
1614 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Privacy-Enhanced Graph Neural Network for
Decentralized Local Graphs

Xinjun Pei , Student Member, IEEE, Xiaoheng Deng , Senior Member, IEEE, Shengwei Tian ,
Jianqing Liu , Member, IEEE, and Kaiping Xue , Senior Member, IEEE

Abstract— With the ever-growing interest in modeling com-
plex graph structures, graph neural networks (GNN) provide
a generalized form of exploiting non-Euclidean space data.
However, the global graph may be distributed across multiple
data centers, which makes conventional graph-based models
incapable of modeling a complete graph structure. This also
brings an unprecedented challenge to user privacy protection in
distributed graph learning. Due to privacy requirements of legal
policies, existing graph-based solutions are difficult to deploy
in practice. In this paper, we propose a privacy-preserving
graph neural network based on local graph augmentation, named
LGA-PGNN, which preserves user privacy by enforcing local dif-
ferential privacy (LDP) noise into the decentralized local graphs
held by different data holders. Moreover, we perform local
neighborhood augmentation on low-degree vertices to enhance
the expressiveness of the learned model. Specifically, we propose
two graph privacy attacks, namely attribute inference attack and
link stealing attack, which aim at compromising user privacy.
The experimental results demonstrate that LGA-PGNN can
effectively mitigate these two attacks and provably avoid potential
privacy leakage while ensuring the utility of the learning model.

Index Terms— Local differential privacy, graph augmentation,
graph convolutional network, privacy-preserving.

I. INTRODUCTION

THE large amount of graph data generated from the
Internet of Things (IoT) devices underscores the demand

Manuscript received 24 May 2023; revised 27 August 2023; accepted
23 September 2023. Date of publication 2 November 2023; date of current
version 19 December 2023. This work was supported in part by the National
Natural Science Foundation of China Project under Grant 62172441 and Grant
62172449; in part by the Joint Funds for Railway Fundamental Research of
National Natural Science Foundation of China under Grant U2368201; in
part by the Special Fund of National Key Laboratory of Ni&Co Associated
Minerals Resources Development and Comprehensive Utilization under Grant
GZSYS-KY-2022-018 and Grant GZSYS-KY-2022-024; in part by the Key
Project of Shenzhen City Special Fund for Fundamental Research under Grant
JCYJ20220818103200002; in part by the National Natural Science Foundation
of Hunan Province under Grant 2023JJ30696; and in part by the Autonomous
Region Key Research and Development Project under Grant 2021B01002.
The associate editor coordinating the review of this manuscript and approv-
ing it for publication was Dr. Grigorios Loukides. (Corresponding author:
Xiaoheng Deng.)

Xinjun Pei and Xiaoheng Deng are with the School of Electronic Infor-
mation, Central South University, Changsha 410083, China, and also with
the Shenzhen Research Institute, Central South University, Shenzhen 518000,
China (e-mail: pei_xinjun@163.com; dxh@csu.edu.cn).

Shengwei Tian is with the School of Software, Xinjiang University, Ürümqi
830001, China (e-mail: tianshengwei@163.com).

Jianqing Liu is with the Department of Computer Science, North Carolina
State University, Raleigh, NC 27606 USA (e-mail: jliu96@ncsu.edu).

Kaiping Xue is with the Department of Electronic Engineering and Informa-
tion Science, University of Science and Technology of China, Hefei 230027,
China (e-mail: kpxue@ustc.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TIFS.2023.3329971, provided by the authors.

Digital Object Identifier 10.1109/TIFS.2023.3329971

for advanced graph analysis techniques in order to model
complex graph structures. The emergence of graph neural
networks (GNN) have attracted increasing attentions from
academia and industry perspectives, since it allows to directly
model the high-dimensional vertex features and high-order
interactions between vertices. In many real-world scenarios,
graph-structured data is usually sensitive and may contain
user private information, such as a user’s friend list, profile
information, likes and comments in a social network [1],
[2], [3], [4]. While anonymity on the Internet separates one’s
network identity from one’s online activities [5], any collection
and sharing of graph data can compromise the anonymity of
users, thereby putting their privacy at risk. The proliferation of
high-quality graph structured data has brought unprecedented
challenges for user privacy. How to protect data privacy
from being leaked during data sharing still remains an open
problem.

The highly privacy-sensitive graphs in the real world make
most of conventional GNN models infeasible because they
cannot defend against privacy inference attacks on graph data.
We cannot exclude the possibility that a strong adversary can
invert the sensitive information through techniques such as
membership inference attacks [6], [7], [8], model inversion
attacks [9], and model extraction attacks [10]. This privacy risk
is further exacerbated by the increasing trend of publishing and
sharing pre-trained models. In our problem setting, we propose
two graph privacy attacks to infer privacy vertex attributes or
links of a user’s local graph.

To mitigate privacy threats, local differential privacy (LDP)
has become an indispensable and well-recognized defense
method. Unlike traditional centralized differential privacy
(CDP), which typically assumes that a trusted data curator
can see the true data [11], [12], LDP perturbs each user’s data
records locally before sending them to the curator. The curator
then performs calculations on the collected perturbed data
records to estimate statistical analysis results on the original
data. As a result, LDP can provide users with a stronger
privacy guarantee than CDP. Some recent works [13], [14]
have combined LDP with various deep learning algorithms to
alleviate privacy issues persisted in these algorithms. However,
few research works have considered guarding against privacy
inference attacks on graph data. This emphasizes the need for
privacy-preserving GNN techniques. In this paper, we focus
on understanding the risks of vertex and edge privacy when
training and releasing a GNN model, ensuring that the released
model and its predictions do not reveal private information
about the undisclosed training data.

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4772-7525
https://orcid.org/0000-0003-2740-8025
https://orcid.org/0000-0003-3525-5102
https://orcid.org/0000-0001-7568-015X
https://orcid.org/0000-0003-2095-7523

PEI et al.: PRIVACY-ENHANCED GRAPH NEURAL NETWORK FOR DECENTRALIZED LOCAL GRAPHS 1615

Most existing studies on GNN assume unrestricted access
to graph data, ignoring potential privacy risks in data sharing,
especially in graph isolation scenarios where the graph data is
generated locally on each user device and remains decentral-
ized [1], [2], [4], [5], [15]. For example, a social graph with
users’ purchase history held by a multinational corporation
may be distributed across multiple data centers in different
countries [16]. The server collects user’s behavioral data
(i.e. vertex features) and interaction data (i.e. neighborhood
information) to enrich the GNN, and then provides users with
a GNN inferrence API for queries. Moreover, in the case
of a GNN, each neighboring vertex pair may exchange their
hidden vector representations with each other multiple times
through a message-passing mechanism [17], [18], [19], [20],
[21], [22]. In a graph isolation scenario, aggregating sufficient
local neighborhood information for low-degree vertices with
few neighbors is highly challenging, and requires thoughtful
design considerations. To cope with this problem, existing
methods [4] incorporate multi-hop neighboring information by
expanding the receptive field, but may lead to over-smoothing.
A promising solution is to develop a graph augmentation
strategy to enhance the local neighborhood representation for
each vertex, which enhances the expressiveness of the GNN
model.

To cope with the graph isolation problem, we propose a
privacy-preserving graph convolutional network (LGA-PGNN)
to provide privacy protection for user’s data records.
To prevent adversaries from inferring sensitive information,
we enforce LDP on decentralized local graphs held by
different users and then train LGA-PGNN with a privacy
graph convolutional layer. Moreover, we develop a local
graph augmentation (LGA) method that expands the local
neighborhoods of low-degree vertices by generating vertex
augmentations, which enhances the expressiveness of the
learned model. We present two types of graph privacy attacks
(i.e., attribute inference attack and link stealing attack) and
how they steal users’ private information. We demonstrate
that LGA-PGNN can significantly mitigate these two attacks
and reduce the attack performance by 79.23% and 64.34%,
respectively. Overall, the proposed LGA-PGNN can guarantee
the data utility and allow an accurate model to be learned
efficiently, while provably avoiding potential privacy leakages.
To our knowledge, we are not aware of existing privacy-
preserving GNNs for similar privacy attacks, as most previous
locally private GNN models focused on defending against
member inference attacks. Our major contributions are as
follows:

• We propose LGA-PGNN, which enforces LDP in decen-
tralized local graphs held by different data holders
without consuming too much privacy budget, and utilizes
a privacy graph convolutional layer to train the learning
model. Specifically, we present two types of graph privacy
attacks and how they steal users’ private information.

• We develop LGA to expand the local neighborhood by
generating vertex augmentations, which can act as a
denoising mechanism. This enhances the expressiveness
of the learned model.

• We conduct extensive experiments on real-world datasets
to evaluate the effectiveness of LGA-PGNN. The
experimental results show that LGA-PGNN can achieve
high accuracy close to the LDP-exempt ones, and has the
ability to maintain a sound privacy-accuracy trade-off.

The rest of the paper is organized as follows. we review
the related work in Section II and give some preliminaries in
Section III. Then, we describe the system model and threat
model in Section IV. In Section V, we give the LGA-PGNN
design details. Section VI analyzes the experimental results.
Finally, Section VII concludes the paper.

II. RELATED WORK

Recently, GNN has been considered as an emerging research
area and has been successfully applied in many fields. The
ability to model irregular graph data is the key to the success
of GNNs, and numerous variants have been proposed, such
as graph convolutional networks (GCN) [17], graph attention
networks (GAT) [18], Chebyshev [19], SAGE [20], SimGCN
[21], TAGCN [22] and so on. These methods recursively
use neighborhood aggregation and transformation to compute
the vertex representations. In this case, the graph structure
is encoded into the neural network to improve classification
performance. While the success of GNNs is undeniable, there
are growing privacy concerns in the training data used to build
these learning models. Several recent studies have attempted
to reveal potential privacy attacks in the field of deep learn-
ing. For example, Shokri et al. [6] proposed a membership
inference attack where the adversary can determine whether
a data record belongs to the target model’s training dataset
through an inference model. In [23], the authors proposed a
model inversion attack, where the adversary can access the
learning model and extract memorized information from the
model.

