
3928 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Enabling Cross-Chain Transactions: A Decentralized
Cryptocurrency Exchange Protocol

Hangyu Tian, Kaiping Xue , Senior Member, IEEE, Xinyi Luo, Student Member, IEEE, Shaohua Li, Jie Xu,

Jianqing Liu , Member, IEEE, Jun Zhao , Member, IEEE,
and David S. L. Wei, Senior Member, IEEE

Abstract— Inspired by Bitcoin, many different kinds of cryp-
tocurrencies based on blockchain technology have turned up on
the market. Due to the special structure of the blockchain, it has
been deemed impossible to directly trade between traditional
currencies and cryptocurrencies or between different types of
cryptocurrencies. Generally, trading between different curren-
cies is conducted through a centralized third-party platform.
However, it has the problem of a single point of failure, which
is vulnerable to attacks and thus affects the security of the
transactions. In this paper, we propose a distributed cryp-
tocurrency trading scheme to solve the problem of centralized
exchanges, which can achieve secure trading between different
types of cryptocurrencies. Our scheme is implemented with
smart contracts on an Ethereum blockchain and deployed on an
Ethereum test network. In addition to implementing transactions
between individual users, our scheme also allows transactions
among multiple users. The experimental result proves that the
cost of our scheme is acceptable.

Index Terms— Blockchain, cryptocurrency, exchange,
Ethereum, smart contracts.

I. INTRODUCTION

B ITCOIN [1] is currently the most popular cryptocurrency
which has been running well until today since it was

deployed in 2009. Unlike traditional currencies, Bitcoin does
not rely on a central issuer for management, but rather runs
on a P2P (Peer to Peer) network, which means no central

Manuscript received April 22, 2021; accepted June 30, 2021. Date of
publication July 9, 2021; date of current version August 17, 2021. This work
was supported in part by the National Natural Science Foundation of China
(NSFC) under Grant 61972371 and in part by the Youth Innovation Promotion
Association of Chinese Academy of Sciences (CAS) under Grant Y202093.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Debdeep Mukhopadhyay. (Corresponding author:
Kaiping Xue.)

Hangyu Tian is with the Department of Electronic Engineering and Infor-
mation Science, University of Science and Technology of China, Hefei,
Anhui 230027, China.

Kaiping Xue and Xinyi Luo are with the School of Cyber Security,
University of Science and Technology of China, Hefei, Anhui 230027, China
(e-mail: kpxue@ustc.edu.cn).

Shaohua Li is with the Department of Computer Science, ETH Zürich,
8092 Zürich, Switzerland.

Jie Xu is with the Department of Computer Science, City University of
Hong Kong, Hong Kong.

Jianqing Liu is with the Department of Electrical and Computer Engineer-
ing, The University of Alabama in Huntsville, Huntsville, AL 35899 USA.

Jun Zhao is with the School of Computer Science and Engineering, Nanyang
Technological University, Singapore 639798.

David S. L. Wei is with the Computer and Information Science Department,
Fordham University, Bronx, NY 10458 USA.

Digital Object Identifier 10.1109/TIFS.2021.3096124

authority can fully control Bitcoin. Its transaction data is not
stored in a central database, but is written in a distributed hash
chain named blockchian. In recent years, inspired by Bitcoin,
various blockchain-based cryptocurrencies have emerged, such
as Litecoin [2] and Ethereum [3]. To help users manage
different kinds of cryptocurrencies, a centralized exchange
based on a trusted third party is commonly used in some recent
works, e.g., [4]–[8].

On the one hand, different kinds of cryptocurrencies
are deployed in different blockchains by leveraging differ-
ent blockchain technologies. Transactions between the same
currency can be made directly on the network though a
blockchain clients. However, cryptocurrencies deployed on
different blockchains cannot be traded directly with each other.
Furthermore, if a user wants to buy some cryptocurrency using
the traditional currency or convert his/her cryptocurrency into
cash, the user can only exchange them with a third party.
In such cases, an exchange based on a trusted third party is
helpful, which can act as an intermediary to help users trade
between different types of cryptocurrencies.

On the other hand, the owner of a cryptocurrency typically
manages his/her assets through an address bounding to a pair
of key which is always stored in his/her private device. In this
situation, once the equipment fails, loses or even is attacked by
a malicious malware against cryptocurrency, the user suffers
property loss. So a central organization is needed to help users
manage their properties. A centralized exchange plays this role
which not only serves as a platform for cryptocurrency trading
but also provides a place for users to store their property. Just
like a bank, a centralized exchange provides users with the
convenience of managing funds and conducting transactions.
There are now more than 4,000 centralized exchanges in the
world, such as South Korea’s Bithumb [9], which trades over
$1 billion of cryptocurrencies a day.

Although centralized exchanges provide user convenience
in trading, it also brings about some security risks. Once
users keep their properties in a centralized exchange platform,
it means that the exchange platform is the “Archilles Heel”
of the system which could result in malicious use of users’
properties and transaction information. Furthermore, As a
central institution [10], [11], there will always be a single
point of failure. The best way to solve this problem is to adopt
a distributed cryptocurrency exchange scheme, which is also
in line with the idea of decentralization of cryptocurrency.

1556-6021 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2095-7523
https://orcid.org/0000-0001-7568-015X
https://orcid.org/0000-0002-3004-7091

TIAN et al.: ENABLING CROSS-CHAIN TRANSACTIONS: DECENTRALIZED CRYPTOCURRENCY EXCHANGE PROTOCOL 3929

Smart contracts [12], [13] are codes that can be deployed
and executed on a blockchain. With smart contracts, we are
able to implement a variety of decentralized applications.
Currently, Ethereum is the largest and most popular blockchain
platform supporting the deployment of smart contracts. Users
can send their smart contract codes to the Ethereum network
through transactions, which can then be verified by miners
and added to the blockchain. Any smart contract code saved
in the blockchain can be invoked by the users who meet
certain conditions. In this paper, we consider using smart con-
tracts based on Ethereum to implement a decentralized cross-
cryptocurrency exchange scheme which can verify different
types of cryptocurrency transactions sent by different users.
We not only resolve transactions between individual users,
but also consider the situation where trading is done among
multiple users.

In this paper, we make the following key contributions:

• We propose a decentralized cross-cryptocurrency
exchange scheme based on smart contracts, in which,
by using randomly selected users as intermediaries,
transactions between any two types of cryptocurrencies
can be realized in single-user and multi-user scenarios.
In the latter, multiple users can initiate multiple transfers
in a short time period, and the established contract can
automatically collect these transfers and complete these
transactions simultaneously.

• In our scheme, through Proof of Work and Proof of
Deposit, untrusted willing users are randomly selected to
organize a validation committee. Furthermore, by using
smart contracts to collect judgment results from the mem-
bers in validation committee, our scheme can validate
transactions between any two different types of cryp-
tocurrencies via the Ethereum network. Further analysis
shows that the functionality and transaction atomicity of
our scheme can be guaranteed by the protocol design of
the selection validation committee.

