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Abstract—Set-valued data are commonly used to represent
subsets of a universal set and are frequently utilized in online
services, such as online shopping preferences, website browsing
records, and recently visited places. By collecting set-valued data
from users, service providers can perform statistical analysis to
obtain a joint distribution of service usage data and subsequently
learn the association between different kinds of set-valued data
to improve the quality of service. However, collecting set-valued
data raises privacy concerns about the potential misuse of
records to infer individuals’ identities and preferences. Although
some privacy-preserving aggregation mechanisms for set-valued
data have been proposed, they have not yet achieved joint
distribution analysis with high accuracy. In this paper, we propose
a joint distribution analysis method for set-valued data with local
differential privacy (LDP). We design a scalable perturbation
mechanism under ϵ-LDP by limiting the range of users’ responses
in the collection process and cyclically shifting the set-valued
data in an encoded uniform format, ensuring that the size of the
universal set does not influence the accuracy of the results. Based
on the perturbation method, we develop an analysis method to
efficiently obtain association information between two sets. By
performing specific bitwise operations on the perturbed data
matrices, the computational overhead is linear with respect to
the cardinality of the item set. In addition to theoretically
analyzing the error bound and proving the security of our
work, extensive experimental results on synthetic and real-world
datasets demonstrate that our scheme achieves better utility than
existing state-of-the-art approaches.

Index Terms—local differential privacy, set-valued data,
privacy preservation, joint distribution.

I. INTRODUCTION

Set-valued data, which represent subsets of a universal
set, play a pivotal role in online services [1]. Examples of
set-valued data include records of online shopping, website
browsing, food ordering, and recently visited places. These
data can be used to improve the quality of service through
big data analysis. In big data analysis, obtaining the joint
distribution of specific combinations is often necessary. For
instance, advertisements frequently show that users who have
bought A often also like B.

However, precise set-valued data collection raises privacy
concerns about the potential misuse of records to infer individ-
uals’ identities and preferences. For example, adversaries can

Y. Huang, K. Xue, B. Zhu, Q. Sun and J. Lu are with the School of Cyber
Science and Technology, University of Science and Technology of China,
Hefei, Anhui 230027, China.

D. Wei is with the Department of Computer and Information Science,
Fordham University, Bronx, NY 10458 USA.

J. Lu is also with the Department of Electronic Engineering and Information
Science, University of Science and Technology of China, Hefei, Anhui
230027, China.

Corresponding Author: K. Xue (kpxue@ustc.edu.cn)

infer income levels from online shopping records or deduce
home addresses from recently visited places. Due to these
privacy concerns, many countries and regions have enacted
laws and regulations to protect citizens’ right to privacy, such
as the GDPR [2] in the European Union and the UPDPA [3]
in the USA. Therefore, it is urgent to protect privacy while
analyzing set-valued data.

Many privacy-preserving computing methods have been
proposed recently to collect and analyze data while preserving
privacy. Compared to other privacy-preserving computing
technologies such as homomorphic encryption and secure
multi-party computation (MPC), local differential privacy
(LDP)-based methods offer higher computational efficiency
and quantifiable privacy protection. Additionally, LDP-based
methods preserve data privacy without the need for a
trusted party, making them very practical in many real-world
scenarios. Numerous LDP-based protocols have been applied
in various fields, including IoT applications [4]–[6], edge
computing [7], [8], social networks [9]–[11], data mining
[12], [13], and machine learning [14]–[16]. In particular, LDP
provides various estimation functions for different kinds of
data, such as the simple average of numeric data, the frequency
of categorical data, succinct histograms, and heavy hitters.
Generally, data aggregation protocols with LDP preserve
privacy even when users do not trust the aggregator. Users
perturb the original data locally before uploading it to the
aggregator, who then aggregates the collected data to reduce
the impact of the perturbation.

Although LDP provides a practical way to preserve privacy
in the data collection process, most studies in the field of set-
valued data analysis still focus on item distribution estimation
[17], [18] or heavy hitter detection [19], [20] for a single
set. The joint distribution analysis mechanism has yet to be
established between two sets of set-valued data. Moreover,
these previous works cannot be directly applied to joint
distribution analysis through simple adaptation due to three
challenges that need to be addressed:

1) Maintenance of relevance: Perturbed set-valued data
often lose the relevance between different sets, i.e., the
same user’s set-valued data from two different sets are
perturbed independently, which results in low utility of
the results. Maintaining the relationship between the two
sets in the analysis of joint probability is a key issue.
It is difficult to achieve probability calibration without
destroying the relationship between the two sets.

2) Heterogeneous sizes: There can be many subsets of
a universal set, meaning users’ set-valued data may
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contain different items. Single-set analysis uses padding
to solve the issue of inconsistent numbers of items.
However, in the case of a two-set analysis, padding
may change the relevance between the two sets and
introduce additional error into the results. Therefore,
new methods need to be developed to address the
problem of heterogeneous sizes.

3) Low accuracy: Even with some trivial methods
transforming a two-set analysis into a single-set analysis,
the accuracy of the result may not be satisfactory. The
accuracy of some single-set analysis methods decreases
as the set cardinality increases. The trivial adaptation
turns the problem domain into the Cartesian product of
two sets, and the privacy budget is divided into more
parts according to the sequential composition theorem
of LDP, further decreasing accuracy.

To overcome these challenges, we propose a joint
distribution analysis method for set-valued data with local
differential privacy. Specifically, each user’s set-valued data
from two sets is encoded into a uniform bit string format
and cyclically shifted using our perturbation mechanism. The
server collects the perturbed set-valued data and obtains
the association information of the two sets through our
aggregation method. Subsequently, the server can efficiently
derive calibrated joint distribution probabilities with high
accuracy based on the privacy parameters and a calibration
matrix.