Several recent studies have investigated the feasibility of
the attribute inference attacks and link stealing attacks. For
attribute inference attack, traditional methods utilize the target
user’s friend information and community membership infor-
mation to infer the target user’s private attributes. For example,
Gong and Liu [24] utilized publicly available social friends
and user’s behavioral records to infer attributes of the target
user. Kosinski et al. [25] demonstrated that users’ preference
signals are highly vulnerable to attribute inference attacks.
The most relevant work to us is [26], which presents a finer-
grained concept of attribute inference in which an adversary
can identify records with sensitive attributes from a candidate
set with a high degree of confidence. They showed that trained
models leak considerable information about the underlying
training distribution that can be exploited to infer sensitive
attributes about individuals. However, these methods do not
discuss inference attacks on the graph’s vertex attributes.
Moreover, due to the complexity of graph data, these methods
cannot be extended trivially to node-level privacy setting.
In our problem setting, the server is not trusted and thus does
not have direct access to the graph data. We assume that the
adversary has partial knowledge of some training records and
then use them to infer sensitive attribute values.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

1616 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Little work focuses on protecting users against link stealing
attacks. He et al. [27] proposed a black-box attack aimed at
inferring sensitive links between nodes of interest. In this
work, they discussed several types of background knowledge
for attackers, including node attributes, partial graph infor-
mation, and the utilization of a shadow dataset. Wu et al.
[28] is the first work that proposed a link stealing attack
framework, LINKTELLER, to infer the private edge infor-
mation. In the inference process, LINKTELLER first queries
the GNN inference API with a set of inference nodes,
and then infers connections between nodes of interest using
the returned prediction probability vectors. Similarly, Kol-
luri et al., [29] extended the LINKTEELER approach, and
developed a privacy-preserving GNN model that is trained on
graphs with privacy-sensitive edges. However, these methods
have different problem settings that make them not directly
and fairly comparable to our method. Such methods drastically
change the adjacency matrix and severely distort the prop-
agation structure inside a GCN when noise is added. More
importantly, in our problem setting, the attacker does not rely
on the edge information (i.e., the adjacency matrix).

A natural method to prevent the leakage of private infor-
mation is to add noise, and one promising example is the
application of differential privacy (DP) in deep learning.
However, training a privacy-preserving GNN is more chal-
lenging than other privacy deep learning models due to the
relational characteristics of graphs. There are few attempts to
provide privacy protection in the field of graph-based learning
algorithms. In [13], Hu et al. proposed a privacy-preserving
graph learning framework (named DP-GCN) for classifying
unlabeled nodes with non-sensitive latent representations. Its
goal is to prevent non-private users from disclosing sensitive
information about private users. In addition, Igamberdiev
and Habernal [14] applied differentially-private gradient-based
training to GCN by injecting DP noise into the model gra-
dients. This method can effectively mitigate the leakage of
personal sensitive information in text classification. Consid-
ering that existing DP methods require a trusted curator,
these methods may not be suitable for practical graph learn-
ing services, such as Machine-Learning-as-a-Service (MLaaS)
provided by Google.

Several studies have explored the possibilities of applying
local differential privacy (LDP) to GNN models. For example,
Hidano and Murakami [30] proposed DPRR, an LDP-based
GNN framework that provides LDP for graph edges. The
framework employs a random response method to perturb
the graph structure, and preserves degree information through
a strategic edge sampling approach. This study focuses on
edge-local LDP, which may be insufficient in some highly
sensitive scenarios. Sajadmanesh and Gatica-Perez [4] devel-
oped a node-level local private GNN that provides LDP for
graph vertices. Similarly, Lin et al. [16] proposed a privacy-
preserving GNN framework, which provides a decentralized
graph analysis under edge-LDP. Tran et al. [31] proposed a
heterogeneous randomized response method to perturb vertex
features and graph structure. However, most existing LDP-
based methods only discuss how to infer user identities
from learning models (i.e., member inference attacks), and

cannot be directly used to defend against the two privacy
attacks proposed in this paper. Our problem is different
from and more challenging than existing privacy-preserving
GNNs.

Graph augmentation involves modifying the graph structure
or generating new features, similar to data augmentation
techniques in computer vision (CV) and natural language
processing (NLP). Relatively little work has ivestigated graph
augmentation. This is primarily attributed to the intricate
non-Euclidean structure of graphs, which limits the possible
manipulation operations. A similar work by Rong et al. [32]
only considered randomly removing a fraction of edges dur-
ing GNN training, which is similar to the Drop operation.
In another work [33], the authors considered removing “noisy”
edges and adding “missing” edges to improve the GNN’s
performance. The most relevant work to us is [34], which
generates neighborhood features by a generative model con-
ditioned on graph structure and node features. However, these
methods aim to improve model performance rather than to
preserve privacy in GNNs. Building upon recent developments
in graph augmentation, we integrate the local graph augmen-
tation (LGA) into our framework, which expands the local
neighborhood by generating vertex augmentations, serving as
a denoising mechanism to enhance the expressiveness of the
learned model. Specifically, we present an inspiring finding
that our approach not only improves model performance but
also preserves user privacy.

III. PRELIMINARIES

A. Problem Definition

In this paper, we denote a directed graph as G = (V, E, X)

where V and E represent the set of vertices and edges,
respectively. X ∈ R|V |×d is a feature matrix, where each
vertex vi ∈ V has a d-dimensional feature vector (i.e., xi =

{xi,1, xi,2, . . . , xi,d}) with a corresponding label yi ∈ {0, 1}.
The task is to train a GNN model that outputs a class
probability ỹi for each vertex.

B. Graph Convolutional Networks

The GNN model uses a set of stacked graph convolutional
layers to perform effective information propagation on the
graph, which takes a tuple (A, X) as the input, where A and X
are the adjacency matrix and the feature matrix, respectively.
Then, the GCN learns the vertex hidden representation of each
vertex by aggregating the vectors of its adjacent neighbors.
More formally, the graph structure and vertex features can be
encoded by the neighborhood aggregation operation Agg() and
update operation 2():

hl
N (v) = Agg

({
hl−1

u , ∀u ∈ N (v)
})

, (1)

hl
v(θ) = 2

(
hl
N (v) · W l

)
, (2)

where hl
v represents the hidden representation of a vertex v at

layer l, ⊕ represents the merge operation. N (v) represents the
set of neighbors of the vertex v, and W represents the weight
matrix. Specifically, the Agg() is an aggregate function with

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-ENHANCED GRAPH NEURAL NETWORK FOR DECENTRALIZED LOCAL GRAPHS 1617

invariant permutation, such as max, sum, or mean. Each layer
updates all its hidden neurons H l

= {hl
v}

n
0 by an activation

function 2 (such as Sigmoid and ReLU), where n represents
the number of hidden neurons.

C. Local Differential Privacy

LDP uses a specific random perturbation mechanism M to
perturb the user’s real data record and sends the perturbed
version to the data curator. To protect privacy, we require M
to satisfy ϵ-LDP. Formally, we give the definition of LDP as
follows:

Definition 1 (ϵ-LDP): A randomized mechanism M satis-
fies ϵ-LDP if and only if for any two input tuples x and x ′,
and for any output y ∈ Range(M), we have:

Pr
[
M(x) = y

]
≤ exp(ϵ) · Pr

[
M
(
x ′
)

= y
]

where Pr[·] denotes the probability. The privacy budget ϵ is
a metric of privacy loss that controls the privacy-utility trade-
off, i.e., smaller values of ϵ indicate higher privacy guarantees
but lower utility. The LDP can provide users with plausible
deniability.

IV. ATTACK MODEL

This section focuses on understanding the risk of privacy
leakage under decentralized graph learning. Section IV-A
briefly describes the interaction model between data holders.
Then in Section IV-B and IV-C, we introduce the threat model
and adversary model of the proposed LGA-PGNN in terms
of its attack surface, the capabilities of the adversary and its
goals.

A. Interaction Model Between Data Holders

Modeling complex graph-structured data using GNN models
has been gradually advanced to many domains such as social
network, recommendation systems, etc. GNN aims to learn
a low-dimensional representation of network vertices while
preserving network topology structure and vertex content.
For example, in a GNN model, the computation of vertices
is regulated by the information passed from their neighbor
vertices. However, in a graph isolation setting, the collection
and analysis of graph data could lead to serious privacy con-
cerns, as vertex and interactions between them often implicitly
contain user-sensitive information that can be exploited for
malicious purposes.

Now, we present a real-world example. In many real-world
applications, companies have established their own business
graph datasets for training a large-scale GNN model and
providing users with various commercial machine learning
services, known as Machine-Learning-as-a-Service (MLaaS).
Then, users send their local graphs to the cloud via an
inference API, which returns the corresponding predictions
from the trained GNN model. In addition, these collected local
graphs can also be used to update the GNN model. A GNN
trained on large-scale data will contain more data distributions,
thereby improving its generalization ability.

In this case, data holders upload their local (private) graphs
to the cloud, which then builds a GNN model to perform

Fig. 1. Decentralized local graphs.

training and inference. To better understand this, an example
is given in Fig. 1. The isolated data holders own parts of
the whole graph. Let G = {Gk1 ,Gk2 , . . . ,Gkl } be a set of
local graphs for kn data holders K = {k1, k2, . . . , kn}. Each
data holder ki has a local graph Gki = (Vki , X ki ,Aki),
where Vki = {v

ki
1 , v

ki
2 , . . . , v

ki
|V |

} ∈ V is the set of vertices,

X ki = {xki
1 , xki

2 , . . . , xki
|V |

} is the feature matrix, and Aki is
the corresponding adjacency matrix. Formally, we define the
interaction between the cloud and the data holders as follows.

1) GNN Training: In the training stage, each data holder
ki sends its feature matrix X ki with the corresponding labels
Y ki = {yki

1 , yki
2 , . . . , yki

n }, yki
j ∈ C to the cloud, where C is the

number of classes in our task. Then, the cloud performs the
secure entity alignment to align vertices, which can compute
the intersection of two sets without exposing those that are
not in the intersection [1], [2]. Since this issue has been
researched extensively in the prior work [1], [2], in this paper
we assume that the cloud has aligned vertices. Based on
the vertex connection information, the cloud trains a privacy-
preserving GNN.