• We implement and deploy our proposed scheme on an
Ethereum test network, and evaluate the running costs
of each part of the contract on our local machine. Our
scheme optimizes the execution performance of the same
type of cryptocurrency among multiple users. Experi-
mental results show that the local operation cost of our
scheme is only affected by the number of participants
and is independent of the number of transactions per user.
Our cross-cryptocurrency transaction scheme ensures that
deployment costs and execution costs are within the
acceptable range to users.

The rest of our paper is organized as follows. Section II
introduces a series of work related to our scheme, and then
in Section III technical preliminaries are presented. After
we introduce our system and security model in Section IV,
Section V details our cross-cryptocurrency transaction scheme.
Section VI provides a security analysis of our scheme.
Section VII shows the detailed deployment of our scheme and
the related performance analysis. Finally, we have a summary
of our work in Section VIII.

II. RELATED WORK

In this section, we introduce the existing works on decen-
tralized cryptocurrency trading schemes which are designed
to solve the single point of failure problem in centralized
exchanges.

The Metronome project [14] proposes a cryptocurrency
called MTN that can be traded across different blockchains.
While a user destroys the token on the source chain, he/she
receives a proof of exit receipt that can be used on the target
blockchain. However, Metronome can only be implemented in
blockchains that support smart contracts, and cryptocurrencies
that do not support smart contracts thus cannot be exchanged.

KyberNetwork [15] is a highly liquid chain protocol that
provides instant trading and redemption services for digital
assets and cryptocurrencies which is currently deployed on
Ethereum. In KyberNetwork network, users store their tokens
in the repository by interacting with smart contracts. The
users can also access other types of cryptocurrency through
the repository which can be created by the contract or by
a third-party agency. The funds in the repository created by
the third-party agency are sourced from the fund provider,
and a reserve manager maintains the repository, determines
the exchange rate, and feeds the ratio back to KyberNetwork.
The addition and deletion of reserve entities in the network
are the responsibility of the KyberNetwork operator. Kyber-
Network relies on the block chain relay technology (such as
BTCRelay [16]) to achieve cross-chain confirmation, so there
are defects in the support of multiple currencies.

ERC-20 [17] is a standard interface for tokens on the
Ethereum blockchain. Some work, e.g., [18]–[21], try to
resolve transactions between ERC-20 tokens on Ethereum
and bitcoin. But these works only serve ERC-20 tokens on
Ethereum, which has great limitations. Republic [22] is a
decentralized dark pool project between cryptocurrency pairs
across different blockchains. Dark pool provides a hidden
order book where financial assets and instruments are traded
and matched by an engine built on a multi-party computa-
tion protocol. Dogethereum [23] is a peer to peer internet
currency that runs smart contracts and enables the exchange
of dogecoins for an equivalent worth of ethereum tokens
and vice versa. However, Republic and Dogethereum only
provide exchanges between a limited variety of tokens and
Ethereum. However, in our scheme, we use smart contracts on
Ethereum to verify other types of cryptocurrencies through a
validation committee selected from intermediary nodes, so our
scheme is able to support transactions between any types of
cryptocurrencies.

Both Cosmos [24] and Polkadot [25] are working to solve
the interoperability of blockchains, using the consensus algo-
rithm of Tendermint [26]. The blockchain in Cosmos network
applies a central radiation model: at the center is the “Hub”,
which manages a number of independent blockchains called
“Zones”, and tracks the status of all zones. Each zone is
obligated to continuously produce itself through reporting the
new block back to the Hub. Similarly, there are four basic
roles in maintaining Polkadot network: collators, fisherman,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

3930 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

nominator, and validator. They construct a series of child
blockchains which enforce state via merkle proofs. But both
the two works only support the blockchain network that is
compatible with them, and both need to have new tokens
issued by the new network, which increases the transaction
burden.

XCLAIM [27] is a generic framework for cryptocurrency
to achieve untrusted and efficient cross-chain switching. The
disadvantage is that the currency on the issuing blockchain
requires a contract that supports certain functions. So a
limited-capacity scripting language such as Bitcoin does not
support this operation. Tesseract [28] describes how to mark
existing cryptocurrencies with a trusted execution environment
(TEE) to enable cross-chain transactions, while TEEs suffer
from their own security concerns such as rollback [29] and
side-channel attacks [30].

Atomic Cross-Chain Exchange (ACCS) [31], [32] based on
hashed timelocks or signature locks [33]–[36] enables secure
cross-chain switching, but there is limitation in practicality.
Such an ACCS scheme is interactive, relying on a synchrony
assumption. In this way, long waiting time is often incurred
during transmission. Different from their ideas, our protocol
relies on weak/partial synchronization assumption, and can
achieve good performance in the case of multiple transaction
participants.

III. PRELIMINARIES

A. Consensus Algorithms in Blockchain

In a blockchain system, the technology used to ensure
the consistency of distributed nodes is known as consensus
algorithm. Currently commonly used consensus algorithms
are mainly divided into two types. The first is the proof-
based consensus, such as PoW [1], PoS [37], DPoS [38],
GHOST [39] and so on, which require the user to submit a
solution to a difficult problem to the network. Only the node
verified by the network can publish the block, which is also
the commonly used consensus in cryptocurrency. The other
is the traditional distributed network algorithm to solve the
Byzantine problem, including PBFT [40], [41], RAFT [42],
and so on. Traditional distributed network algorithms are often
used in the design of the permissioned blockchain.

B. Gas in Smart Contract

The concept of using gas limits the length of smart contracts
deployed on Ethereum, which also prevents malicious users
from deliberately deploying contracts that contain an infinite
loop, causing Ethereum to crash. Gas is leveraged to measure
the cost of each step in the smart contract code. Each transac-
tion is required to include a gas limit which is the maximum
amount of gas consumed by the transaction, and the amount
of Ether that the user pays for each unit of gas. Miners have
the right to choose which transaction to package first. The
more transaction fees are payed, the more likely a miner is to
package your transaction, and the faster the transaction will be
confirmed. Gas limit is the transaction fee that the user need
to pay at most, which limits the ability of a smart contract
to execute without restriction. In this paper, we deploy our

TABLE I

SYMBOL DEFINITION

contract to test network based on Ethereum, measured the gas
needed for each transaction, and calculate the true deployment
and operational costs based on the current exchange rate.

IV. SYSTEM MODEL, SECURITY MODEL,
AND DESIGN GOALS

A. System Model

There are four main components in our system model,
which are described in detail as follows:

• Payer. A payer is a user who wants to transfer cryptocur-
rency to another user.

• Payee. A payee is a user who needs transfer-in, but the
type of cryptocurrency he/she needs is not available on
the payer’s side.

• Intermediary. An intermediary is a user who has an
Ethereum account and an account of another type of cryp-
tocurrency, and has enough property in these accounts
to be used for conducting transactions. Intermediaries
connect the payer and the payee through smart contracts.
Intermediaries need to join the validation committee to
participate in the transaction validation process, which
will be introduced in Section V-D.