To summarize, this paper makes the following contributions:

• Addressing the challenge of heterogeneous size: We
designed a set-valued data perturbation mechanism that
cyclically shifts encoded set-valued data, providing the
same level of privacy preservation regardless of the
number of items a user owns.

• Improving the accuracy of joint distribution estimation:
We incorporated the idea of limiting the response
range into the perturbation mechanism, ensuring that the
cardinality of the set does not affect the accuracy of the
results.

• Maintaining the relevance of set-valued data from two
sets: We propose an aggregation method that transforms
the rows and columns of the binary matrix, allowing the
relationship between set-valued data from different sets
to be associated for further calibration.

• Theoretical analysis and experimental validation: In
addition to theoretically analyzing the error bound and
proving the security of our work, extensive experimental
results on synthetic and real-world datasets demonstrate
that our scheme achieves better utility than state-of-the-
art approaches.

The remainder of this paper is organized as follows.
Section II introduces the related work, including existing
works on LDP and set-valued data analysis. In Section III, we
formally describe the definitions and theorems of LDP/set-
valued data. The problem statement, including the system
model, security assumptions, and our design goals, is given
in Section IV. We present the details of our scheme for
joint distribution estimation for set-valued data in Section V.

Theoretical analysis and experimental results are provided
in Sections VI and VII, respectively. Finally, Section VIII
concludes this paper.

II. RELATED WORK

Frequency estimation of categorical data. Numerous
studies have focused on privacy-preserving statistical analysis
using LDP. Among these, frequency estimation of categorical
data, a primary statistical function, garnered significant
attention. Kairouz et al. [21] proposed a classical frequency
estimation method, k-RR, for categorical data, extending BRR
[22] to categorical attributes with an arbitrary number of
possible values. RAPPOR [23], presented by Erlingsson et
al., is well-known for longitudinal privacy-preserving data
collections, where data is collected multiple times. RAPPOR
employs Bloom filters to transform a sensitive string based
on a set of hash functions, and then uses a two-step
random response mechanism to preserve users’ long-term
privacy. To improve accuracy, Wang et al. [24] introduced
the Optimized Local Hashing (OLH) protocol, which mitigates
information loss between the hashing and randomization steps.
Additionally, studies such as [25] and [26] focus on joint
distributions of categorical data, which are similar to our work.
Xue et al. [25] proposed JESS to learn joint distributions and
used it to train a privacy-preserving Naı̈ve Bayes classifier. Xu
et al. [26] introduced the notion of user-level LDP to formalize
and preserve users’ privacy when their joint data tuples are
released. However, due to differences in data types, leading
to differences in privacy budget allocation and perturbation
methods, joint distribution analysis methods for categorical
data cannot be applied to set-valued data.

Heavy hitters of set-valued data. Compared to basic
categorical data, set-valued data is more complex, and its
estimation has been a focus of researchers in recent years.
Most research on analyzing set-valued data was conducted in
the area of heavy hitters identification (also known as frequent
items mining), which is suitable for scenarios where only the
frequencies of frequent items need to be calculated. LDPMiner
[19] is the first work that provides heavy hitter estimation
over set-valued data. Based on RAPPOR [23] and S-Hist [27],
LDPMiner pads users’ items to a uniform length, addressing
the difficulty of heterogeneous sizes. Wang et al. [28] formally
defined such padding-and-sample-based frequency oracles and
proposed SVIM for finding frequent items in the set-valued
LDP setting. To address challenges related to different item
quantities among users and to improve utility, Zhu et al. [29]
combined sampling and shuffling, designing a top-k frequent
item estimation framework called EPS2. To efficiently identify
heavy hitters from set-valued data with a large domain, PemSet
[20] only perturbs and reports prefixes of users’ data, reducing
computation cost. Due to different computational tasks, these
works cannot be applied to frequency estimation of all items
in set-valued data.

Frequency estimation of set-valued data. In the research
on set-valued data, frequency estimation is more relevant
to our work. In frequency estimation, the focus is on all
items, rather than just the frequent items, as in heavy hitters.
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To improve accuracy, Wang et al. proposed PrivSet [17],
which privatizes items in set-valued data as a whole, and
the Wheel mechanism [18], [30], maping set-valued data to
numerical values. However, these works are limited to single-
set estimation. To the best of our knowledge, no work has
studied joint distribution estimation of set-valued data under
LDP. Therefore, we propose to address the three specific
challenges mentioned in Section I and achieve high-accuracy,
privacy-preserving joint distribution estimation for set-valued
data.

III. PRELIMINARIES

A. Local Differential Privacy (LDP)
As a convincing privacy-preserving computing technique,

differential privacy (DP) [31] has been proposed for more than
10 years. DP is independent of the adversaries’ background
knowledge and has excellent provable mathematical security.
DP includes local differential privacy (LDP) and centralized
differential privacy (CDP). The works of CDP [32]–[35]
are based on the premise that there is a trusted centralized
server for aggregation. However, in real life, this security
assumption is often not met, and thus, LDP is favored. LDP
protocols preserve privacy in scenarios where users do not trust
the aggregator [36]–[40], and users perturb the original data
locally before uploading it to the aggregator. The aggregator
then aggregates the collected data to mitigate the impact of
the perturbation.

Formally, ϵ-local differential privacy is defined on a
randomized mechanism M and a privacy budget ϵ > 0 as
follows.