2) GNN Inference: In the inference stage, the cloud releases
the trained GNN model as a black-box API G N NAP I () to the
users. After that, the user sends its feature matrix XV

(I)
to the

API, where V(I)
∈ V is a set of inference vertices. Following

the standard MLaaS, the cloud uses the trained GNN API
G N NAP I () to make inference on XV

(I)
, and returns the

prediction matrix P(I) to the user. For simplicity, we consider
only a single layer of GNN. This inference process can be
described as follows:

hN (xvi
i ,N (xvi

i)) = Agg
({

xvi
u , ∀u ∈ N (vi)

})
(3)

G N NAP I (xvi
i , hN) =

(
xvi

i ⊕ hN (vi)

)
W (4)

pvi = G N NAP I (xvi
i ,N (vi)) (5)

P(I)
= {pv1 , pv2 , . . . , pvn } (6)

where each class probability pvi ∈ R1×C corresponds to a ver-
tex vi in V(I), which consists of a vector {zi,1, zi,2, . . . , zi,C }

where each value zic in this class probability pvi corresponds
to a confidence for a class c ∈ C .

B. Threat Model

Undoubtedly, the graph data isolation complicates the pro-
cess of training an effective GNN model. In particular, insecure
communication between the cloud and data holders greatly

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

1618 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 2. An example of attribute inference attack.

Fig. 3. An example of link stealing attack.

expands the attack surface during the collection and analysis
of graph data. Based on the goals of the attacks, we list the
potential risks of privacy leakage below.

1) Content Disclosure Risks: Generally, vertex attributes
may contain personal information about the user, such as
gender, age and occupation. If an adversary can directly
attribute the compromised vertex attributes to a specific person,
it will cause the leakage of user privacy. Therefore, vertex
attributes must be safeguarded.

2) Edge Disclosure Risks: In a social graph, edges represent
relationships between users. Edge information is considered
private. In fact, users prefer to keep such information strictly
confidential. For example, Alice is an HIV specialist who
communicates frequently with patient Bob. When the doctor-
patient relationship is exposed, the attacker can confidently
infer that the patient Bob is likely to be infected with HIV.
It requires a stricter protection of edge information.

C. Adversary Model and Assumptions

As mentioned earlier, the GNN model updates the cen-
tral vertex’s embeddings through message passing between
neighboring vertices. Generally, an adversary wants to infer
private information about the user, e.g., vertex attributes or
link (edge) information in a social graph. Attacks can occur
in two phases: model training and model inference. Based on
the adversary’s ability/knowledge, we distinguish between two
types of adversaries, Adversary 1 and Adversary 2. We show
the details of the two attacks in Fig. 2 and Fig. 3, respectively.

1) Attribute Inference Attack: We focus on limited-
knowledge attacks where Adversary 1 has no knowledge about
the classification model and its model weights, but owns a

portion of the data of the entire training set (i.e., the local
graph G(I)

= {V(I), E (I), X (I)
}) through trading, crawling

the network, or using other resources. In other words, the
Adversary 1 can observe the partial vertex attributes X (I) (i.e.,
f1 and f3 in Fig 2). These partial vertex attributes are used
to train an attack model 9AI Atk and infer other users’ private
attributes X (P) (i.e., f2 in Fig 2). In our case, the private
attribute X (P) can be viewed as a label, i.e., X (P)

= Y (P). The
gradient ∇AI Atk of the attack model’s loss can be computed
as follows:

∇AI Atk := ∇
(I)
X (I) minLAIAtk

(
9 AI Atk

θ∗

(
x(I)

i , y(P)
i

))
s.t. θ∗

= arg min
θ

Ltrain

(
9 AI Atk

θ

(
x(I)

i , y(P)
i

))
(7)

where x(I)
i ∈ X (I) is a feature vector in the training set

X (I) held by the Adversary 1, and y(P)
i ∈ Y (P) is the

private attribute of the i-th vertex. The model parameter θ

can be learned by minimizing the loss function LAIAtk. In the
inference stage, the attack model can infer the users’ private
attributes by giving the optimal predictions ỹ(P)

i :

ỹ(P)
i = 9 AI Atk(x(I)

i) (8)

2) Link Stealing Attack: Similar to Adversary 1, Adversary
2 does not know the details of the model, but has a local
graph where all its vertex attributes and edges can be observed.
Based on the link stealing attack model 9 AI Atk , Adversary
2 performs a link stealing attack to reveal private links between
vertex pairs. The attack model 9 AI Atk is trained over a set
of pairwise vertices, i.e., X (I)

= {x(I)
i , x(I)

j , e(x(I)
i , x(I)

j)}E
(I)

0

where x(I)
i and x(I)

j can be any two vertices connected by
an edge e(x(I)

i , x(I)
j) ∈ E (I) in the local graph. Let t (I)

i =<

t(I)
i , ye(x(I)

i ,x(I)
j)

> be a triple, where two vertex features

x(I)
i and x(I)

j are concatenated together as a training data
t(I)
i = con(x(I)

i , x(I)
j), and the edge e(x(I)

i , x(I)
j) between

them as the corresponding label ye(x(I)
i ,x(I)

j)
. In addition to the

“concatenation” method, we can also use “plus”, “multiply”
and “average” methods to construct the training dataset for the
link stealing attack. Next, the attack model’s gradient ∇L S Atk
can be computed as follows:

∇L S Atk := ∇
(I)
X (I) min

{x(I)
i ,x(I)

j }∈X (I)
LLSAtk

(
9L S Atk

θ∗ (t(I)
i)

)
s.t. θ∗

= arg min
θ

Ltrain

(
9L S Atk

θ (t(I)
i)

)
.

(9)

In the inference stage, the attack model can observe the
private links between a pair of vertices t(I)

i =< xi , x j > as
follows:

ỹe(x(I)
i ,x(I)

j)
= e(x(I)

i , x(I)
j) = 9L S Atk(t(I)

i) (10)

V. LOCAL GRAPH PERTURBATION FOR GNNS

In this paper, we propose LGA-PGNN, which encodes the
structure and vertex features of the graph while protecting

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-ENHANCED GRAPH NEURAL NETWORK FOR DECENTRALIZED LOCAL GRAPHS 1619

the privacy of each individual user. In Section V-A, we first
present the procedure of local graph perturbation with formal
privacy guarantees. In Section V-B, we develop an LGA
mechanism to enhance the vertex representation of the local
graph. In Section V-C, we present how to construct a privacy
graph convolutional layer in a GNN. Finally, Section V-D gives
the correctness and applicability of the LGA-PGNN.

A. Collecting Multiple Vertex Attributes With LDP

In this subsection, we apply the LDP algorithm to the
problem of graph isolation. Let us consider a scenario in which
there are kn geographically separated users, where each user
ki has a local graph Gki = (Vki , X ki ,Aki). Each row xki

i of the
feature matrix X ki contains a private d-dimensional numerical
attributes {xi,1, xi,2, . . . , xi,d}. Then, a piecewise mechanism
(PM) [35] is introduced to provide LDP protection to the
user’s data records. The user ki perturbs the vertex attribute
xi, j to output a perturbed value x∗

i, j . The input domain of the

perturbed vertex attribute x∗

i, j is in the range [−
eϵ/2

+1
eϵ/2−1 , eϵ/2

+1
eϵ/2−1].

Specifically, the noise value is actually a random variable
drawn from a piece-wise constant probability distribution, with
the following probability density function:

pd f
(
x∗

i = t | xi
)

=

eϵ
− eϵ/2

2e3ϵ/2 + 2e2ϵ
, if t ∈

[
−

eϵ/2
+ 1

eϵ/2 − 1
, α

]
eϵ

− eϵ/2

2eϵ/2 + 2
, if t ∈ [α, β]

eϵ
− eϵ/2

2e3ϵ/2 + 2e2ϵ
, if t ∈

[
β,

eϵ/2
+ 1

eϵ/2 − 1

] (11)

where α =
eϵ/2

eϵ/2−1 · xi −
1

eϵ/2−1 , and β = α +
2

eϵ/2−1 . After
that, the user ki sends the perturbed vertex attribute x∗

i, j to the
cloud. The PM outputs three piece-wise constant probability
distributions, where the length and position of the “pieces”
depend on the input data. Algorithm 1 (Line 1-7) presents the
pseudo-code of the multi-attribute perturbation mechanism for
multi-dimensional numerical data. Now we give the theoretical
guarantees for the Algorithm 1 by the following lemmas.

Lemma 1: Algorithm 1 preserves ϵ-LDP.
Proof 1: Let x∗

i = M(x) be an perturbed value, which
satisfies the LDP notion as shown in definition 1. For any two
input vertex attributes x and x∗, we have

pd f (x∗
| x)

pd f (x∗ | x ′)
≤

eϵ
−eϵ/2

2eϵ/2+2
eϵ−eϵ/2

2e3ϵ/2+2e2ϵ

= exp(ϵ)

Lemma 2: The piecewise mechanism is unbiased. For any
vertex vi ∈ V and any dimension j ∈ {1, 2, . . . , d}, we have
that E[x∗

i, j] = xi, j .

Proof 2: Wang et al. [35] prove that E
[
x∗

i, j

]
= xi, j . This

indicates that x∗

i, j is an unbiased estimator of the input value
xi, j .