• Blockchain. Each execution of our scheme involves three
blockchains, in which two blockchains support cryptocur-
rencies used respectively by the payer and the payee. The
third blockchain is the Ethereum blockchain, on which
our smart contracts are designed and deployed.

The notations are summarized in Table I.
Provided that we deploy smart contracts on Ethereum,

we further assume that all users participating in our scheme
need to have their own Ethereum accounts and only a small
amount of ethers are required to pay for the fees of calling
contract. Meanwhile, in our scheme, it’s not required for
payer/payee to have sufficient ethers to support their transac-
tions straightly. For a user who only needs to participate in the
trade in our scheme, he/she can join the blockchain network as
a SPV (Simplified Payment Verification) node [1]. We believe
that it is not so easy to find an intermediary who can support
both two types of cryptocurrencies required for a transaction
across the two cryptocurrencies. Even if such an intermediary
exists, we can treat it as two intermediaries we mentioned
in our scheme. Therefore, we use two suitable intermediaries,
e.g., C1 and C2, to realize a cryptocurrency transaction between
A and B respectively. In addition, each intermediary has the
ability to verify different kinds of cryptocurrency transactions
through wallet, blockchain browser and some other tools.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: ENABLING CROSS-CHAIN TRANSACTIONS: DECENTRALIZED CRYPTOCURRENCY EXCHANGE PROTOCOL 3931

Since the intermediary is required to verify transactions, it can
be a full node or SPV node.

In our scheme, we adopt the time assumption of
weak/partial synchronization, which means messages are guar-
anteed to be delivered after a certain time bound. It is difficult
to distinguish between normal nodes and malicious nodes
that transmit overtime in a completely asynchronous network.
As a result, in our scheme, a timer will be set in the smart
contract to prevent malicious nodes from refusing to provide
verification results, so as to distinguish between normal nodes
and malicious nodes that have transmit overtime.

B. Security Model

Malicious users in our system may set up a large number
of accounts to act as payers, payees, or intermediaries and
send a large number of junk transactions to undermine our
scheme. All malicious users may collude to gain extra benefits
by defrauding the contract. Their possible malicious behaviors
are shown below.

• Malicious payers or intermediaries may send spoofing
messages to a contract without making transfers or make
double spending.

• Malicious payees or intermediaries can defraud the con-
tract after receiving transfers to earn additional compen-
sation fees.

• Malicious nodes participating in the validation committee
(described in Section V-D) may release wrong informa-
tion to disrupt the consensus process.

Unlike malicious nodes, trusted nodes will comply with the
terms of our protocol to enforce their behavior in order to
achieve cross-cryptocurrency transactions or earn transaction
fees through our scheme. Since the validation committee is
elected by proof-of-work, we assume that for the nodes who
want to join the validation committee, the combined hash
power of the malicious nodes should be less than 1/4 of the
total hash power at any time.

Otherwise, it will introduce selfish mining attacks. This
attack will make malicious nodes more likely to generate
more blocks that exceed their own computing power, thereby
allowing them to obtain more seats than the percentage of
computing power they possess in the validation committee.

C. Design Goals

We aim to design a decentralized secure transfer scheme
between different types of cryptocurrencies. Specifically, our
design goals include the following:

• Decentralized and non pepudiation: There will not be
any centralized third party in our scheme. Any party
involved in the agreement cannot deny their own behav-
ior. Any user’s operation on the smart contract will be
permanently recorded on the blockchain.

• Portability: In our cross-blockchain cryptocurrency trans-
actions scheme, we need to support transactions between
multiple types of cryptocurrencies. In other words, our
transaction scheme is not restricted by the types of
cryptocurrencies.

• Fairness: Even if any step in our scheme fails, our scheme
still guarantees that the system is in normal operation and
will not harm the interests of any honest users.

• Stability: Our protocol needs to be able to withstand
common attacks in blockchain networks under security
assumptions.

• Scalability: In actual transaction scenarios, there are not
only transactions between two single users, but also trans-
actions among multiple users. In our scheme, we need
to support transactions among multiple users, and the
performance needs to be acceptable.

• Atomicity: In our cross-blockchain transactions scheme,
if all parties conform to the protocol, then all swaps
take place. Then, no conforming party ends up worse
off, and no coalition has an incentive to deviate from the
protocol [31].

• Safety and liveness: For a consensus protocol, safety
means that honest (non-Byzantine) nodes agree on the
same value, and liveness means that the transaction will
eventually abort or commit.

V. CROSS-CRYPTOCURRENCY TRANSACTION SCHEME

In this section, we first explain how our scheme is applied
to two users who trade with different cryptocurrencies. Then,
we design a secure verification method to verify that the
transaction is completed. Finally, we extend the scheme to
the scenario where multiple users trade through different
cryptocurrencies.

A. Overview

In this section, we give an overview of our scheme to
show how we enable transactions across different kinds of
cryptocurrencies. Our scheme consists of three phases:

• Contract deployment phase. This phase includes the
deployment process of the three types of contracts
involved in our scheme.

• Transaction phase. The payer and payee of the transac-
tion complete the cross-cryptocurrency transaction with
the participation of intermediaries in this phase. In our
scheme, this phase is divided into two situations including
single-user transaction and multi-user transaction.

• Transaction validation phase. In order to verify the
transaction results of other types of cryptocurrency in
the Ethereum smart contract, we verify the transaction
by selecting a validation committee in this phase.

For the convenience of illustration, we take Bitcoin and Lite-
coin for examples. In fact, our scheme supports transactions
between any kind of cryptocurrencies. As illustrated in Fig. 1,
to achieve a cross-cryptocurrency transaction through smart
contracts, we need two intermediaries C1 and C2 who can be
anyone in the network.

In contract deployment phase, a large number of contracts
are deployed in the network. Then the transaction takes
place in transaction phase. Intermediaries need to support
transactions through Bitcoin and Litecoin respectively. Firstly,
A transfers x litecoins to C1. After receiving the transfer,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

3932 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 1. An overview of the scheme.

C1 transfers the equivalent ethers to C2, and then C2 transfers y
bitcoins to B. This way, we use the transfer of ether as a bridge
to achieve the transfer of different cryptocurrencies between
two users. The incentive for the user to participate in our
contract as an intermediary is that he/she can get transaction
fees through this process.

It should be noticed that in addition to the transfer of ether
in Ethereum, there is also transfer of bitcoin and litecoin.
Although the transactions of these two currencies cannot be
directly validated through the Ethereum smart contract, we find
a solution by selecting a group of users as a validation com-
mittee to provide verification results. In transaction validation
phase, The contract will integrate the judgment results of the
committee and draw the final conclusion. As concluded in
work [43], cross-chain communication is impossible without
a trusted third party, and the validation committee composed
of distributed nodes plays such a role in our scheme.

In addition to the single-user transaction scenario mentioned
above, we also consider the multi-user transaction scenario.
In this case, there are multiple payers who want to trans-
fer cryptocurrencies to one or many payees. Our contract
could combine payers who need to transfer the same kind
of cryptocurrency with a payee who needs a different kind
of cryptocurrency. The details of our full proposal will be
described in Section V-C.1 to V-C.2.