Definition 1 (ϵ-Local Differential Privacy) [41]. A
randomized mechanism M satisfies ϵ-LDP if and only if for
any pair of input values v and v′ in the domain of M, and
for any possible output y ∈ Y , the following condition holds:

P[M(v) = y] ≤ eϵ · P[M(v′) = y],

where P[·] denotes the probability and ϵ is the privacy budget.
A smaller ϵ means stronger privacy protection and lower
accuracy of aggregation results.

The idea of LDP is that any output y should be about as
likely regardless of the individual’s secret, while centralized
differential privacy focuses more on ensuring that any output
should be about as likely regardless of whether an individual’s
data is in the dataset. The degree of “regardless” is controlled
by the privacy budget ϵ.

Similar to centralized differential privacy, LDP also has the
composition theorem, which is widely used in the design of
mechanisms. The composition theorem primarily guarantees
the overall LDP for the combination of sequential algorithms
that each satisfies LDP individually.

Theorem 1 (Sequential Composition Theorem) [41].
Suppose that a set of privacy mechanisms M =
{M1,M2, ...,Mm} are sequentially performed on a dataset,
and each Mi provides an ϵi-LDP guarantee. Then, M can
provide (

∑m
i=1 ϵi)-LDP.

Intuitively, when a set of randomized mechanisms is
performed sequentially on a dataset, the final privacy guarantee
is determined by the summation of total privacy budgets.

Binary Randomized Response (BRR) [21], [22] is a
primary randomization method for achieving LDP for binary
values. Its main idea is akin to flipping a biased coin: if tails,
then respond truthfully; otherwise, respond falsely. Formally,
the original value v is perturbed into v∗ by

P (M(v) = v∗) =

{
eϵ

eϵ+1 , if v∗ = v,
1

eϵ+1 , if v∗ ̸= v.
(1)

Since the coin is biased, the truth cannot be directly obtained
from all perturbed answers. One more step is needed to
calibrate the answer, which is also common in other LDP
mechanisms. For BRR, the estimated true frequency f̂ can
be calibrated from directly collected frequency f as follows:

f̂ =
f + p− 1

2p− 1
. (2)

Because BRR has the advantageous property of simple
randomization satisfying LDP, many previous works [42]–[44]
are conducted based on its method and achieve more complex
functions.

B. Set-valued Data

The set-valued data describes subsets of a universal set.
Formally, U = {x1, x2, ..., xc} is the domain of items, and
the set-valued data vi of user i is denoted as a subset of U ,
i.e., vi ⊂ U . Different users may have different numbers of
items, so their set-valued data may be different subsets of the
universal set. To exemplify this, Table I shows an example
of a set-valued dataset of five users with the item domain
U = {hamburger, pizza, cola, frenchfries} as food orders.

Table I: An Example of Set-Valued Dataset

Users’ Data Items of Set-Valued Data
v1 {pizza, cola}
v2 {hamburger, cola, frenchfries}
v3 {frenchfries}
v4 {hamburger, pizza, cola}
v5 {hamburger, cola}

The important notations frequently used throughout this
paper are listed in Table II. The data aggregator needs to
estimate some statistics of these set-valued data from all users.
The set-valued data analysis in previous studies and this paper
respectively focused on:

• Single-set item distribution estimation. The frequency
of each item in all users’ set-valued data is formally
defined as:

fj =

∣∣{ui|v 1
i,j = 1}

∣∣
n

,

where fj is the proportion of users whose set-valued data
contains item j. For example, this could represent the
proportion of people who ordered cola in the previous
example.

• Two-set joint distribution estimation. The joint
distribution is defined as the frequency of every possible
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combination of two items from two sets respectively, or
formally we have:

fi,j =

∣∣∣{uk|(v 1
k,i = 1) ∧ (v 2

k,j = 1)}
∣∣∣

n
,

where fi,j is the proportion of users whose set-valued
data contains item i (from the first set) and item j (from
the second set). For example, if the food set is divided
into a staple food set and a snack set, we need to obtain
the proportion of people who ordered both hamburger and
french fries. Furthermore, we can infer what items may
best match a hamburger and help enterprises improve
their marketing strategy.

Table II: The List of Notations

Notation Description

U1,U2 Two sets of the item domain of user data

c The cardinality of the item set

n The total number of users

l The parameter of cyclic shift function

ui The i-th user

ϵ The privacy budget

v1
i ,v2

i

The set-valued data (binary vector) of user i, from

set 1 and set 2, respectively

s1i , s2i
The perturbed set-valued data (binary vector) of user

i, from v1
i and v2

i , respectively

v 1
i,j , v 2

i,j

The binary indicator of item j of user i’s set-valued

data, in v1
i and v2

i , respectively

s 1
i,j , s 2

i,j

The perturbed binary indicator of item j of user i’s

set-valued data, in s1i and s2i , respectively

S1, S2 The perturbed data matrix of each set

S∗ The aggregated perturbed data matrix

F̂ The calibrated joint distribution frequency matrix

M The calibration matrix

f∗
i,j , f̂i,j , fi,j

The perturbed/estimated/true joint frequency of item

i in the first set and item j in the second set

IV. PROBLEM STATEMENT

A. System Model

We consider a client-server architecture consisting of a
server and a group of participating users. The server is the
service provider of a certain application and is responsible for
aggregating the perturbed set-valued data submitted by users
and estimating the joint distribution. The participants are the
application users.

In this article, we assume that there are n users (denoted as
u1, u2, . . . , un) who own set-valued data from two different
universal sets U1 and U2. We assume that the application
can execute a simple perturbation algorithm automatically on
original usage data before it is uploaded to the server, and the
server can only receive the perturbed set-valued data from the
application. The server can perform some complex computing
tasks to obtain the joint distribution of set-valued data.

