding blockchains,” IEEE Trans. Inf. Forensics Security, vol. 19,
pp. 3178-3193, 2024.

Y. Xu, J. Zheng, B. Diidder, T. Slaats, and Y. Zhou, “A two-layer
blockchain sharding protocol leveraging safety and liveness for enhanced
performance,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2024, doi:
10.14722/ndss.2024.24006.

G. Wang, Z. J. Shi, M. Nixon, and S. Han, “SoK: Sharding on
blockchain,” in Proc. Conf. Adv. Financial Technol. (AFT), 2019,
pp. 41-61.

Y. Liu et al., “Building blocks of sharding blockchain systems: Concepts,
approaches, and open problems,” Comput. Sci. Rev., vol. 46, pp. 1-44,
Nov. 2022, Art. no. 100513.

Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview
of blockchain technology: Architecture, consensus, and future trends,”
in Proc. IEEE Int. Congr. Big Data (BigData Congress), Jun. 2017,
pp. 557-564.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A secure, scale-out, decentralized ledger via
sharding,” in Proc. IEEE Symp. Security Privacy (SP), May 2018,
pp. 583-598.

J. Wang and H. Wang, “Monoxide: Scale out blockchains
with asynchronous consensus zones,” in Proc. 16th USENIX
Symp. Networked Syst. Design Implement. (NSDI), 2019, Feb. 2019,
pp. 95-112.

P. Zheng, Q. Xu, Z. Zheng, Z. Zhou, Y. Yan, and H. Zhang, “Meepo:
Sharded consortium blockchain,” in Proc. IEEE 37th Int. Conf. Data
Eng. (ICDE), Apr. 2021, pp. 1847-1852.

M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proc. 3rd USENIX Symp. Operating Syst. Design Implement., 1999,
pp. 173-186.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

5923

S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
Accessed: Dec. 2023. [Online]. Available: https://bitcoin.org/bitcoin.pdf
G. Wood. (2022). ETHEREUM: A Secure Decentralised Generalised
Transaction Ledger. Accessed: Dec. 2023. [Online]. Available:
https://cryptodeep.ru/doc/paper.pdf

L. N. Nguyen, T. D. T. Nguyen, T. N. Dinh, and M. T. Thai, “OptChain:
Optimal transactions placement for scalable blockchain sharding,” in
Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019,
pp- 525-535.

Z. Hong, S. Guo, P. Li, and W. Chen, “Pyramid: A layered sharding
blockchain system,” in Proc. Int. Conf. Comput. Commun. (INFOCOM),
2021, pp. 1-10.

H. Huang et al., “BrokerChain: A cross-shard blockchain protocol for
account/balance-based state sharding,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., May 2022, pp. 1968-1977.

Y. Liu et al., “A flexible sharding blockchain protocol based on cross-
shard Byzantine fault tolerance,” IEEE Trans. Inf. Forensics Security,
vol. 18, pp. 2276-2291, 2023.

M. Andrychowicz and S. Dziembowski, ‘“Pow-based distributed
cryptography with no trusted setup,” in Advances in Cryptology—
CRYPTO 2015. Berlin, Germany: Springer, 2015, pp. 379-399.

S. Micali, S. Vadhan, and M. Rabin, “Verifiable random functions,” in
Proc. 40th Annu. Symp. Found. Comput. Sci., 1999, pp. 120-130.

S. King and S. Nadal. (Aug. 2012). PPCoin: Peer-to-Peer
Crypto-Currency ~ With Proof-of-Stake. [Online]. Available:
https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf

E. Syta et al., “Keeping authorities,” in Proc. IEEE Symp. Secur. Privacy
(S&P), Jul. 2016, pp. 526-545.

E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing Bitcoin security and performance with strong consistency
via collective signing,” in Proc. 25th USENIX Secur. Symp., Aug. 2016,
pp. 279-296.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp- 359-392, Jan. 1998.

Meiqi Li received the B.S. degree in information
security from the School of Cyber Science and
Technology, University of Science and Technology
of China (USTC), in 2021, where she is currently
pursuing the Ph.D. degree in information security.
Her research interests include blockchain, network
security, and applied cryptography.

Xinyi Luo (Graduate Student Member, IEEE)
received the B.S. degree in information security
from the School of the Gifted Young, University
of Science and Technology of China (USTC),
in 2020. She is currently pursuing the Ph.D.
degree in information security with the School of
Cyber Science and Technology, USTC. Her research
interests include blockchain, network security, and
applied cryptography.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.14722/ndss.2024.24006

5924

Kaiping Xue (Senior Member, IEEE) received the
bachelor’s degree from the Department of Informa-
tion Security, University of Science and Technology
of China (USTC), in 2003, and the Ph.D. degree
from the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007.

From May 2012 to May 2013, he was a
Post-Doctoral Researcher with the Department of
Electrical and Computer Engineering, University of
Florida. Currently, he is a Professor with the School
of Cyber Science and Technology, USTC. He is also
the Director of the Network and Information Center, USTC. His research
interests include next-generation internet architecture design, transmission
optimization, and network security. He serves on the editorial board for several
journals, including IEEE TRANSACTIONS ON DEPENDABLE AND SECURE
COMPUTING, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
and IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT.
He is an IET Fellow.

Yingjie Xue received the bachelor’s degree from
the Department of Information Security, University
of Science and Technology of China (USTC),
in 2015, the master’s degree from the Department
of Electronic Engineering and Information Science
(EEIS), University of Science and Technology of
China (USTC), in 2018, and the Ph.D. degree in
computer science from Brown University, in 2023.
¢ Currently, she is an Assistant Professor with the
/ N Financial Technology Thrust, The Hong Kong

University of Science and Technology (Guangzhou).
Her research interests include blockchain, such as blockchain interoperability,
security and privacy, and decentralized finance.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Wentuo Sun (Graduate Student Member, IEEE)
received the bachelor’s degree from the School
of Cyber Science and Technology, University of
Science and Technology of China (USTC), in 2020,
where he is currently pursuing the Ph.D. degree
in information security. His research interests
include blockchain, network security, and applied

cryptography.

Jian Li (Senior Member, IEEE) received the bach-

elor’s degree from the Department of Electronics

and Information Engineering, Anhui University,

in 2015, and the Ph.D. degree from the Department

| : ,‘ of Electronic Engineering and Information Science

P (EEIS), University of Science and Technology

N 4 of China (USTC), in 2020. From November

F 2019 to November 2020, he was a Visiting Scholar

with the Department of Electronic and Computer

Engineering, University of Florida. From December

2020 to December 2022, he was a Post-Doctoral

Researcher with the School of Cyber Science and Technology, USTC. He is

currently an Associate Researcher with the School of Cyber Science and

Technology, USTC. His research interests include future internet technologies,

network security, and quantum networks. He serves as an Editor for China
Communications.

o=

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on June 17,2024 at 08:57:12 UTC from IEEE Xplore. Restrictions apply.