B. Contract Deployment Phase

In our scheme, there are three types of smart contracts
written in Ethereum’s Solidity language.

• Intermediary contract. This smart contract primarily
controls the behavior of the intermediary, and provides an
interface for obtaining information about the intermediary
node.

• Transaction contract. By this contract the payer
and payee of the transaction complete the cross-
cryptocurrency transaction with the participation of inter-
mediaries. And this contract provides a call interface for
input for verification results.

• Committee contract. This contract is used for validation
committee elections, including PoW puzzle verification
and controlling the size of the validation committee, and
provides an interface to verify whether the node is a
member of the validation committee.

The main functions of our contracts are listed as follows.
We denote intermediary contract as IC and transaction contract
as TC and committee contract as CC.

TABLE II

SMART CONTRACT FUNCTION

In contract deployment phase, these three types of contracts
are deployed in large numbers across the network. Users and
intermediaries can freely choose contracts that do not exceed
the gas limit for transactions. Once the transaction demands
in the network exceed the number of contracts, additional
transaction contracts and committee contracts can also be
further deployed by any intermediaries. The intermediary
transaction information that users can query in the interme-
diary contract includes the transaction contract address of the
contract deployed by the intermediaries. An intermediary may
deploy multiple contracts. Any intermediary can join other
contracts as one of the two intermediaries required for the
transaction. Transactions through different contracts occur in
parallel, and hence the more transaction contracts there are in
the network, the higher the transaction efficiency will be under
the fixed number of users.

C. Transaction Phase

1) Single-User Transaction Phase: In transaction phase,
we first introduce the single-user transaction scheme. The
single-user transaction scheme represents that both parties
involved in the transaction are individuals. This scheme
also includes a user’s currency exchange with himself/herself
(e.g., Alice converts her bitcoin to ether). For clarity,
we assume that the exchange rate between coin1 and ether and
the exchange rate between coin2 and ether are both “1”. In the
real scenario, the problem of non-“1” exchange rate only needs
to multiply the rate with the corresponding magnification. The
main procedures of the single-user transaction scheme are
shown in Algorithm 1.

Before the transaction begins, the intermediaries issue
their own supported cryptocurrency types and corresponding
exchange rates to the contract. The parties of the transac-
tion including A and B select the appropriate intermediaries
C1 and C2, respectively, and publish information about their
transactions to the contract, such as cryptocurrency types,
transaction amount, and account addresses. Then, the inter-
mediaries C1 and C2 receive information about the transaction
of both sides and notify contract about the users they select.
Then, they need to send a certain amount of deposit to the
contract within time T . If any intermediary fails to provide
deposit within time T , the contract will return the deposit of
the other intermediary and stop the protocol. After receiving
the message that payer A’s transfer to C1 has succeeded,
intermediary C2 transfers x coin2 to payee B. Otherwise, if

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: ENABLING CROSS-CHAIN TRANSACTIONS: DECENTRALIZED CRYPTOCURRENCY EXCHANGE PROTOCOL 3933

Algorithm 1 Framework of One-to-One Transaction
Scheme
Input: The account addresses of both parties and the

intermediary; Transaction amount x ; Exchange
rate; Time threshold T ;

if Both intermediaries C1 and C2 have deposited Ether
then

Payer A transfers xcoin1 to intermediary C1;
if Transfer confirmed successful then

Intermediary C2 transfers xcoin2 to payee B;
if Transfer confirmed successful then

Return the deposit of intermediary C2 to himself;
else if Timeout or confirmation fails then

Transfer the deposit of intermediary C2 to B;
end
Transfer the deposit of intermediary C1 to C2;

else if Timeout or confirmation fails then
The deposit of intermediary C1 and C2 are returned;

end
else if C1 or C2 did not provide a deposit within time T
then

Return the deposit to C1 or C2 then terminate;
end

A’s transfer is judged to be overtime or verified as failed, the
contract returns the deposit of C1 and C2 and terminates
the transaction. If the final transfer transaction is successful,
the deposit of C2 will be returned to himself. Otherwise if
C2’s transfer is judged to be overtime or verified as failed,
the deposit saved in the contract by intermediary C2 will be
sent to B. In the end, intermediary C2 will receive the deposit
of x ethers from C1.

2) Multi-User Transaction Phase: In many cases, there may
be multiple users trading simultaneously in a short time period.
Our smart contract is designed to support multiple users to
participate in cryptocurrency transfer. In multi-user transaction
phase, multiple users can individually select their own trading
partners. The contract will combine these transaction informa-
tion and aggregate the amount of cryptocurrency transferred
to the same user to improve transaction efficiency.

The framework of multi-user trading scheme is shown
in Algorithm 2. This scheme is mainly used in the scenario
where a group of users trade with each other. Smart contract
first collects information from all payers A1,A2,A3An

and works out the sum of the transaction amount. After inter-
mediaries C1 and C2 receive this information, they are required
to pick the appropriate users and submit the equivalent of
ethers as deposit. If any intermediary fails to provide deposit
within time T , the contract will return the deposit of the other
intermediary and stop the protocol. Then, all the payers need to
pay enough coin1 to C1. Members of the validation committee
need to verify these transfers through the methods described in
Section V-D. The transfer information will also be recorded in
the contract. After intermediary C1 receives the transfer from
the payers successfully, the contract calculates the amount of
successful transactions, modifies the amount received by C1,

Algorithm 2 Framework of Multi-User Transaction
Scheme

Input: The account address of payers:
A1,A2,A3An; payees:
B1,B2,B3Bn and intermediaries:C1, C2;
Total transaction amount:t ; Amount to be sent by
payers Ai :amountA[i]; Amount to be received by
payees Bi :amountB[i]; Time threshold T ;

Set each element in the array amountB to zero;
if Both intermediaries C1 and C2 have deposited Ether
then

All the payers A1,A2,A3An transfer coin1 to
intermediary C1;
for i = 1 to n do

if Sender Ai transfers successfully then
Record Ai ;
Add the value amountA[i] to the array element
amountB[j] corresponding to the payee B j of
Ai ;

else if Timeout or confirmation fails then
t = t − amountA[i]; Transfer the deposit
equivalent to amountA[i] to C1 and C2;

end
end
Intermediary C2 transfers coin2 to the payees
B1,B2Bn separately;
for i = 1 to n do

if The transfer to Bi is successful then
Record Bi ;
The deposit of C2 equivalent to amountB[i] will
be returned to C2;

else if Timeout or confirmation fails then
Transfer the deposit of C2 equivalent to
amountB[i] to Bi ;

end
end
Transfer the remaining deposit of quantity t of
intermediary C1 to C2;

else if C1 or C2 did not provide a deposit within time T
then

Return the deposit to C1 or C2 then terminate;
end

and then sends the message to C2. Otherwise, if any payer Ai ’s
transfer is judged to be overtime or verified as failed, the con-
tract will return the deposit equivalent to amountA[i] to C1
and C2. Intermediary C2 finally transfers coin2 to each of the
payees B1,B2,B3Bn based on the received message.
Otherwise, if the transfer to payee Bi is overtime or judged to
fail, the contract will send the same amount of intermediary
C2’s deposit to Bi . In the end, the contract will also send the
remaining t deposit of intermediary C1 to C2.