B. Security Assumption

Application service providers always strictly establish
service agreements and use licenses that have legal effects, so
the server is assumed to be honest but curious. Specifically,
the server processes the data according to the data aggregation
protocol, but it is also interested in the users’ privacy. We treat
the users as honest participants who perturb the original data
according to the protocol, and they are concerned about their
data privacy. Additionally, we assume that there exist secure
communication channels (i.e., the TLS/SSL protocol) between
users and the server.

C. Design Goals

In this paper, we intend to devise a joint distribution analysis
method for set-valued data with LDP. Our scheme aims to
achieve the following design goals:

• Privacy Preservation. Users’ input and output set-valued
data strictly satisfy the definition of LDP. Moreover, the
original set-valued data are well protected from disclosure
to any other participants throughout the entire process.

• Accuracy. The expectation of the estimated joint
probabilities converges to the true joint probability.
Compared with adaptions of state-of-the-art works on set-
valued data, the error bound of our scheme is optimal.

• Scalability. The size of the universal set does not
influence the accuracy of results in our scheme, making
it suitable for scenarios with large-scale item sets.

V. PROPOSED SCHEME

A. Overview

In this section, we present a detailed joint distribution
scheme for set-valued data estimation, comprising a set-
valued data perturbation protocol for each user, a specialized
aggregation method for perturbed set-valued data that
preserves two-set relationships, and a calibration step for the
server.

Similar to previous works based on frequency statistics with
LDP, our set-valued data perturbation protocol also utilizes the
randomized response method. Instead of randomly responding
with items in set-valued data one by one, we limit the range of
responses to improve aggregation accuracy. Specifically, users
encode all chosen items into a uniform format bit string and
respond with either the original string or a circularly shifted
string, in accordance with the LDP definition.

The server then aggregates the perturbed set-valued data
submitted by users to obtain the association information of two
sets. By performing specific bit operations on users’ set-valued
data in the form of bit strings, the server can obtain aggregated
information in linear time to the item set cardinality.

Since the aggregated results in the previous step are
based on perturbed set-valued data, calibration is necessary.
The server generates a frequency calibration matrix offline,
meaning it can be generated without interaction with the user.
The server then obtains the calibrated joint distribution through
matrix division.

In the following three subsections, we detail our set-
valued data randomization protocol, the aggregation method
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that preserves two-set relationships, and the joint distribution
estimation mechanism.

B. Data Randomization

As mentioned earlier, heterogeneous sizes pose a challenge
in set-valued data joint distribution analysis. A straightforward
approach is to encode users’ choices into bit strings.
Specifically, let vi,j denote whether user i has chosen item
j from the set, where 1 indicates the user has chosen item j,
and 0 indicates they have not. The simplest method to perturb
data would be flipping each bit via BRR. However, we avoid
this due to its low accuracy. Instead, we limit the range of
responses to improve aggregation accuracy.

Additionally, v 1
i,j and v 2

i,k represent the binary indicators of
items j and k of user i’s set-valued data from sets 1 and 2,
respectively. After encoding as described, user i has binary
indicator vectors from the two sets: v1

i and v2
i . These binary

vectors serve as inputs to the set-valued data perturbation
protocol, and the outputs of the protocol are s1i and s2i ,
maintaining the same format as the input data. Algorithm 1
outlines the major steps of the protocol.

Algorithm 1: Set-Valued Data Perturbation Protocol
Input : the set-valued data of user i: {v1

i ,v2
i }

the privacy budget: ϵ
Output: user i’s perturbed set-valued data that satisfies

ϵ-LDP: {s1i ,s2i }
for k ← 1 to 2 do

ski =

{
vk
i , w.p. p = eϵ/2

eϵ/2+1
,

circshift(vk
i , c− l), w.p. q = 1

eϵ/2+1
.
(3)

end
Return {s1i ,s2i }.

The main concept in Algorithm 1 is to limit the range of
responses by responding with either the original set-valued
data or a circularly shifted answer with probabilities given by
Eq. 3. The probabilities in Eq. 3 are similar to those in BRR
(i.e., Eq. 1), but with a privacy budget of ϵ/2. This halving of
the privacy budget is due to both sets of data undergoing the
same but independent perturbations. According to Theorem 1,
the joint frequency satisfies ϵ-LDP.

Specifically, in Algorithm 1, cirshift refers to the circular
shift function [45], where the first parameter is the data to
be shifted, and the second parameter is the number of bits
to shift. In the process of randomized response, the data ski
to be uploaded by the user is either the original data vk

i or
circshift(vk

i , c−l). In this case, circshift(S2, c+1−i, 2) refers
to circularly shifting the matrix S2 by c+1−i positions along
the second dimension. It is crucial that the direction of the
shift, whether left or right, is consistent across all algorithms
presented in this paper.

The shift parameter l is a constant across all users and
serves as an intermediate parameter in our algorithm to
control the shift bits during perturbation. Importantly, l is
independent of the number of items in each user’s sets, with

the items belonging to full sets of size c. To ensure the
algorithm’s security, the server must specify parameter l under
the following conditions:

• The shift parameter l must satisfy 0 < l < c and l ∤ c.
• Users’ set-valued data from each set must neither include

all items in the entire domain nor be empty.
These conditions ensure that the shifted set-valued data

differs from the original, allowing the randomization algorithm
to meet the definition of LDP. Specifically, 0 < l < c is
essential for normalizing l. In cyclic shifting, moving a string
of length c by l positions is equivalent to moving it by l plus
any multiple of c. Normalizing l ensures consistent execution
of the algorithm and maintains contextual uniformity. Besides,
l ∤ c is crucial for preserving user privacy, assuming the
user’s set-valued data conforms to formatting criterion. This
condition ensures that the representation of the data before
and after shifting differs, which guarantees that the algorithm’s
input and output comply with the definition of LDP.