To achieve LDP, the baseline approach is to assign the
same privacy budget ϵ/d to each attribute using a single
attribute perturbation mechanism that satisfies ϵ

d -LDP for
each dimension. Then, according to the composition theorem

Algorithm 1 LGA-PGNN
1: User’s side:
2: #Inject random noise into the vertex attributes;
3: for xi ∈ X , j ∈ [0, d] do
4: #Perturb m vertex attributes;
5: x∗

i, j = Perturb(xi, j) (Perturb j-th vertex attribute xi, j
via Eq. 11);

6: #Send the Perturbed vertex attributes x∗

i, j to cloud;
7: end for
8: Cloud’s side:
9: #Obtain all vertex representations X∗;

10: for each epoch do
11: for x∗

v ∈ X∗ do
12: #Perform the graph augmentation;
13: for x∗

s ∈ X∗

S do
14: x∗

s = CG AE AP I (x∗
s);

15: end for
16: end for
17: for x∗

i ∈ X∗, i ∈ [0, |V |], j ∈ [0, d] do
18: h(x∗

i, j) = Agg
({

x∗

u, j , ∀u ∈ N (vi)
})

;
19: end for
20: #Construct the PGC layer:
21: hi (W) =

∑
j∈d

(
h(x∗

i, j) · W T
i, j

)
;

22: P0 (W) =
{
2
(
hi (W)

)}
hi ∈P0

;
23: #Optimize model parameters;
24: ωωω∗

= arg minωωω

∑n
i=1 f ().

25: end for

[36], the total privacy budget satisfies ϵ-LDP, where the total
privacy budget ϵ is shared among all dimensions of the high-
dimensional input, i.e., ϵ =

∑d
j=1

ϵ
d . However, this solution

could lead to a dramatic drop in the utility of the data. Consider
that the amount of noise in each attribute is O

(√
d log d
ϵ
√

n

)
,

which is correlated with the dimension d, i.e., when the
dimension d is large, more noise will be incurred. This
degrades the final accuracy significantly. Instead of perturbing
all dimensions, we try to balance the privacy-accuracy trade-
off by reducing the number of dimensions that need to be
perturbed. In our case, the perturbation mechanism randomly
perturbs m out of d dimensions. As a result, the privacy budget
for each dimension increases from ϵ/d to ϵ/m, which implies
that the noise variance is reduced.

Moreover, the variance of x∗

i, j can affect the estimation
accuracy, which is described as:

Var
[
x∗

i, j

]
=

d
(
eϵ/(2m)

+ 3
)

3m
(
eϵ/(2m) − 1

)2
+

[
d · eϵ/(2m)

m
(
eϵ/(2m) − 1

) − 1

]
· x2

i, j . (12)

A lower variance will give a more reasonably accurate
estimate.

In particular, to achieve minimum variance in estimating
the mean, we optimize the sampling parameter m that con-
trols how many dimensions are perturbed. We then have the
following lemma:

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

1620 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Lemma 3: To minimize the variance of the perturbation
mechanism, the optimal sampling parameter m⋆ is obtained
as:

m⋆
= max

{
1, min

{
d,
⌊ ϵ

2.42

⌋}}
.

The complete proof is provided in Appendix-A.

B. Augmentated Local Graph

In this subsection, we present the motivation and design
considerations for local graph augmentation (LGA). Data
augmentation techniques have been widely used in computer
vision and natural language processing to prevent over-fitting
in the training of deep learning models, e.g., cropping, rotat-
ing, and flapping in image augmentation. However, existing
data augmentation methods cannot be directly applied to
graph data. A major obstacle is that in contrast to grid data
(e.g., images or text), the structure of the graph is irregular.
To address this problem, we propose an LGA algorithm based
on conditional generative auto-encoder (CGAE) to enhance the
decentralized local graphs held by different users. Algorithm 1
(Lines 8-16) presents the procedure of LGA. In our case,
LGA can be used as a denoising mechanism to achieve higher
training accuracy while providing a strong privacy guarantee.

1) Conditional Generative Auto-Encoder for Decentralized
Local Graphs: Given a vertex x∗

v in the local graph Gki ,
we randomly sample S vertices X∗

S = {x∗
s , ∀s ∈ NL(x∗

v)}

from a set of all adjacent vertices NL(x∗
v) of x∗

v to form S
neighboring pairs {< x∗

v, x∗

1 >, < x∗
v, x∗

2 >, . . . , < x∗
v, x∗

S >},
where L is the number of neighbors of the given vertex x∗

v .
Our goal is to generate an augmented feature representation
for the given vertex x∗

v , which can then used for subsequent
model training and inference. Based on the homophily assump-
tion that neighbouring vertices tend to have similar features,
we calculate the average vector for each pair of neighbors
< x∗

v, x∗
s >, as follows:

x∗
s = Mean(x∗

v, x∗
s) (13)

where Mean() is an average function. After that, we use
a CGAE to take x∗

s as the input and output an augmented
feature representation x∗

s for the given vertex x∗
v . Formally,

this process can be described as:

x∗
s = CG AE AP I (x∗

s); (14)

where CG AE AP I is the conditional generative auto-encoder
model. By doing this, the conditional generative auto-encoder
learns the conditional distribution of the feature vectors of its
neighboring vertices of x∗

v . We expect the generated feature
vector to be close to the original ones.

In fact, it is not trivial to calculate the true posterior
distribution pθ (z|x∗

s , x∗
v) precisely. Let’s assume that the true

posterior pθ (z|x∗
s , x∗

v) takes on approximate Gaussian form.
To allow for tractable parameter learning, we introduce a
fixed-form posterior distribution qφ(z|x∗

s , x∗
v) as a recognition

model, which approximates the true posterior distribution
pθ (z|x∗

s , x∗
v) using Gaussian latent variables, where φ and θ are

variational parameters and generative parameters, respectively.
The recognition model takes a neighboring pair < x∗

v, x∗
s >

as input, and outputs a latent representation z from the
prior distribution pθ (z|x∗

v). From a coding theory perspective,
we call the recognition model qφ(z|x∗) as a probabilistic
encoder. It uses the feature vector of x∗

v as the condition, and
produces a Gaussian distribution over the possible values of z.
Then, a generation model pθ (x∗

|x∗
v, z) is used to reconstruct

the input data point, which can be referred to as a probabilistic
decoder.

2) The Variational Bound: Following the previous work
[34], we derive a lower bound on the marginal likelihood of
the model based on the variational principle, which can act
as a surrogate objective function. The variational lower bound
can be described as:

log pθ (x∗
s | x∗

v) =

∫
qφ

(
z | x∗

s , x∗
v

)
log

pθ

(
x∗

s , z | x∗
v

)
qφ

(
z | x∗

s , x∗
v

)dz

+ K L
(
qφ

(
z | x∗

s , x∗
v

)
∥pθ

(
z | x∗

s , x∗
v

))
≥

∫
qφ

(
z | x∗

s , x∗
v

)
log

pθ

(
x∗

s , z | x∗
v

)
qφ

(
z | x∗

s , x∗
v

)dz,

(15)

where K L denotes the Kullback-Leibler (KL) divergence that
measures the closeness of two distributions, and encourages
the approximate posterior qφ(z|x∗

s , x∗
v) to be close to the true

posterior pθ (z|x∗
v). Then, the evidence lower bound can be

written as:

L
(
x∗

s , x∗
v; θ, φ

)
= −K L

(
qφ

(
z | x∗

s , x∗
v

)
∥pθ

(
z | x∗

v

))
+

1
L

L∑
l=1

log pθ

(
x∗

s | x∗
v, z(l)

)
, (16)

where z(l)
= gφ

(
x∗
v, x∗

s , e(l)), gφ(.) is a differentiable trans-
formation parameterized by φ, e(l)

∼ N (0, I) is an auxiliary
variable, and L is the number of neighbors of a given vertex
x∗
v . We can maximize the evidence lower bound function w.r.t.

the variational parameters φ and generative parameters θ ,
which is the same as minimizing KL divergence. For a chosen
transformation function gφ(.), we map the data point x∗

u and
the random noise vector e to the latent variables z drawn from
the approximate posterior qφ(z|x∗

s , x∗
v), i.e., z ∼ qφ(z|x∗

s , x∗
v).

In this case, we can ensure that the approximate posterior
distribution qφ(z|x∗

s , x∗
v) is as close as possible to the true

posterior distribution pθ (z|x∗
v). After that, a feature vertex is

generated using the sample z. Specifically, in the objective
function L

(
x∗

s , x∗
v; θ, φ

)
, the first term (i.e. the KL divergence)

can be used as a regularizer w.r.t. the parameters φ, while
the second term can be regarded as an expected negative
reconstruction error. Finally, we construct the estimator of
Eq. (16) as follow:

L
(
x∗

s , x∗
v; θ, φ

)
≃

1
2

J∑
j=1

(
1 + log((σ j)

2) − (µ j)
2
− (σ j)

2
)

+
1
L

L∑
l=1

log pθ

(
x∗

s | x∗
v, z(l)

)
, (17)

where J defines the dimension of the latent variable z(l). In the
optimization process, the model performs error backpropaga-
tion, which calculates the gradients of the objective function

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-ENHANCED GRAPH NEURAL NETWORK FOR DECENTRALIZED LOCAL GRAPHS 1621

∇θ ,φL
(
x∗

u, x∗
v; θ, φ

)
using stochastic optimization methods

such as stochastic gradient descent (SGD) or Adagrad.

C. Private Graph Convolutional Layer

In this part, we construct a private graph convolutional
(PGC) layer P0 that computes a noisy estimation for each
vertex. Algorithm 1 (Lines 17-24) presents the pseudocode
of the LGA-PGNN training process. After the cloud receives
all perturbed data records from each user, our private GNN
model takes these records as input. We construct an unbiased
aggregator function in the PGC layer, which can be used as a
denoising mechanism to average the LDP noise injected into
the vertex attributes. Then, we have:

h(x∗

i, j) = Agg
({

x∗

u, j , ∀u ∈ N (vi)
})

. (18)

where h(x∗

i, j) is the j-th hidden neuron in the first GNN
layer, N (vi) is the neighbor set of the vertex vi , where vi
also belongs to N (vi) due to the self-loop. Agg() is the mean
aggregator function, which can be treated as a weighted sum to
compute a noisy estimation for each vertex. Next, we construct
the PGC layer P0 as follows.

hi (W) =

∑
j∈d

(
h(x∗

i, j) · W T
i, j

)
, (19)

P0 (W) =
{
2
(
hi (W)

)}
hi ∈P0

. (20)

The unbiased (noisy) version of the mean aggregator func-
tion suggests a private estimation procedure: perturb the input
data according to the LDP notion as shown in definition
1, and then perform information propagation using GNN’s
message passing mechanism to output an average value as an
estimate of the mean value for the corresponding attribute. The
following lemma shows that the hidden neuron hi (W) using
the perturbed input data is an unbiased estimator of hi (W).