D. Transaction Validation Phase

The transfer between intermediary C1 and A and the transfer
between intermediary C2 and B need to be confirmed. And the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

3934 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 2. Formation of a transaction validation committee.

validation result needs to be sent to the contract for the
next step. We cannot simply ask any user to participate
in the transaction validation because malicious users may
masquerade as both sides of the transfer. For example, it is
possible for the payer to send a fraudulent message to the
contract about a successful transfer without any actual transfer.
Similarly, the payee may send a message that the transfer
failed after receiving the currency. In transaction validation
phase, we design a reliable method to remedy this problem by
decentralizing the authority of transaction validation.

We consider that there are a large number of intermediaries
in the system, but only two of them are needed for each
transaction progress. Therefore, the rest of intermediary nodes
could be used in our scheme as validators to verify the
transaction. The intermediary earns fees by participating in
the validation process. We also require each node to partic-
ipate in a successful validation process at least once before
becoming an intermediary. We assume that each intermediary
has the ability to verify the transfer of different types of
cryptocurrencies through wallet, block explorer, and many
other tools. In general, different types of cryptocurrencies
have their own confirmation policies. For example, in Bitcoin,
recipients assume their transactions are secure with 6 blocks
attached.

To prevent malicious users from registering multiple inter-
mediary accounts to attack the validation process, we use
the proof-of-work (PoW) algorithm to determine the set of
intermediaries participating in the validation committee. The
operation is completed by committee contract, and the algo-
rithm is shown in Algorithm 3. Before joining the validation
committee, inspired by proof-of-deposit, each intermediary
who successfully solves the proof-of-work puzzle is required
to pay some ethers as a security deposit. The proof-of-work
puzzle requires the node to choose a random number based
on the hash of the previous block and its own Ethereum
account to make the hash result smaller than a target value.
We set the difficulty of the proof-of-work puzzle such that
each of the two intermediaries participating in committee takes
about 10 minutes to solve. This way, all transactions generated
within 10 minutes will be validated by the intermediary in this
committee. We set the number of committee members to w,
and require that the same account cannot join the committee
twice. If an intermediary node is always honest, it will not only
get back its deposit but also get rewards from the penalty of
dishonest nodes and the transaction fee from the guarantee
of the transaction. Thus, being an intermediary node in our
system is monetarily profitable. The formation of the trade
validation committee is shown in Fig. 2.

Algorithm 3 Validation Committee Selection
Input: Node account acc; The random number nonce;

The last hash value bef ore; Deposit value value;
Initialize: Difficulty of PoW: target; Minimum deposit:
deposi tvalue; The current block hash: hashnow; Last
consensus time: timelast ; Mapping of accounts to
committee members: i sMembers; Current committee
member address array: committeemember [w]; Number of
committee members: w;
if value ≥ deposi tvalue && bef ore == hashnow then

Record the current moment: now;
Calculate the hash based on user input:
h = hash(hashnow||nonce||acc)
if target ≥ h && isMembers[acc] == f alse then

target = target ∗ 10min
now−t imelast

;
timelast = now;
i sMembers[acc] = true;
hashnow = h;
if Size of array committeemember is equal to w
then

i sMembers[committeemember[0]] = f alse
Erase committeemember [0]

end
Add acc to the last part of committeemember ;

else
Termination;

end
else

Termination;
end

After each transaction, every node in the validation com-
mittee needs to verify the transaction and sends its own
validation results to the smart contract. The smart contract
records the address of these nodes and counts the validation
results. Then, the validation committee will classify nodes that
give conflicting validation results. We use the majority rule to
determine the final validation result. To this end, the nodes
whose results conflict with the final result will be considered
dishonest and thus are excluded from the validation committee.
Their deposit will be equally distributed to the honest nodes.
The correct result will serve as the basis for the next step
of smart contracts. We have a quantitative limit of w for the
size of the validation committee. By enforcing the committee
size, all intermediaries’ deposit are kept in the contract till
any dishonest node is excluded from the validation committee.
Similar to a timing policy, conforming a committee size allows
the deposit of dishonest nodes to be transferred to the honest
nodes once node exclusion is triggered.

VI. SECURITY ANALYSIS

In this section, we provide a security analysis of our scheme,
and discuss how our scheme can mitigate or eliminate some
well-known attacks against blockchain.

A. Decentralized and Non Repudiation

Our scheme does not require the participation of any
trusted third party at all, but guarantees transaction security in

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: ENABLING CROSS-CHAIN TRANSACTIONS: DECENTRALIZED CRYPTOCURRENCY EXCHANGE PROTOCOL 3935

a fully distributed manner through smart contracts and valida-
tion committees. The intermediaries and validation committees
involved in the protocol are selected through a fully distributed
security strategy.

In our scheme, apart from payer and payee, other entities
involved only include the intermediary and the validation
committee, neither of which is a centralized design. First
of all, the two intermediaries required in our scheme are
selected from many intermediaries. It is not easy for an
attacker to predict the intermediaries that users will choose
and attack in advance. And as long as there are enough
intermediaries involved, our system will not fall back to a
pseudo-centralized system. On the other hand, the validation
committee is also selected among distributed nodes that have
solved the PoW problem within a certain time period. The
members of the committee will change over time, and the
reliability of the members of the committee is guaranteed by
PoW and the deposit. Therefore, our protocol neither relies on
any centralized system nor falls back to a pseudo-centralized
system.

And our scheme also realizes the non-repudiation after the
transfer is executed. This is because once any participant
sends or receives a transaction, the transaction will be stored
in the blockchain through the smart contract and cannot be
tampered with. And there is a validation committee to ensure
the security of verification on the blockchain outside the smart
contract, so neither participants could deny their own actions.

B. Portability

In our cross-blockchain cryptocurrency transactions scheme,
we support transactions between multiple types of cryptocur-
rencies. For the transactions of cryptocurrencies other than
Ethereum, we all use the method described in Section V-D,
by selecting a validation committee to verify the transaction
and provide the verification results to the contract. During the
verification phase of the protocol, there might be malicious
nodes in the validation committee who may provide incorrect
verification results to disrupt the execution of our protocol.
In our scheme, the validation committee is selected by proof-
of-work and requires users to provide sufficient deposit. And
in our scheme these two parts are indispensable.