C. Data Collection

To address the challenge of relevance maintenance indicated
in Section I, we design an aggregation algorithm to collect
set-valued data from two sets in linear time to the item sets
cardinality c. Thanks to the development of efficient matrix
and vector computing tools (e.g., MATLAB), our algorithm
can obtain the association information of the two sets in linear
time with respect to the item sets cardinality without involving
complex nested loops.

Algorithm 2: Set-Valued Data Aggregation Mecha-
nism
Input : the perturbed set-valued data of users:

{s1i ,s2i }ni=1

Output: the aggregated perturbed data matrix: S∗

S1 = [s11; s
1
2; ...; s

1
N ];

S2 = [s21; s
2
2; ...; s

2
N ];

counter = [0]c×c;
for i← 1 to c do

counter(i, :) =
sum(S1 & circshift(S2, c+ 1− i, 2));

end
S∗ = [0]c×c;
for j ← 1 to c do

S∗(:, j) = circshift(counter(:, j), j − 1);
end
Return S∗.

As demonstrated in Fig. 1, Algorithm 2 is primarily used to
link the set-valued data of the two sets, which are perturbed
independently, and to record the perturbed joint frequency. In
the example shown in Fig. 1, five users’ perturbed set-valued
data are collected into S1 and S2. In the output matrix S∗

of Algorithm 2, column numbers represent items in the first
set, and row numbers represent items in the second set. The
element at the corresponding coordinate is the number of users
whose perturbed set-valued data items are marked as “1” in
each set.
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0 1 1 1
1 0 1 0
1 0 0 0
0 0 1 0
1 1 1 0

0 1 0 1
1 1 0 0
0 0 0 0
1 0 0 0
0 1 0 0
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3rd item (third column) in       and the 2nd item (second column)  in       simultaneously.

…
…

…
…

Collect Algorithm 2

1S 2S

1Ssequence of 

2
S

Fig. 1: An Example of 5 users’ perturbed set-valued data with a set cardinality of 4.

The main idea of Algorithm 2 is that, with the convenience
of binary computing, the information of the two matrices
can be associated efficiently through cyclic shift and the
Boolean AND operation. Specifically, we use counter to record
the intermediate aggregated result. In the first loop body,
“&” denotes the Boolean AND operator, and “counter(i, :)”
represents the i-th row of counter. As a supplement to the
circshift function described in the previous subsection, if the
operand is a matrix, the function’s third parameter is optional:
“2” means to horizontally shift the columns of the matrix,
and the default “1” means to shift rows vertically. In short,
each row of counter is the column sum of the Boolean AND
results of S1 and the cyclically shifted S2. Finally, S∗ can be
obtained by cyclically shifting counter.

D. Joint Distribution Estimation

Since Algorithm 2 obtains the aggregated perturbed data, we
also need to adjust the results to obtain the correct estimated
joint frequency. Similar to the derivation of Eq. 2 from Eq. 1,
according to Algorithm 1, we have:

f∗
i,j = f̂i,j · p2 + (f̂i,j+l + f̂i+l,j) · p · q + f̂i+l,j+l · q2. (4)

It is worth noting that subscripts in Eq. 4 must be taken modulo
c. For instance, if i + l is larger than c, the actual subscript
should be i+ l− c. Moreover, the probabilities p and q can be
learned from Eq. 3 during the process of data randomization.

The main idea of Algorithm 3 is to solve the recursive
equations described in Eq. 4 using matrix division. Based
on the concept of Eq. 4, Algorithm 3 first generates a
calibration matrix M . Although the generation process of M
appears complex, it can be completed prior to set-valued data
collection. This calibration matrix is fixed and can be reused
for the same privacy budget and set cardinality.

After generating M , in the penultimate line of Algorithm 3,
the calibrated joint aggregated data can be derived by
performing a matrix left division. The two operands of the
left division are the calibration matrix M and the vectorized
S∗ (S∗(:) denotes arranging the columns of the S∗ matrix into
a new column vector). Additionally, to obtain the calibrated
joint distribution frequency matrix F̂ , we need to divide the
result of the left division by the total number of users n.

Algorithm 3: Calibration Mechanism for Joint
Distribution Probabilities

Input : the aggregated perturbed data matrix S∗

the privacy budget: ϵ
Output: the calibrated joint distribution frequency

matrix F̂
M = [0]c

2×c2 ;
// p, q are refered to Eq.3
for i← 1 to c do

for j ← 1 to c do
k = (i− 1) · c+ j;
M(k, k) = p · p;
if i+ l ≤ c then

M(k, (i− 1 + l) · c+ j) = p · q;
if j + l ≤ c then

M(k, k + l) = p · q;
M(k, (i− 1 + l) · c+ j + l) = q · q;

else
M(k, k + l − c) = p · q;
M(k, (i− 1 + l) · c+ j + l − c) = q · q;

end
else

M(k, (i− 1 + l − c) ∗ c+ j) = p · q;
if j + l ≤ c then

M(k, k + l) = p · q;
M(k, (i− 1 + l − c) · c+ j + l) = q · q;

else
M(k, k + l − c) = p · q;
M(k, (i−1+ l−c) ·c+j+ l−c) = q ·q;

end
end

end
end
F̂ = M\S∗(:)./n;
Return F̂ .

VI. THEORETICAL ANALYSIS

A. Privacy Analysis

Lemma 1: Our set-valued data perturbation protocol
satisfies ϵ-LDP.