Lemma 4: hi (W) is an unbiased statistical estimation for
hi (W) in the GNN’s first layer. For any vertex vi ∈ V and any
dimension j ∈ {1, 2, . . . , d}, we have that E[hi (W)] = hi (W)

The complete proof is provided in Appendix-B.
Now, we use a mean aggregator function to estimate the

mean for each vertex vi in the PGC layer. The following
lemma shows the relationship between the neighborhood size
|N (vi)| and the computational estimation error of the mean
aggregator function, which gives an accuracy guarantee of

1
|N (vi)|

∑
u∈N (vi)

xu, j . Next, we give the following lemma.
Lemma 5: Let Agg() be the mean aggregator function in

the PGC layer. With at least 1 − δ probability, for any vertex
vi , we have:

max
j∈{1,...,d}

∣∣∣h(x∗

i, j) − h(xi, j)

∣∣∣ = O

(√
d log(d/δ)

ϵ
√

|N (vi)|

)
(21)

The complete proof is provided in Appendix-C.
Moreover, we stack the hidden layers H1, . . . , Hk on the

top of P0. These hidden layers H1, . . . , Hk rely only on the
PGC layer P0 without looking at the original data, and thus
the computations of H1, . . . , Hk do not reveal any private
information about the input data. Finally, we define the cost
function as f (xi ,ωωω), which is used to measure the difference

between the original and predicted values of yi . The goal of the
GCN is to find the optimal parameter vector ωωω to minimize a
given cost function. We also give the definition of the optimal
model parameter ωωω∗ as below.

ωωω∗
= arg min

ωωω

n∑
i=1

f (xi ,ωωω) . (22)

In the inference stage, the private GNN returns a
prediction function, i.e., p (vi) = 2((xvi

i ⊕ Agg({
xvi

u , ∀u ∈ N (vi)
})

)W).

D. The Correctness and Applicability of LGA-PGNN

We summarize the key steps of the proposed LGA-PGNN.
Algorithm 1 presents the procedure of local graph perturba-
tion, which perturbs a user’s local graph by enforcing LDP
noise to vertex representations. According to Lemma 1, the
Algorithm 1 preserves ϵ-LDP. However, there are a large num-
ber of low-degree vertices with only a few neighbors in real
graphs. We use LGA to perform local neighborhood expansion
on low-order vertices to generate augmented representations of
neighborhood vertices, and facilitate subsequent model train-
ing and inference. LGA enables GNN to cancel injected LDP
noise to yield a relatively good approximation of neighborhood
aggregation, when PCG layer aggregates information from a
sufficiently large set of neighborhood vertices for the central
vertex. Specifically, users perturb their local private graphs and
then send them to the cloud. These received local graphs are
only used as the input of the PCG layer in LGA-PGNN. This
process runs only once, preventing the server from recovering
the user’s private graph information. There is no additional
information from the input data to be accessed. This ensures
that the computation of the k hidden layers H1, . . . , Hk above
the PGC layer P0 (W) is differentially private.

VI. PERFORMANCE EVALUATION

In this section, we have two analysis objectives. First,
we analyze the attack effectiveness of attribute inference
attack and link stealing attack. Secondly, we conduct extensive
experiments based on real-world datasets to evaluate the
effectiveness of LGA-PGNN under varying privacy budgets.

A. Experimental Setup

1) Experimental Environments: We conducted the experi-
ments on a Linux machine with an Nvidia Geforce RTX 3080
GPU of 11 GB memory, and an Intel(R) Xeon(R) Silver 4210
CPU with a processor speed of 2.20 GHz. All models were run
on a Python platform. The software environment is based on
the PyTorch Geometric Library that is an open-source software
database tool developed by Google. DGL is a Deep Graph
Library containing many state-of-the-art GNN benchmarks.
Table II shows the development environments used in our
experiments.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

1622 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
ATTRIBUTE INFERENCE ATTACK UNDER VARYING PRIVACY BUDGETS

Fig. 4. F-scores of attribute inference attack under varying perturbation dimensions and privacy budgets.

TABLE II
THE MAIN DEVELOPMENT ENVIRONMENTS

2) Parameters Setting: To implement the attribute infer-
ence attack and link stealing attack, we use a standard deep
neural network as the attack model consisting of two fully
connected layers with 128 neural units. Each layer is followed
by a BatchNorm layer. Furthermore, in our experiments, the
proposed LGA-PGNN uses a standard GNN model with two
graph convolutional layers, followed by two fully connected
layers with ReLU activation. Specifically, the learning rate is
set to 0.01 and the dropout rate is set to 0.5.

B. Attribute Inference Attack Results

In the experiment, we perform attribute inference attacks.
Table I shows the effect of attribute inference attacks under
different privacy budgets ϵ. We can intuitively observe the per-
formance changes of attribute inference attacks under varying
privacy budgets from an attacker’s perspective. In a non-
private setting (i.e., ϵ = +∞), we measure the attacker’s
ability to predict the user’s sensitive attributes. This means
that the data holder does not take the LDP mechanism before
uploading their own data to the server, i.e., no noise is
added to the local data. In this setting, the attack F-score
achieves the highest on the three datasets, and attackers can
infer user private attributes with high confidence. However,
when the privacy budget ϵ is very small (corresponding to
a large amount of noise being added to the local data), the
attack performs the worst on the three datasets. For example,

when ϵ = 0.01, the attack F-score dropped by 79.23%
(from 82.79% to 3.56%) on the DeezerHU dataset, making
the attack almost ineffective. Also, we can see that as the
privacy budget ϵ increases gradually (corresponding to more
loosed privacy protection), the attack performance achieves
the best performance, and eventually achieves the same attack
performance in the non-privacy setting. Specifically, when the
privacy budget ϵ reaches 5, the attack F-score quickly rises
to a plateau. It shows that our method is difficult to defend
against the attack. Therefore, we propose setting the privacy
budget ϵ as 1, which minimizes the attack performance while
providing a strong privacy protection, with F-score decreasing
from 82.79% to 11.75%.

In addition, we also show the trend changes of attack
F-score under varying perturbation dimensions and privacy
budgets. It can see that with the increase of the perturbation
dimension, the attack F-score decreases continuously. Similar
trends were observed for all privacy budgets. The downward
trend is even more dramatic when privacy budgets are small.
It is worth mentioning that the variance of the LDP mechanism
greatly affects the estimation accuracy, i.e., a lower variance
leads to a more accurate estimate. To reduce the noise variance,
we randomly perturb m out of d dimensions and then the per-
dimension privacy budget is increased from ϵ/d to ϵ/m. After
theoretical analysis, the optimal sampling parameter is set to
m∗. This shows that we theoretically only need to perturb
m∗ dimension to obtain a low variance. However, under this
setting, our approach is incapable of defending against the
attribute inference attack, as shown by the results in Fig. 4,
where the attack F-score is almost optimal under all privacy
budgets. In addition, when we perturb all dimensions d , the
attack F-score is the worst under all privacy budgets.

We compare our method with several baseline methods,
namely RandG-AIA, RI-MA, and FP-MA. For the attribute

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-ENHANCED GRAPH NEURAL NETWORK FOR DECENTRALIZED LOCAL GRAPHS 1623

TABLE III
LINK STEALING ATTACK UNDER VARYING PRIVACY BUDGETS

Fig. 5. F-scores of link stealing attack under varying perturbation dimensions and privacy budgets.

TABLE IV
ATTRIBUTE INFERENCE ATTACK PERFORMANCE AND BASELINES

inference attack, we developed a baseline approach, RandG-
AIA, in which an adversary randomly predicts user sensitive
attributes. In [37], both RI-MA and FP-MA are used to
reconstruct missing attributes. We re-implement the RI-MA
and FP-MA methods in our experimental setting and use their
architectures to infer user sensitive attributes. It is notewor-
thy that these baseline methods perform relatively poorly.
In addition, we design several different types of attack models,
including k-Nearest Neighbors (KNN), Logistic Regression
(LR), Random Forests (RF), and Support Vector Machines
(SVM), which are frequently employed in classification tasks.
When the attacker is an LR-based model (LR-AIA), it outper-
forms the other baselines. However, our method consistently
outperforms all comparative methods, which means that our
method is more effective at inferring user sensitivity attributes.
Table IV shows the accuracy of attribute inference attack for
each attack model.

C. Link Stealing Attack Results

We intuitively observe the prediction ability of link stealing
attack models to users’ private link information. In Table III,
we report the performance of the link stealing attack model

with different privacy budgets ϵ. In a non-private setting (i.e.,
ϵ = +∞), F-score is the highest on all three datasets, such
as 94.02% F-score on the Cora dataset. This means that users
are very vulnerable to link stealing attacks. As expected, when
the privacy budget is small, our privacy preserving method can
significantly reduce the attack F-score. For example, when
ϵ = 0.01, the attack model shows the worst performance
on the three datasets. As shown in Table III, for the Cora
dataset, the attack F-score dropped by 64.34% (from 94.02%
to 29.68%). The reason is that too much noise is added, which
makes it difficult for the attack model to converge to the
global optimum, so that it cannot predict the user’s private
link information correctly. When the privacy budget ϵ is set
to 20, the attack model becomes stable. A larger ϵ means
that less noise is added to the local data, which reduces the
interference to the model training, and thus achieves better
performance via gradient descent. In this case, it is difficult for
us to defend against link stealing attacks. To make a privacy-
accuracy trade-off, we recommend setting the privacy budget
ϵ to less than or equal to 10. The experimental results clearly
show that our approach not only reduces the performance of
link stealing attacks, but also provides strong evidence in terms
of improving privacy and utility.