On the one hand, PoW is used for dynamically choosing
nodes to participate in the validation committee within a time
period. If our scheme is designed to only rely on the absolute
ability of participating in the validation committee based on
the number of deposits, a user can easily distribute his/her
deposits to different accounts to participate in validation
committee, and the proportion of users in the committee is
only related to the deposits the user has. In this way, a user
who has a large amount of deposits will accumulate more
wealth over time. Once this trend continues, which makes a
user’s wealth to be accumulated enough, just relying on the
proof of deposit cannot prevent the user from fully grasping
the consensus results in the validation committee. Meanwhile,
there is no any efficient mechanism to prevent a user having
an account with sufficient deposits from participating in the
validation committee. Therefore, we also introduce a proof

TABLE III

BINOMIAL DISTRIBUTION OF THE PROPORTION OF BYZANTINE
NODES AMONG ALL COMMITTEE MEMBERS

of work mechanism which requires that only the nodes that
have calculated the corresponding proof of work puzzle can
participate in the validation committee at each moment. It not
only ensures that the members of the validation committee
we choose rely on the amount of deposits they have, but
also prevents the accumulation of rights and interests. It also
prevents the nodes with large deposits from controlling the
consensus results.

On the other hand, if we only use proof of work to make
judgments here, there is no motivation for ordinary users
to join the validation committee and report the verification
results correctly. Even when a wrong result has been reported,
a user has no punishment other than being kicked out of the
committee. Each user in the validation committee is required
to provide a deposit as an incentive for honest users who report
correct verification results and as a punishment for malicious
users who report incorrect verification results. The deposit of
malicious users is also used as a reward for the users that
report correctly so as to stimulating their honest behaviors.

We assume that for the nodes who want to join the validation
committee, the combined hash power of the malicious nodes
should be less than 1/4 of the total hash power at any time.
Otherwise, there will be selfish-mining attacks [44]. Suppose a
total of w nodes are selected to join the validation committee.
If we require that the count of the final validation result from
the majority rule exceeds a, it means that the percentage of
malicious nodes in the validation committee is enforced to be
less than t = w−a

w . We assume that X is a random variable that
represents the number of times we pick a Byzantine node in
the validation committee. In this way, the maximum number
of malicious nodes c is equal to �w × t�. We can use the
cumulative binomial distribution to calculate the probability
P when the proportion of malicious node is less than t in the
committee of w nodes [45].

P[X ≤ c] =
c∑

k=0

(w

k

)
pk(1 − p)w−k . (1)

The first column of Table III indicates that the proportion
of malicious nodes does not exceed t in the committee, and
the first row represents the number of nodes in the committee.
The data indicate that the probability that the proportion of
malicious nodes does not exceed the proportion of t when
the number of nodes in validation committee is determined.
When the number of malicious nodes in the committee does
not exceed t , the proportion of false validation results provided
by malicious nodes will not exceed t , because normal nodes
will definitely provide correct validation results. In this way,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

3936 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

once the validation result collected by the contract exceeds the
proportion of t , the result can be regarded as the final correct
result. For example, when we take 10 validation committee
members, the probability that the number of malicious nodes
does not exceed 1/2 of the total number is 0.99. This means
that if the smart contract receives a consistent judgment
from more than half of the validation committee members,
this result can be considered correct when the proportion of
malicious nodes does not exceed 1/2. Since normal nodes
will definitely provide correct validation results, the incorrect
validation results collected by the contract will not exceed the
proportion of the number of malicious nodes in committee.
It can also be seen from the table that the higher the number
of members in the validation committee, the higher the proba-
bility that the contract will get the correct judgment result after
collecting enough validations. However, even if the number of
members of the validation committee is small, the scheme is
still secure in our hypothesis.

C. Fairness

As described in Section V-C.1 and Section V-C.2, dur-
ing the process of our protocol, whether C1 or C2 fails to
provide the deposit within the specified time or the transfer
of payer A times out or fails, the contract will return the
deposit of C1 or C2 and terminate the protocol. Therefore,
the participants of honest behavior will not have any loss
in this process. We cannot guarantee that the intermediary is
completely reliable after being selected, but it can be guaran-
teed that even if the intermediary exhibits malicious behavior,
it will not cause any loss to both parties of the cross-chain
transaction.

On the one hand, for the intermediary C1, the only malicious
behavior he/she can perform is to pretend that the transfer
failed after obtaining A’s transfer, thereby terminating the
contract and obtaining A’s transfer. But in our protocol,
the verification result of the transfer transaction between A and
C1 is secured by the validation committee. Once C1 provides
the deposit and the account address for trading with A, his/her
behavior is completely controlled by the contract. If the con-
tract receives the verification result from the validation com-
mittee that the transfer is successful, the subsequent operations
will be performed automatically. Otherwise, if the transfer
result is a failure or exceeds the timer range, the contract will
return the deposits of the two intermediaries and terminate the
operation.

On the other hand, if C1 is honest but C2 is malicious
and does not transfer to B, contract will transfer the deposit
of C2 to B. Because we require that no matter whether it
is C1 or C2, the actual deposit amount in the contract is
not less than the actual amount transferred by A and B.
Therefore, after transferring the deposit of C2 to B, B can
also use this deposit to exchange for the cryptocurrency he/she
needs through our scheme. In this case, A has successfully
transferred the cryptocurrency to C1. Thus, in order to prevent
A from getting extra cryptocurrency in this process, we choose
to send the deposit of C1 to C2. In this way, A has completed
the normal plan process and has not lost any benefits. On the

whole, our cross-cryptocurrency transaction scheme has been
successfully carried out for A and C1. For C2 there is an
abnormal transaction recorded in the smart contract. But for
B it is necessary to complete the conversion from the deposit
to other types of currencies he/she needs. Compared with the
normal process, this does bring in extra overhead. But it can
ensure that the program proceeds normally. If the scheme is
terminated, it will bring no less than the cost of the existing
scheme. Because the cryptocurrency that A has transferred to
C1 is no longer refundable, we cannot guarantee security by
only ending the program. One possible solution is to return
the deposit of C1 to A, but this will also bring in additional
overhead not less than our existing solution.

D. Stability

Under security assumptions described in Section IV-B, our
protocol can well withstand common attacks in blockchain
networks.

1) Double-Spend Attack: In our scheme, there is a situation
where the payer entrusts two different intermediaries to make
the same payment to different users at the same time. Or in
the process of entrusting the intermediary, the payer may make
the same payment on other occasions. In order to prevent
double-spending attack [46], our scheme requires the verifier
to comply with the validation method of the cryptocurrency
itself. For example, if the payer pays in bitcoin, the verifier
must wait for more than 6 blocks after the transaction before
sending its judgment to the contract. Our scheme does not
make any changes to the cryptocurrency involved to ensure
the security of cryptocurrency transactions.

2) Sybil Attack: Any user can send a transaction request,
even if the user does not make subsequent transfers after
sending the application to the contract. In this case, only a
small amount of the Ethereum transaction fees will be lost.
During this process, malicious users could send a large amount
of small transaction requests and may even refuse to initiate
a transaction after requests are sent. However, in our scheme,
the intermediary is allowed to make a selection after receiving
the user’s transaction request. That is to say, the intermediary
can confirm that the account has sufficient balance through the
user’s account address. The intermediary will remove the user
request if the transfer amount is too small, thereby ensuring
that the user is not a Sybil node [47].