Proof. Let s1i be the perturbed set-valued data from the
first set of canonical form outputted by Algorithm 1, whose
elements consist of 0s and 1s (from the two points noted in



7

Subsection V-B, we know that the shifted data is not the same
as the original one, and data elements cannot be all 0s or
all 1s). The probability of observing s1i , given its original
input of protocol v1

i , is denoted as P(s1i |v1
i ). By observing

s1i , there are only two possible inputs: s1i and reverse shifted
s1i (recall that in one case ski = circshift(vk

i , c−l), so we have
vk
i = circshift(ski , l)). According to the probability constraint

of Eq. 3, the ratio of the two such conditional probabilities
with distinct input data v1

i 1 and v1
i 2, is bounded by eϵ/2.

Formally, we have:

P(s1i |v1
i 1)

P(s1i |v1
i 2)

≤ P(s1i |s1i )
P (s1i |cirshift(s1i , l))

=

(
eϵ/2

eϵ/2 + 1

)/(
1

eϵ/2 + 1

)
= eϵ/2.

Thus, the perturbation on user i’s set-valued data from the
first set v1

i satisfies ϵ/2-LDP. Similarly, we can prove that
the perturbation on v2

i also satisfies ϵ/2-LDP. According to
the sequential composition theorem (Theorem 1), we conclude
that our set-valued data perturbation protocol satisfies ϵ-LDP
since ϵ = ϵ/2 + ϵ/2, thereby achieving the design goal of
Privacy Preservation.

B. Utility Analysis
Theorem 2: The expectation of the estimated set-valued

data joint frequency E(f̂i,j) equals the actual frequency fi,j ,
i.e., our estimation algorithm is unbiased.

Proof. According to Eq. 4, we have:

E(f∗
i,j) = E(f̂i,j) · p2 +

(
E(f̂i,j+l) + E(f̂i+l,j)

)
· p · q

+ E(f̂i+l,j+l) · q2.
(5)

LetM be the perturbation mechanism of Algorithm 1. We can
obtain the following equation from the randomization process:

P
(
M(v 1

i,j , v
2

i,j) = s 1
i,j , s

2
i,j

)
=

p2, if v 1
i,j = s 1

i,j , v
2

i,j = s 2
i,j ,

p · q, if v 1
i,j+c−l = s 1

i,j , v
2

i,j = s 2
i,j ,

p · q, if v 1
i,j = s 1

i,j , v
2

i,j+c−l = s 2
i,j ,

q2, if v 1
i,j+c−l = s 1

i,j , v
2

i,j+c−l = s 2
i,j .

Moreover, as mentioned in the previous subsection, by
observing s1i , there are only two possible inputs: s1i and
reverse shifted s1i (in one case ski = circshift(vk

i , c−l), so we
have vk

i = circshift(ski , l)). The expectation of the perturbed
joint frequency E(f∗

i,j) can be calculated by:

E(f∗
i,j) = fi,j · p2 + (fi,j+l + fi+l,j) · p · q + fi+l,j+l · q2.

(6)
Combining Eq. 5 and Eq. 6, we can get a set of recursive
linear simultaneous equations:

0 =
(
E(f̂i,j)− fi,j

)
· p2 +

(
E(f̂i,j+l)− fi,j+l

)
· p · q+(

E(f̂i+l,j)− fi+l,j

)
· p · q +

(
E(f̂i+l,j+l)− fi+l,j+l

)
· q2,

for i, j ∈ {1, 2, ..., c}.
(7)

In Eq. 7, there are c2 different equations and the same
number of unknown expectations. According to the solvability
condition of linear equations, Eq. 7 has an exclusive resolution:

E(f̂i,j) = fi,j , for i, j ∈ {1, 2, ..., c}.

As can be seen, the expectation of the estimated joint
frequency E(f̂i,j) is equal to the actual frequency fi,j ,
indicating that our scheme is unbiased.

Theorem 3: Our joint distribution estimation mechanism
has an error bound given by the following equation, which
is independent of the set cardinality and the cyclic shift
parameter.

E(|f̂i,j − fi,j |2) ≤
1

n

(
(eϵ/2 + 1)4

(eϵ + 1)2
− 1

)
. (8)

Proof. As it is proven in Theorem 2 that E(f̂i,j) = fi,j , we
have E(|f̂i,j − fi,j |2) = Var(f̂i,j). For convenience, we use
variances to represent the mean square error. According to
Eq. 4, we derive:

Var(f∗
i,j) = Var(f̂i,j) · p4 + Var(f̂i+l,j+l) · q4

+
(

Var(f̂i,j+l) + Var(f̂i+l,j)
)
· p2 · q2.

Since Eq. 4 is recursive and symmetric, variances of the
estimated frequency are all the same. The above equation can
be written as:

Var(f∗
i,j) = Var(f̂i,j)(p4+q4+2p2 ·q2) = Var(f̂i,j)(p2+q2)2.

(9)
Because f∗

i,j = S∗(j, i)/n, we know Var(f∗
i,j) =

Var(S∗(j, i))/n2. Besides, every element of S∗ is the scaled
summation of n independent random variables (w.p. p2, q2, p ·
q) drawn from the Bernoulli distribution. Thus, we deduce:

Var (S∗(j, i)) =n · p2 · (1− p2) · fi,j
+ n · q2 · (1− q2) · fi+l,j+l

+ n · p · q · (1− p · q) · (fi,j+l + fi+l,j)

≤n · (p2 + q2 + 2p · q − p4 − q4 − 2p2 · q2)
=n ·

(
1− (p2 + q2)2

)
.

Substituting the above inequality with Eq. 9, we get:

Var(f̂i,j) ≤
1

n

(
1

(p2 + q2)2
− 1

)
=

1

n

(
(eϵ/2 + 1)4

(eϵ + 1)2
− 1

)
.