Moreover, Fig. 5 provides a reference for selecting privacy
budget value under different perturbation dimensions. As we
know, a smaller privacy budget can provide stronger privacy
protection, but less utility. When ϵ is less than or equal
to 5, the attack model yields the low F-score on the three
datasets. In this case, our approach is effective against such
attacks. To achieve a trade-off between privacy and accuracy,
we set the perturbation dimension as 500. The attack model
yields the lowest F-score in Cora and Citeteer datasets, with
a reduction of 50.76% (from 94.02% to 43.26%) and 70.70%
(from 92.70% to 22.00%), respectively. When the perturbation

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

1624 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE V
EFFECT OF LDP ON THE PERFORMANCE OF LGA-PGNN COMPARING TO NON-PRIVATE LGA-PGNN APPROACH

Fig. 6. The effect of privacy budget ϵ on experimental results.

TABLE VI
LINK STEALING ATTACK PERFORMANCE AND BASELINES

dimension is set to 100, the attack F-score is reduced by
46.14% (from 93.89% to 47.75%) on Pubmed dataset. The
result shows that our method can resist link stealing attack
effectively, which provides a strong guarantee in terms of
privacy and practicality.

Table VI reports the experiment results (precision and
recall) of our method and the baselines. RandG-LSA is an
ideal baseline that randomly predicts sensitive links between
nodes. Furthermore, we compare our model with the state-
of-the-art LSA attack [27]. In this paper, the authors discuss
several attack methods with different prior knowledge, among
which their attack-2 is the closest to our scenario. In our
study, we re-implement the attack-2 (namely LSA2), which
calculates the correlation distance between the posteriors given
by the target model to infer sensitive links between nodes
of interest. In addition, [27] gives eight different distance
metrics. Following this work, we use Euclidean distance

and cosine distance (namely LSA2-EUC and LSA-COS) to
calculate distances between node attributes, as they achieve
optimal performance in almost all settings. We can observe
that LSA2 performs slightly better than LSA2-COS on the
Cora and Citeseer datasets, but poorly on the Pubmed dataset.
Specifically, we explored a variety of neural networks as attack
models, including KNN-LSA, LR-LSA, RF-LSA, and SVM-
LSA. Among all baseline models, RF-LSA performs the best.
However, it is inferior to our model in all cases. We can
observe that the precision of our model is 92.05%, 90.74%,
and 92.30% on the Cora, Citeseer, and Pubmed datasets,
which significantly beats the best baseline system (RF-LSA)
by 0.28%, 0.27% and 1.17%, respectively. This result proves
the validity of our method.

D. Comparative Classification Performance

In this part, we evaluate the classification performance of
LGA-PGNN under different privacy budgets. In our case,
the server uses LGA-PGNN to provide users with various
commercial machine learning services.

1) Non-LDP vs. LDP: To demonstrate the effectiveness of
our model, we quantified the performance loss of LGA-PGNN
against the non-private case (i.e., non-private LGA-PGNN).
To have a fair comparison, the non-private LGA-PGNN
adopts a standard two-layer GCN without any perturbation
mechanism. Then, we compared the performance of LGA-
PGNN with and without LDP in Table V. For example, the
non-private LGA-PGNN (without LDP) gives accuracies of
81.61% on Cora, 72.20% on Citeteer, and 76.80% on Pubmed

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-ENHANCED GRAPH NEURAL NETWORK FOR DECENTRALIZED LOCAL GRAPHS 1625

Fig. 7. F-score on eight datasets. wrt. privacy budget ϵ, with DP.

test sets. Specifically, to evaluate the effectiveness of the LDP
mechanism, we provide a privacy-preserving baseline model
LDP-GNN, which injects random noise into the input data.
As anticipated, LDP-GNN decreases accuracy. For example,
LGA-PGNN incurs significant errors on all datasets when the
privacy budget is small (i.e., at ϵ = 0.01). The reason is that
too much noise is added, making it difficult for the model
to learn useful information. The performance of LDP-PGNN
improves as the privacy budget ϵ increases. For a very loose
ϵ, we observe that the accuracy is almost identical to that
of non-private LGA-PGNN. This phenomenon is consistent
with the inescapable information theory of the privacy-utility
trade-off. This is because the aggregate function in the graph
convolutional layer can eliminate most of the noise in the
vertex features. The results clearly show that the LDP-GNN
provides compelling evidence on improving privacy and utility.

2) Effects of Graph Augmentation: To demonstrate the
effectiveness of the proposed LGA, we intuitively observed the
performance gain of LGA-PGNN with respect to the private
GNN with LDP mechanism (i.e., LDP-GNN) under different
privacy budgets. As shown in Table V, although the LDP-
GNN model uses the LDP mechanism to protect the user’s
private data, injecting random noise directly into the input
data leads to a decrease in the utility of the model. Moreover,
LGA-PGNN employed the graph augmentation to enhance the
performance of the LGA-PGNN model. In this case, noise
added by LDP mechanism can be eliminated partially. As we
can be seen, the change trend of LGA-PGNN is always
consistent with that of LDP-GNN. We show that in a graph
augmentation setting, LGA-PGNN almost always outperforms
LDP-GNN on all datasets under the same privacy level ϵ. For
example, when ϵ = 10, the accuracy of LGA-PGNN on Cora
dataset is approximately 4% higher than that of LDP-GNN.
This result proves that LGA-PGNN not only enhances the
utility of the private GNN model, but also provides a private
guarantee.

3) Privacy-Preserving GNN Models: To highlight the sig-
nificance of this study, our privacy preserving method is
generalized and applied in six popular graph neural net-
works. These baseline models include GCN [17], GAT [18],

Chebyshev [19], SAGE [20], SimGCN [21], TAGCN [22].
Fig. 6 illustrates the accuracy of each model under different
privacy budgets ϵ. We discuss the utility and privacy level of
our privacy preserving method under different graph neural
network architectures. It can be see that different graph neural
network architectures exhibit different behaviors in terms of
their tolerance for the amount of noise added to the input data.
When ϵ is small, all baseline models gain worse performance.
This is because a smaller size would incur more noise. As ϵ

increases, the performance of all baseline models saturates at
a certain point, and improves significantly on all benchmark
datasets. In this case, the improved data utility results in more
accurate learning of all baseline models, almost all of which
are comparable to the no-privacy case. Overall, the results
indicate that for all baseline models, our privacy preserving
method allows for better privacy protection using smaller value
of ϵ without sacrificing too much accuracy.

4) Comparison With Other State-of-the-Art Methods: To
highlight the significance of this study, we implemented
state-of-the-art LDP mechanism baselines. As these baselines
target different problem settings, we modified them to achieve
vertex-level and edge-level graph privacy protection, tailored
specifically to our problem settings. These baseline methods
are introduced below:

• RANGNN: The RANGNN [4] consists of four-layer
GCN, which randomly initializes the input features with
a Gaussian distribution (with a mean of 0.0 and standard
deviation of 0.01), optimizing the model with stochastic
gradient descent (SGD).

• RFGNN: A standard model of GCN was originally
proposed by [17]. Similar to RANGNN, the RFGNN
perturbs the input features at random as discussed by [4].

• OHTGNN: Following the previous work [4], [38], we use
the one-hot encoding of vertex degrees in the input
layer of the standard GCN, which can be regarded as
a completely private method.

• LAPGNN: Following the settings of [4] and [39], we per-
turb the input features by adding Laplace noise [11], [12].

• LPGNN: The LPGNN was originally designed for vertex-
level privacy. Following their approach [4], [16], we use

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

1626 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

a multi-bit mechanism to privately collect vertex features
while making it suitable for our problem setup.

We compare LGA-PGNN with these private-preserving
techniques. Fig. 7 illustrates the F-score of each algorithm
under different privacy budgets. We see that RANGCN,
RFGNN and OHTGCN yield inferior performance. LPGNN
performs considerably better than the two fully private meth-
ods (RANGCN and OHTGCN) but worse than LAPGNN.
In addition, the baselines LPGNN and LAPGNN perform
poorly on the Tor-nonTor dataset. This result shows that
LPGNN and LAPGNN are easily misled due to a lack of an
adequate sample size. Importantly, we observe that our LGA-
PGNN outperforms all other private-preserving methods in all
cases, demonstrating that our method can capture useful infor-
mation. Specifically, our LGA-PGNN provides both edge-level
and vertex-level privacy guarantees based on the application
requirements.

VII. CONCLUSION

In this paper, we build a local graph augmentation-based pri-
vate graph neural network (LGA-PGNN). In order to address
the privacy issues pertaining to the graph data isolation,
we designed a privacy graph convolutional layer with formal
privacy guarantees, in which user’s local graph information
is kept private by injecting LDP noise into the local graphs
held by different data holders. We performed local neigh-
borhood expansion on low-degree vertices to enhance the
expressiveness of the learned model. In fact, our privacy-
preserving method can be easily generalized to other GNN
models. We evaluated the performance of LGA-PGNN on real-
world datasets for node classification. The results demonstrate
that LGA-PGNN achieves high accuracy while providing a
rigorous privacy guarantee. The fact that the superior perfor-
mance of our method indicates that privacy-preserving graph
learning is a worthwhile exploration.

This paper presents two privacy attacks for inferring private
node attributes and links. Future research will focus on explor-
ing new privacy attacks to recover private graph structure
information, such as subgraphs. In addition, we will try to
develop new LDP techniques to enhance privacy protection
in distributed graph learning. In future research, we will also
explore other graph augmentation mechanisms that are more
effective than the proposed LGA.

APPENDIX

A. Proof of Lemma 3

Proof 3: We need to find the optimal sampling parameter
m∗ that minimizes the upperbound of the variance Var

[
x∗

i, j

]
:

m⋆
= arg min

m
max
x∗

i, j

Var
[
x∗

i, j

]
(A. 1)

Recall that in Eq. (12), the variance of x∗

i, j is given as
follows.