3) DoS Attack: A malicious node may forge a large number
of accounts trying to join the validation committee or pretend
to be an intermediary in order to disrupt the normal protocol
process through DoS attacks. However, our scheme will not
be affected by these malicious behaviors since we have two
preventive measures. First, each member of the validation
committee should pay some ethers as security deposit. Second,
each node needs to submit a solution to the PoW puzzle
in order to be recognized as a member of the validation
committee. Therefore, a malicious node is not able to easily
forge its identity to join the validation committee without
paying any cost. Likewise, a malicious node is not able to
act as an intermediary because the intermediary node needs to
have a record of having joined a validation committee.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: ENABLING CROSS-CHAIN TRANSACTIONS: DECENTRALIZED CRYPTOCURRENCY EXCHANGE PROTOCOL 3937

Fig. 3. Protocol state transition diagram.

E. Atomicity

The atomicity of the transaction requires that the cross-
chain transaction must be achieved either completely suc-
cessful or completely failed. And in our scheme there will
be no situation where one party pays and the other party
does not receive the transfer. Our scheme achieves this goal
through protocol design based on smart contracts and overtime
judgment.

In our scheme, if all participants follow the protocol nor-
mally, the transaction will be executed properly. If some
alliances deviate from the agreement, there will be no losses
to the participants in the normal implementation. And the
protocol will be terminated or the violation of the operation
will be punished. As shown in Fig. 3, our protocol has three
execution judgments. The first one is that the intermediary
needs to provide a sufficient amount of deposit at the beginning
and set a hash time lock on the smart contract. Then, A can
transfer to C1. Here we rely on the validation committee to
judge the transaction results and set a time lock in contract
to prevent the transfer from overtime. If the transfer fails,
the transaction is terminated. Finally, the intermediary C2 is
required to transfer funds to B, and the validation committee
also verifies the transaction results and sets a hash time lock
to prevent the transfer from overtime. In case C2 is malicious
and does not transfer to B, contract will transfer the deposit of
C2 to B. Therefore, B will receive a transfer currency not less
than his/her due value. In this case, the party that conforms
to the protocol will not suffer losses, and thus the malicious
party will not gain any benefit. Thus, there is no incentive for
a malicious party to deviate from our protocol.

F. Safety and Liveness

Safety: honest (non-Byzantine) nodes agree on the same
value.

Proof : The proposed protocol provides safety if all honest
nodes agree on the same result of the transaction validation.
To achieve this, the majority rule is leveraged to determine

the final validation result. For a transaction tx to be val-
idated, each validation node Pi will give one of the two
results: Validation(tx , Pi) = true or Validation(tx , Pi) =
f alse. The conflicting validation results divide the valida-
tion nodes into two groups: True(tx) = {Pi , Validation(tx ,
Pi) = true} and False(tx) = {Pj , Validation(tx , Pj) =
f alse}. By using the majority rule, the final validation result
will be true if |True(tx)|>|False(tx)|; Otherwise, i.e., if
|False(tx)|>|True(tx)|, it will be f alse. According to our
security assumption that the number of Byzantine nodes is less
than 1/4 in the committee, nodes who give the final validation
result are honest, and others are Byzantine. We choose to
prove this feature by contradiction. We are to show that it’s
not possible that true and f alse are both recognized by the
committee according to the majority rule. For the recognition
of the final result of true, it has to be the case that “true”
has been recognized by more than half of the nodes in the
committee. Meanwhile, for the recognition of the final result
of f alse, it has to be the case that “ f alse” has also been
recognized by more than half of the nodes in the committee.
However, this implies that || T rue(tx) | + | False(tx) || is
larger than the total number of the members in the committee,
which is impossible. Therefore, this creates a contradiction,
as neither of the two results cannot be recognized by more
than half of all of the nodes in the committee at the same
time. In other word, honest nodes do not agree to these two
different results, thereby proving that our protocol achieves
safety.

Liveness: transaction will eventually abort or commit.
Proof : In our scheme, we adopt the time assumption

of weak/partial synchronization, which means messages are
guaranteed to be delivered after a certain time bound. The
design of our scheme is also based on this assumption.
As a result, our scheme will set a timer in the smart contract
to prevent malicious nodes from refusing to provide validation
result. Under this weak/partial synchronized time assump-
tion, in order of execution, there are five kinds of requests
in the contract: R1 (C1&C2 deposit), R2 (payer transfer),
R3 (payer confirm), R4 (payee transfer), and R5 (payee
confirm). Accordingly, there are six valid states: S0 (start),
S1 (intermediaries deposit), S2 (payer transferred), S3 (payer
confirmed), S4 (payee transferred), S5(payee confirmed).
At each state Si , the contract waits for the corresponding
request Ri+1. If successful, the contract then transfers to
the next state Si+1; Otherwise, if failed or timeout, the
contract then terminates and declares the transaction’s failure.
If the contract successfully traverses the valid state transition
sequence, i.e. “S0 → R1 → S1 → R2 → S2 → R3 →
S3 → R4 → S4 → R5 → S5”, the transaction is then
successfully completed. In conclusion, the contract always
makes progress and will never block indefinitely at any state.
Thus, our protocol achieves liveness.

VII. PERFORMANCE ANALYSIS

To evaluate the deployment cost of our scheme, we deploy
our contract on the Ethereum’s official test network
Ropsten [48]. Gas is used to measure the cost of each
step in the smart contract code. Gas and financial costs

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

3938 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE IV

THE GAS VALUE OF EACH OPERATION

of each of functions described in Section V-B are outlined
in Table IV. We have approximated the cost in USD ($)
using the conversion rate of 1 ether = $130 and the gas price
of 0.000000003 ethers which are the real cost in April 2020.
The code for the intermediaries to calculate the PoW puzzle
is not included in the contract because users can execute this
part on their local machine and send the results to the contract.

For users who need to make cross-currency transactions,
only the function of TC.Prepare needs to be invoked by the
user. Even for the multi-party situation, each user only needs
to call this function once, which costs $0.15. For intermediate
users, there are IC.Register and IC.Update functions to provide
their own information, which cost only $0.07 and $0.03,
respectively. In a transaction, the operation of issuing deposit
for each intermediary costs $0.01 on average. The intermediary
who wants to join the validation group needs to perform the
validation operation of CC.Verify_PoW costing $0.07. The cost
of validation is borne by every member of validation group.
Depending on the invocation overhead of our contract, users
can choose whether to use our service within acceptable limits.

A. Timing Analysis

We also measure the runtime of our contract. All mea-
surements were performed on a desktop running Windows 10
equipped with 6 cores, 3.0 GHz Intel Core i5 and 8 GB
DDR4 RAM. In this section, we will present the runtime
results for our scheme, which shows that our contract can
achieve the expected functionality within an acceptable time
overhead.

The implementation of our scheme is divided into two parts:
off-chain part and on-chain part. The calculation of PoW
puzzle performed by users to join the verification group is
performed off-chain on the user’s local machine. The smart
contract only needs to receive and verify the solution of
the PoW puzzle through IC.Verify_PoW function and adjust
the difficulty value of PoW according to the solution time.
In this way, the time interval for solving the PoW problem
can be kept at around ten minutes. For the on-chain part,
we only consider the operating time of the smart contract in the
scheme. The scheme involves the confirmation time of other
types of cryptocurrencies on its blockchain, which is not our
consideration.