Obviously, this error bound of the estimated set-valued joint
frequency is not influenced by the set cardinality c and the
cyclic shift parameter l, and thus we achieve the design goal
of Scalability.

C. Error Bounds Comparison

In this subsection, we compare the variance, or error bounds,
of existing LDP-based methods with our proposed approach.
As mentioned in Section I, to the best of our knowledge, there
has been no prior work on privacy-preserving joint distribution
analysis of set-valued data. Therefore, for a fair comparison,
we adapt the existing frequency estimation and set-valued data
analysis methods to align their functionality with our approach.
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Table III presents the variances of these methods for
their original functions and the adapted variances for joint
distribution analysis of set-valued data. For simplicity, the
variances in the table are represented using Big O notation.
The specific variances of the compared methods can be found
in their respective original papers, while the detailed variance
and the proof of our approach are provided in Theorem 3.
In the following paragraphs, we elaborate on the adaptation
process of the compared methods and how we analyze the
variance of these adapted methods.

Table III: Variance Comparison

Approaches Original (Adapted) Joint Distribution

BRR [22] O( 1
nϵ

) O( 2c
nϵ

)

k-RR [21] O( c
nϵ

) O(mc2

nϵ
)a

UE [23], [24] O( 1
nϵ

) O( m
nϵ

)a

Wheel [18] O(
√
mc

nϵ2
)a O(mc2

nϵ2
)a

Our Work O( 1
n
)b O( 1

n
)b

a Assume that each user selects m pairs of items from two sets.

b Simplified. Refer to Theorem 3 for details.

BRR Adaptation: The Binary Randomized Response
(BRR) is a basic method for binary categorical data frequency
estimation. We adapt it for set-valued data joint distribution
by encoding each item in the user’s set-valued data as ’1’
or ’0’ and perturbing each bit according to the probabilities
outlined in Eq. 1. As per the sequential composition theorem
(Theorem 1), the privacy budget must be equally divided
among each item in the combined domain (totaling 2c items).
Consequently, the adapted variance is naturally amplified by
a factor of 2c relative to the coefficient of ϵ.

UE and k-RR Adaptation: The Unary Encoding (UE)
and k-Randomized Response (k-RR) methods are typically
employed for frequency estimation in multi-category data,
where users can select only one item from a set. We adapt
these methods by considering the Cartesian product of the
two original sets as a new set. Consequently, the joint
distribution problem of the original two sets becomes a
frequency estimation problem within the new set. Given that
the new set contains c2 elements, the original variance, which
depends on the set’s cardinality, requires the factor of c to
be replaced with c2. Furthermore, if users select m pairs of
elements from the two sets, the privacy budget ϵ is divided into
m parts, thereby dividing the coefficient of ϵ in the adapted
variance by m.

Wheel Adaptation: PrivSet and Wheel are methods used
for frequency estimation of set-valued data within a single
set. Since PrivSet does not provide variance information in its
paper and Wheel is its advanced version, we only compare
our method with Wheel. Similar to the adaptations for UE
and k-RR, we consider every possible pair of items from the
original two sets as a new set, replacing the factor of c with
c2 in the original variance. However, unlike UE and k-RR,

the coefficient of the privacy budget ϵ remains unchanged.
This is because, in the Wheel adaptation, although the number
of items changes, the object under consideration remains set-
valued data. The adaptation serves as a pre-processing step
and does not involve splitting the privacy budget in the LDP
algorithm, still utilizing the entire ϵ.

In summary, comparing the error bounds of these related
LDP-based methods confirms the achievement of our design
goal of Accuracy.

VII. EXPERIMENTS

In this section, we evaluate the actual performance of
our proposed scheme through experimental results on both
synthetic and real-world datasets. To the best of our
knowledge, there is currently no work on privacy-preserving
joint distribution analysis for set-valued data. To fairly
compare with state-of-the-art LDP approaches for set-valued
data that cannot estimate the joint distribution, we modified
relevant works. Following the method described in Section
VI-C, PrivSet [17] and the Wheel mechanism [18], [30] can
be extended to estimate the joint distribution for set-valued
data.

We describe the general settings of our experiments
in VII-A. In subsection VII-B, we analyze the error of
our scheme. Subsection VII-C examines whether the cyclic
shift parameter l impacts accuracy. The impacts of the set
cardinality and the number of users are evaluated in VII-D
and VII-E, respectively.

A. General Settings

Parameter settings. For PrivSet [17], the output subset
size k is set to the optimal size k∗. The set-valued data
pre-processing method is similar to that described in the
penultimate paragraph of Subsection VI-C. Since the number
of items is expanded to c2, without loss of generality, the
padded size d is set to c2/5. Specific parameter interpretations
can be referred to in [17]. Applying the (c2, d, ϵ, k∗)-PrivSet
mechanism to pre-processed set-valued data ensures that the
perturbation on every user’s set-valued data satisfies ϵ-LDP.
For the Wheel mechanism [18], [30], each possible pair (a
total of c2 pairs) of items from the two sets is mapped to an
item in the original scheme, and every user consumes ϵ to
perturb his/her data.

Datasets. We conduct experiments on both synthetic and
real-world datasets. The synthetic datasets are generated by
sampling set-valued data from the binomial distribution with
probabilities of 0.3 and 0.6. We use two real-world datasets
for performance evaluation, including online retail [46] and
takeaway food orders [47], described as follows:

• Online Retail. This UCI dataset contains all the
transactions for a UK-based, non-store online retailer
between 2009 and 2011. We extract information on
products, their categories, and customer IDs from the
original dataset.