Var
[
x∗

i, j

]
=

d
(
eϵ/(2m)

+ 3
)

3m
(
eϵ/(2m) − 1

)2 +

[
d · eϵ/(2m)

m
(
eϵ/(2m) − 1

) − 1

]
· x2

i, j ,

(A. 2)

where the input domain of xi, j is in the range [−1, 1].
Therefore, when xi, j = ±1, the variance of x∗

i, j is maximized.
We give the worst-case variance of x∗

i, j as follows.

WorstVar
[
x∗

i, j

]
= max

x∗
i, j

Var
[
x∗

i, j

]
=

d(eϵ/(2m)
+ 3)

3m · (eϵ/(2m) − 1)2 +
d · eϵ/(2m)

m
(
eϵ/(2m) − 1

) − 1

(A. 3)

Next, we set z =
ϵ

2m and C =
2d
ϵ

. Then, Eq. (A. 3) can be
further derived as

WorstVar
[
x∗

i, j

]
= C · z ·

ez
+ 3

3(ez − 1)2 + C · z ·
ez

ez − 1
− 1

= C · z ·

(
ez

+ 3
3(ez − 1)2 +

ez

ez − 1

)
− 1

= C · z ·

(
3(ez)2

− 2ez
+ 3

3(ez − 1)2

)
− 1 (A. 4)

Specifically, minimizing Eq. (A. 3) with respect to m is
equivalent to minimizing Eq. (A. 4) with respect to z. Let z⋆

to be the optimal z. We can recover m⋆ as ϵ
2 z⋆ . Then, we have:

z⋆
= arg min

z

[
C · z ·

(
3(ez)2

− 2ez
+ 3

3(ez − 1)2

)
− 1

]
(A. 5)

Since the constants, C and −1, do not depend on z, we con-
sider dropping them from Eq. (A. 4). After that, Eq. (A. 4) is
re-writed as:

z⋆
= arg min

z

[
z ·

3(ez)2
− 2ez

+ 3
3(ez − 1)2

]
(A. 6)

Let f (z) = z ·
3(ez)2

−2ez
+3

3(ez−1)2 with respect to z =
ϵ

2m , which is
a convex function. Then, we look for the minimum of f (z) on
(0, +∞) by taking the derivative of this function f (z) with
respect to z. The result is given by

f ′(z) =
d
dz

z ·

[
3(ez)2

− 2ez
+ 3

3(ez − 1)2

]
=

[
3(ez)2

− 2ez
+ 3

3(ez − 1)2

]
+ z ·

[
−12(ez)3

+ 12(ez)

9(ez − 1)4

]
=

[
9(ez)4

− 24(ez)3
+ 30(ez)2

− 24ez
+ 9

9(ez − 1)4

]
+ z ·

[
−12(ez)3

+ 12(ez)

9(ez − 1)4

]
(A. 7)

By setting f ′(z) = 0, we have:

z =
9(ez)4

− 24(ez)3
+ 30(ez)2

− 24ez
+ 9

12(ez)3 − 12(ez)
(A. 8)

After solving the above equation, the minimum of f (z) is
obtained, i.e., z⋆

≈ 1.2097. Then, we have that m⋆
=

ϵ
2z⋆ =

ϵ
2.42 . Finally, we specify m∗ by

m⋆
= max

{
1, min

{
d,
⌊ ϵ

2.42

⌋}}
. (A. 9)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-ENHANCED GRAPH NEURAL NETWORK FOR DECENTRALIZED LOCAL GRAPHS 1627

B. Proof of Lemma 4

Proof 4: Based on Eqs. (18) and (19), we have:

E[hi (W)] = E

∑
j∈d

h(x∗

i, j) · W T
i, j

= E

∑
j∈d

Agg
({

x∗

u, j , ∀u ∈ N (vi)
})

· W T
i, j

(B. 10)

Specifically, a hidden neuron hi (W) defined by Eq. 19 at the
PGC layer P0 (W) can be considered a weighted summation
of the input vertex attributes. Therefore, this formula can be
further derived as

E[hi (W)] =

∑
j∈d

Agg
({

E[x∗

u, j], ∀u ∈ N (vi)
})

· W T
i, j

(B. 11)

Then, accordding to Lemma 2, we can derive the expectation
of hi (W) as below.

E[hi (W)] =

∑
j∈d

Agg
({

x∗

u, j , ∀u ∈ N (vi)
})

· W T
i, j

= hi (W). (B. 12)

C. Proof of Lemma 5

Proof 5: By Lemma 2, we know that for any i ∈ |V|, x∗

i, j −

xi, j has zero mean, i.e.,

E
[
x∗

i, j − xi, j

]
= 0. (C. 13)

As mentioned in Lemma 3, we uniformly select m∗

attributes from all d attributes of xi , and set x∗

i, j =
d
m · ti, j

with probability m
d and 0 with probability 1 −

m
d . Moreover,

the input domain of a perturbed vertex attribute x∗

i, j is in the

range [−
eϵ/2

+1
eϵ/2−1 , eϵ/2

+1
eϵ/2−1]. Hence, we get:

|x∗

i, j − xi, j | ≤
d
m

·
eϵ/2

+ 1
eϵ/2 − 1

(C. 14)

Given an mean aggregator function in the PGC layer, for any
vertex vi ∈ V and any dimension j ∈ {1, 2, . . . , d}, we have:

h(xi, j) =
1

|N (vi)|

∑
u∈N (vi)

xu, j

h(x∗

i, j) =
1

|N (vi)|

∑
u∈N (vi)

x∗

u, j

(C. 15)

Considering Eqs. (C. 13), (C. 14) and (C. 15), and using
the Bernstein’s inequality, we have:

Pr
[∣∣∣h(x∗

i, j) − h(xi, j)

∣∣∣ ≥ λ
]

= Pr

[∣∣∣∣∣
n∑

i=1

{
x∗

i, j − xi, j

}∣∣∣∣∣ ≥ nλ

]

≤ 2 · exp

−
(nλ)2

2
∑n

i=1 Var
[
x∗

i, j

]
+

2
3 · nλ ·

d
m ·

ϵϵ/(2m)+1
eϵ/(2m)−1

 .

(C. 16)

Then, we can get:

Pr
[∣∣∣h(x∗

i, j) − h(xi, j)

∣∣∣ ≥ λ
]

≤ 2 · exp

(
−

(nλ)2

O(dm
ϵ

) + λ · O(d
ϵ
)

)
. (C. 17)

By the union bound, we have the following inequality:

Pr
[

max
j∈{1,...,d}

∣∣∣h(x∗

i, j) − h(xi, j)

∣∣∣ ≥ λ

]
=

d⋃
j=1

Pr
[∣∣∣h(x∗

i, j) − h(xi, j)

∣∣∣ ≥ λ
]

≤

d∑
j=1

Pr
[∣∣∣h(x∗

i, j) − h(xi, j)

∣∣∣ ≥ λ
]

= 2d · exp

−
nλ2

O
(

dm
ϵ2

)
+ λO

(d
ϵ

)
 (C. 18)

Then, we set:

δ = 2d · exp

−
nλ2

O
(

dm
ϵ2

)
+ λO

(d
ϵ

)
 (C. 19)

To sure that max j∈{1,...,d}

∣∣∣h(x∗

i, j) − h(xi, j)

∣∣∣ < λ holds with
at least 1 − δ probability, there exists

λ = O

(√
d log(d/δ)

ϵ
√

|N (vi)|

)
(C. 20)

D. Datasets

For a comprehensive assessment, we evaluated LGA-PGNN
on eight benchmark datasets. Cora,1 Citeseer,2 and Pubmed3

are three well-known citation network datasets for node
classification task, where nodes and edges represent papers
(or publications), and citation relationships, respectively. The
labels denote paper category. Moreover, these three datasets
are also used to evaluate the effectiveness of link stealing
attacks. Deezer4 offers music streaming to users in three Euro-
pean countries (including Hungary, Croatia, and Romania)
and collects a list of their favorite genres. Then, three user
friendship network datasets are established, named Deezer
HU, Deezer CR, and Deezer RO, respectively. Each node has
84 different genres as node attributes. We label whether users
like “R&B” genre as class labels. Specifically, in our attribute
inference attack, we treat the “Alternative” genre as a private
attribute of the user. We then train a attack model in order to

1https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
2https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
3https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
4http://snap.stanford.edu/data/

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

1628 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 8. The effect of perturbation dimension on experimental results.

TABLE VII
MAIN DATASETS USED IN OUR EVALUATION STUDIES

infer this private attribute of other users. Amazon Computers5

and Amazon Photo5 are generated from Amazon’s co-purchase
graph, where nodes are goods, that are connected by an edge
if they are frequently purchased together. The task is to predict
the product category. CoAuthor CS5 is a co-authorship graph
generated from the Microsoft Academic Graph dataset, where
nodes are authors, and the edge indicates that two authors co-
authored a paper. Facebook4 is a page-page dataset generated
by Facebook, where nodes are Facebook pages, and two nodes
that like each other are connected by an edge. Table VII
provides details of these datasets.

E. Evaluation Metrics

In the following experiments, we evaluate the performance
of our privacy-preserving model based on some common
performance evaluation metrics in machine learning, including
Accuracy, Precision (denoted as P), Recall (denoted as R),
and F-score. Precision score is calculated as the ratio of
the number of correct positively labeled examples in all
positively labeled examples. Recall is defined as the ratio
of the number of correct positively labeled examples in all
the output examples that should have been labeled positive.
F-score is the harmonic mean of precision and recall. The
goal of any network intrusion research is to achieve a high
value for F-score.

5https://github.com/shchur/gnn-benchmark#datasets

F. Effects of Feature Dimensions

The selection of perturbation dimension has an essential
influence on the results. To validity of the perturbation dimen-
sion, we compare the classification performance of the baseline
model GCN with different perturbation dimensions under the
varying privacy budgets. Fig. 8 shows performance trends of
the baseline model GCN. Moreover, the changing trend in
Fig. 8 shows that when the perturbation dimension m is large,
many features are disturbed, resulting in a significant decline
in the performance of GCN. In contrast, when m is small,
it even performs equally well with the no-privacy case. It is
worth mentioning that, as discussed in Sections V-A and V-B,
when m is small, users are vulnerable to attribute inference
attacks and link stealing attacks. Therefore, this requires us to
consider the trade-off between privacy and utility.