• Takeaway Food Orders. This dataset comprises
takeaway food orders from two Indian restaurants in
London, including over 10,000 food orders over three
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years. We extract information about the ordered food,
their types, and order IDs.

Measurement. To measure the accuracy of the estimated
joint frequency of set-valued data, we follow previous works
[18], [30] and use MAE (Mean Absolution Error) as a widely-
used utility metric.

MAE =
1

c2

∑
i∈U1,j∈U2

|fi,j − f̂i,j |.

B. Error Analysis
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(a) Synthetic, B(n, 0.3)
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(b) Synthetic, B(n, 0.6)
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(d) Takeaway Food Orders

Fig. 2: MAE (Mean Absolution Error) with n = 200, c = 20
and the privacy budget ranges from 0.2 to 2.4.

Effect of privacy budget. Fig. 2 illustrates the overall
performance of our joint distribution analysis mechanism for
set-valued data. It plots different errors with respect to various
privacy budgets ϵ. Recall that, from the definition of LDP, ϵ
determines the privacy protection level: a larger ϵ results in
weaker privacy protection but higher utility. All the schemes
in the figure follow this phenomenon: error decreases as ϵ
increases. This observation is consistent with the trade-off
between utility and privacy preservation.

Error comparison. From these figures, we observe that
(1) our mechanism consistently achieves the lowest error
(MAE) across all datasets. PrivSet and Wheel have similar
performance, with Wheel performing slightly better than
PrivSet as a new solution; (2) our mechanism is robust to
large noise. Our method with small ϵ (< 1.6) even has less
error than the other two methods with large ϵ (> 2.0).

C. Impact of Cyclic Shift Parameter

The parameter l is an intermediate parameter in our
algorithm used to control the shift bits during perturbation.
l is independent of the number of items in each user’s sets,

and the items belong to full sets of size c. As mentioned in
Section V-B, to ensure privacy preservation, the shift parameter
l must meet two specific requirements. Apart from privacy, we
also conclude in Theorem 3 that the error is not related to the
parameter l by proving the error bound. In this subsection,
we demonstrate through experiments that parameter l does
not affect the protocol’s performance while meeting privacy-
preservation requirements.

2 3 5 7 1 1 1 3 1 7 1 90 . 0 0 3

0 . 0 0 4

0 . 0 0 5

0 . 0 0 6

MA
E

l
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 �

Fig. 3: MAE with n = 5000, c = 23, ϵ = 3 and the shift
parameter l ranges from 2 to 19.

The curves in Fig. 3 do not show a significant trend with the
variation of l. It is worth mentioning that, compared to other
figures, the vertical axis of Fig. 3 does not use a logarithmic
scale, so even if the curves appear to fluctuate, the error
fluctuation is actually minimal. To summarize, consistent with
theoretical verification, the shift parameter l does not affect
the overall performance of the protocol.

D. Impact of Set Cardinality
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(b) Synthetic, B(n, 0.6)
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(c) Online Retail
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(d) Takeaway Food Orders

Fig. 4: MAE with n = 3000, ϵ = 3 and the item set cardinality
ranges from 10 to 100.

Effect of set cardinality. Fig. 4 quantifies the relationship
between the set cardinality and the error. Regarding the
challenging issue of low accuracy mentioned in Section I, the
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results shown in this figure meet expectations: the accuracy of
the adapted methods decreases as the set cardinality increases.
Although the error growth of adapted PrivSet is not evident in
the figure due to the logarithmic axis, the error does increase.

For any set cardinality, the error of our mechanism is
significantly lower than that of the other two methods,
verifying the design goal of Accuracy from another
perspective. Under the MAE metric, adapted Wheel performs
better than PrivSet, and the error growth of Wheel slows down
as the set cardinality increases.

Independence between error and cardinality. These
figures further demonstrate our design goal of Scalability.
The curve of our estimation method is almost horizontal
under MAE, proving that our scheme has good scalability and
verifying the theoretical analysis in Section VI that the error
of joint probability is independent of the set cardinality.

E. Impact of the Number of Users
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Fig. 5: MAE with c = 30, ϵ = 3 and the number of users
ranges from 100 to 3000.

To examine accuracy from another perspective, we also
analyze the impact of the number of participants on the
error. Fig. 5 shows the error on different datasets as the
number of users increases. Generally, LDP-based aggregation
schemes can reduce average error by incorporating more data,
consistent with the curves in the figure. The downward trend
is evident in our work and PrivSet, while it is less evident in
Wheel due to the logarithmic axis.

Effect of the number of users. Fig. 5 shows that our
method achieves optimal accuracy as the number of users
increases, and the performance on real-world datasets validates
this in practice. Adapted Wheel is more accurate than PrivSet,
but as the number of users (n) increases, the gap between
the two decreases. When n reaches a certain level, the MAE
of adapted PrivSet is almost equal to Wheel. The analysis of

n also reveals that our scheme is very suitable for scenarios
involving a large number of participants, such as big data
analysis.

VIII. CONCLUSION

In this paper, we proposed a joint distribution analysis
method for set-valued data with local differential privacy. The
encoding of set-valued data effectively solves the problem
of inconsistent item numbers among users. We designed a
scalable perturbation mechanism under ϵ-LDP by limiting
the range of users’ responses in the collection process and
cyclically shifting the encoded set-valued data, so that the
size of the universal set does not influence result accuracy.
To maintain the relationship between different sets and derive
the joint distribution, we proposed an aggregation method and
a calibration mechanism via matrix operations. Theoretical
analysis and extensive experimental comparisons with state-
of-the-art approaches on both synthetic and real-world datasets
demonstrated the practicability of our scheme.
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