REFERENCES

[1] C. Chen et al., “Vertically federated graph neural network for
privacy-preserving node classification,” in Proc. IJCAI, Jul. 2022,
pp. 1959–1965.

[2] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on OT extension,” in Proc. USENIX, 2014, pp. 797–812.

[3] S. Wang, Y. Zheng, X. Jia, and X. Yi, “PeGraph: A system for privacy-
preserving and efficient search over encrypted social graphs,” IEEE
Trans. Inf. Forensics Security, vol. 17, pp. 3179–3194, 2022.

[4] S. Sajadmanesh and D. Gatica-Perez, “Locally private graph neural
networks,” in Proc. ACM SIGSAC, Nov. 2021, pp. 2130–2145.

[5] J. Zhou, C. Hu, J. Chi, J. Wu, M. Shen, and Q. Xuan, “Behavior-aware
account de-anonymization on Ethereum interaction graph,” IEEE Trans.
Inf. Forensics Security, vol. 17, pp. 3433–3448, 2022.

[6] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proc. SSP,
May 2017, pp. 3–18.

[7] X. He, R. Wen, Y. Wu, M. Backes, Y. Shen, and Y. Zhang, “Node-level
membership inference attacks against graph neural networks,” CoRR,
vol. abs/2102.05429, pp. 1–15, Feb. 2021.

[8] I. E. Olatunji, W. Nejdl, and M. Khosla, “Membership inference attack
on graph neural networks,” in Proc. 3rd IEEE Int. Conf. Trust, Privacy
Secur. Intell. Syst. Appl. (TPS-ISA), Dec. 2021, pp. 11–20.

[9] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proc.
ACM SIGSAC, Oct. 2015, pp. 1322–1333.

[10] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in Proc. USENIX, 2016,
pp. 601–618.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

PEI et al.: PRIVACY-ENHANCED GRAPH NEURAL NETWORK FOR DECENTRALIZED LOCAL GRAPHS 1629

[11] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC, 2016, pp. 308–318.

[12] J. Lee and D. Kifer, “Concentrated differentially private gradient descent
with adaptive per-iteration privacy budget,” in Proc. ACM SIGKDD,
Jul. 2018, pp. 1656–1665.

[13] H. Hu, L. Cheng, J. P. Vap, and M. Borowczak, “Learning privacy-
preserving graph convolutional network with partially observed sensitive
attributes,” in Proc. WWW, Apr. 2022, pp. 3552–3561.

[14] T. Igamberdiev and I. Habernal, “Privacy-preserving graph convolutional
networks for text classification,” in Proc. LREC, 2022, pp. 338–350.

[15] X. Pei, X. Deng, S. Tian, L. Zhang, and K. Xue, “A knowledge transfer-
based semi-supervised federated learning for IoT malware detection,”
IEEE Trans. Depend. Sec. Comput., vol. 20, no. 3, pp. 2127–2143,
May/Jun. 2023.

[16] W. Lin, B. Li, and C. Wang, “Towards private learning on decentralized
graphs with local differential privacy,” IEEE Trans. Inf. Forensics
Security, vol. 17, pp. 2936–2946, 2022.

[17] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. ICLR, 2016, pp. 1–14.

[18] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liù, and
Y. Bengio, “Graph attention networks,” in Proc. ICLR, 2018, pp. 12.

[19] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. NIPS,
2016, pp. 3837–3845.

[20] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. NIPS, vol. 30, 2017, pp. 1024–1034.

[21] F. Wu, A. H. D. Souza Jr., T. Zhang, C. Fifty, T. Yu, and
K. Q. Weinberger, “Simplifying graph convolutional networks,” in Proc.
ICML, vol. 97, 2019, pp. 6861–6871.

[22] J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, “Topology adaptive
graph convolutional networks,” CoRR, vol. abs/1710.10370, pp. –13,
Oct. 2017.

[23] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models that
remember too much,” in Proc. ACM SIGSAC, Oct. 2017, pp. 587–601.

[24] N. Z. Gong and B. Liu, “Attribute inference attacks in online social net-
works,” ACM Trans. Privacy Secur., vol. 21, no. 1, pp. 1–30, Feb. 2018.

[25] M. Kosinski, D. Stillwell, and T. Graepel, “Private traits and attributes
are predictable from digital records of human behavior,” Proc. Nat. Acad.
Sci. USA, vol. 110, no. 15, pp. 5802–5805, Apr. 2013.

[26] B. Jayaraman and D. Evans, “Are attribute inference attacks just impu-
tation?” in Proc. ACM SIGSAC CCS, Nov. 2022, pp. 1569–1582.

[27] X. He, J. Jia, M. Backes, N. Z. Gong, and Y. Zhang, “Stealing links
from graph neural networks,” in Proc. USENIX Secur. Symp. Berkeley,
CA, USA: USENIX Association, 2021, pp. 2669–2686.

[28] F. Wu, Y. Long, C. Zhang, and B. Li, “LINKTELLER: Recovering
private edges from graph neural networks via influence analysis,” in
Proc. IEEE SSP, May 2022, pp. 2005–2024.

[29] A. Kolluri, T. Baluta, B. Hooi, and P. Saxena, “LPGNet: Link private
graph networks for node classification,” in Proc. ACM SIGSAC CCS,
Nov. 2022, pp. 1813–1827.

[30] S. Hidano and T. Murakami, “Degree-preserving randomized response
for graph neural networks under local differential privacy,” CoRR,
vol. abs/2202.10209, pp. 1–13, Feb. 2022.

[31] K. Tran et al., “Heterogeneous randomized response for differential
privacy in graph neural networks,” in Proc. IEEE Int. Conf. Big Data
(Big Data), Dec. 2022, pp. 1582–1587.

[32] Y. Rong, W. Huang, T. Xu, and J. Huang, “DropEdge: Towards deep
graph convolutional networks on node classification,” in Proc. ICLR,
2020, pp. 1–18.

[33] T. Zhao, Y. Liu, L. Neves, O. J. Woodford, M. Jiang, and N. Shah, “Data
augmentation for graph neural networks,” CoRR, vol. abs/2006.06830,
pp. 1–15, Jun. 2020.

[34] S. Liu et al., “Local augmentation for graph neural networks,” in Proc.
ICML, vol. 162, 2022, pp. 14054–14072.

[35] N. Wang et al., “Collecting and analyzing multidimensional data with
local differential privacy,” in Proc. ICDE, Apr. 2019, pp. 638–649.

[36] C. Dwork and A. Roth, “The algorithmic foundations of differential pri-
vacy,” Found. Trends Theor. Comput. Sci., vol. 9, nos. 3–4, pp. 211–407,
2014.

[37] I. E. Olatunji, A. Hizber, O. Sihlovec, and M. Khosla, “Does black-box
attribute inference attacks on graph neural networks constitute privacy
risk?” CoRR, vol. abs/2306.00578, pp. 1–20, Jun. 2023.

[38] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in Proc. ICLR, Feb. 2019, pp. 1–17.

[39] N. Phan, X. Wu, H. Hu, and D. Dou, “Adaptive Laplace mechanism:
Differential privacy preservation in deep learning,” in Proc. ICDM,
Nov. 2017, pp. 385–394.

Xinjun Pei (Student Member, IEEE) is currently
pursuing the Ph.D. degree with the School of
Computer Science and Engineering, Central South
University, Changsha, China. Since 2017, he has
been engaged in the direction of information
security. His research interests include graph rep-
resentation learning, distributed computing systems,
and cyberspace security.

Xiaoheng Deng (Senior Member, IEEE) received
the Ph.D. degree in computer science from Central
South University, Changsha, Hunan, China, in 2005.
Since 2006, he has been an Associate Professor and
then a Full Professor with the School of Computer
Science and Engineering, Central South University.
His research interests include wireless communica-
tions and networking, edge computing, congestion
control for wired/wireless networks, cross-layer
route design for wireless mesh networks and ad
hoc networks, online social network analysis, and

distributed computing systems. He is a Senior Member of CCF and a member
of the CCF Pervasive Computing Council. He was the Chair of CCF YOCSEF
CHANG SHA from 2009 to 2010.

Shengwei Tian received the B.S., M.S., and Ph.D.
degrees from the School of Information Science and
Engineering, Xinjiang University, Ürümqi, China,
in 1997, 2004, and 2010, respectively. Since 2002,
he has been a Teacher with the School of Soft-
ware, Xinjiang University, where he is currently
a Professor. His research interests include artifi-
cial intelligence, natural language processing, and
cyberspace security.

Jianqing Liu (Member, IEEE) received the B.Eng.
degree from the University of Electronic Science
and Technology of China in 2013 and the Ph.D.
degree from the University of Florida in 2018. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, NC State University,
Raleigh, NC, USA. His research interests include
wireless communications and networking, security,
and privacy. He received the U.S. National Science
Foundation Career Award in 2021. He was a recipi-
ent of several best paper awards, including the 2018

Best Journal Paper Award from the IEEE Technical Committee on Green
Communications and Computing (TCGCC).

Kaiping Xue (Senior Member, IEEE) received the
bachelor’s degree from the Department of Informa-
tion Security, University of Science and Technology
of China (USTC), in 2003, and the Ph.D. degree
from the Department of Electronic Engineering and
Information Science (EEIS), USTC, in 2007. From
May 2012 to May 2013, he was a Post-Doctoral
Researcher with the Department of Electrical and
Computer Engineering, University of Florida. Cur-
rently, he is a Professor with the School of
Cyber Science and Technology, USTC. His research

interests include next-generation internet architecture design, transmission
optimization, and network security. He is an IET Fellow. He serves on
the editorial board for several journals, including IEEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING, IEEE TRANSACTIONS ON WIRE-
LESS COMMUNICATIONS, and IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT. He has also served as a (Lead) Guest Editor for
many reputed journals/magazines, including IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS, IEEE Communications Magazine, and IEEE
Network.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 27,2024 at 12:27:00 UTC from IEEE Xplore. Restrictions apply.