Due to the limitation of gas and block size, we set the
number of payers and payees involved in the transaction to
be less than ten in a round of protocol process. When we
change the number of users participating in the transaction,
the execution time of the preparation phase of the contract will
be mainly affected. We record the largest execution time of the
users who independently call the contract through TC.Prepare

Fig. 4. Time spent on the preparatory phase when the number of payees
increases.

Fig. 5. Time spent on the validation phase when the size of validation
committee increases.

function and show the results in Fig. 4. As we can see,
the runtime of our contract increases as the number of payees
increases. This is because for a single payer, the contract needs
to record and process the information of each payee of the user.
Thus, the larger the number of all payees, the more information
will be sent to the contract, which leads to a longer overall
runtime of the contract. It can be also seen that since each of
the payers is a different node and their operations are parallel.
Increasing the number of payers does not significantly increase
the contract runtime. Thus, the preparation time of the contract
is only affected by the number of transaction users of each
payer. After collecting ten users’ requests or exceeding this
waiting time, the contract will proceed to the next step.

We also change the number of users in the validation com-
mittee and the number of transactions between a pair of users,
so as to analyze the performance of the contract in the vali-
dation process. When we change the number of participants
in the validation committee, the time which the contract takes
to perform this step through TC.Validation function is shown
in Fig. 5. The first validation is for the transaction between
payers and intermediary C1, while the second validation is for
the transaction between intermediary C2 and payees. As we
can see, when the number of validation committee members
increases, the time required for the validation process also
increases significantly. Nevertheless, even with 100 members
in the validation committee, each validation process takes only
about 1 second. This timing is negligible compared to the time
it takes for transactions of public blockchain cryptocurrency
like bitcoin to be confirmed. We can also see from Fig. 6
that as the number of transactions between a payer and a

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: ENABLING CROSS-CHAIN TRANSACTIONS: DECENTRALIZED CRYPTOCURRENCY EXCHANGE PROTOCOL 3939

Fig. 6. Time spent on the validation phase when the number of transactions
between a pair of users changes.

Fig. 7. Time spent on the validation process for the first cryptocurrency
transaction.

Fig. 8. Time spent on the validation process for the second cryptocurrency
transaction.

single payee increases, it will not increase the time cost of
transaction verification through the contract. This is because all
transactions between the same pair of users will be merged into
one transaction through the contract, thereby not increasing the
time cost.

When we increase the number of users involved in the
transaction, each additional transaction for each additional user
adds to the runtime cost of the contract. For the convenience
of the experiment, we add a pair of payer and payee at the
same time. Fig. 7 and Fig. 8 show the validation time required
in two transactions respectively. The two colored columns in
both figures represent two different cases. The first is the case
where every payer transacts with a single payee, in which
the number of transactions equals the number of participants.
While the second case is when each payer transacts with each

Fig. 9. Time cost of transaction validation in the main steps of protocol.

payee, in which the number of transactions is twice as large as
the number of participants. However, in the range of allowable
error, we can conclude from the figure that the time cost is the
same in both cases. This means that the validation time of our
scheme is only affected by the number of users involved in the
transaction, regardless of the number of transactions per user.
This is because in our contract, the transactions involved in
each participating user are merged, which is also the premise
of our solution to maintain high throughput in the presence of
a large number of transactions.

We also measure the verification time required to call the
main functions of the contract at different times. As shown
in Fig. 9, although the validation time on the test chain can
only be used as a reference, it can be seen that the contract
execution time is negligible compared to the transaction con-
firmation time. Therefore, the execution time on the machine
required by our solution is acceptable. In future work, we will
also deploy our contract on the Ethereum main chain for
testing under the actual network.

VIII. CONCLUSION

In this paper, we proposed a decentralized cross-
cryptocurrency exchange scheme for transactions among mul-
tiple users based on smart contracts. In our scheme, we use
ether as a transit to link transactions between different kinds
of cryptocurrencies. We also implemented the contract and
evaluated its execution overhead on our local machine. The
results show that the time cost of our scheme is only affected
by the total number of users involved in the transaction while
the number of user’s transactions has no significant impact
on the runtime of our contract. In the future, we will further
improve our scheme from the experimental part in two aspects.
Firstly, we will try to complete the implementation of the
scheme with more participants. Secondly, we will deploy our
scheme on the Ethereum Mainnet to test the cost of our scheme
in the actual network.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

3940 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

ACKNOWLEDGMENT

The authors sincerely thank the Editor,
Dr. Debdeep Mukhopadhyay, and the anonymous referees
for their valuable suggestions that have led to the present
improved version of the original manuscript.

REFERENCES

[1] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
Accessed: Apr. 2021. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] C. Lee. (2011). Litecoin. Accessed: Apr. 2021. [Online]. Available:
https://litecoin.org/

[3] G. Wood. (2017). Ethereum: A Secure Decentralised Generalised Trans-
action Ledger EIP-150 REVISION (759dccd-2017-08-07), Ethereum
Project Yellow Paper. Accessed: Apr. 2021. [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf

[4] P2PB2B. Accessed: Apr. 2021. [Online]. Available: https://p2pb2b.io
[5] MXC. Accessed: Apr. 2021. [Online]. Available: https://mxc-exchange.

zendesk.com/hc/zh-cn
[6] BKEX. Accessed: Apr. 2021. [Online]. Available: https://www.bkex.co
[7] Bilaxy. Accessed: Apr. 2021. [Online]. Available: https://bilaxy.com
[8] LBank. Accessed: Apr. 2021. [Online]. Available: https://www.lbank.

info
[9] C. Y. Kim and K. Lee, “Risk management to cryptocurrency

exchange and investors guidelines to prevent potential threats,” in
Proc. Int. Conf. Platform Technol. Service (PlatCon), Jan. 2018,
pp. 1–6.

[10] R. Khalil, A. Gervais, and G. Felley. (2019). TEX-A Securely Scalable
Trustless Exchange, Cryptology ePrint Archive. [Online]. Available:
https://eprint.iacr.org/2019/265

[11] E. Heilman, S. Lipmann, and S. Goldberg, “The Arwen trading proto-
cols,” in Proc. Int. Conf. Financial Cryptogr. Data Secur. (FC). Berlin,
Germany: Springer, 2020, pp. 156–173.

[12] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. (CCS), 2016, pp. 254–269.

[13] V. Buterin. (2014). A Next-Generation Smart Contract and Decentralized
Application Platform. Accessed: Apr. 2021. [Online]. Available: https://
cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf

[14] Metronome. Accessed: Apr. 2021. [Online]. Available: https://www.
metronome.io

[15] Y. V. L. Luu. (2018). Kybernetwork: A Trustless Decentralized Exchange
and Payment Service. Accessed: Apr. 2021. [Online]. Available:
https://whitepaper.io/document/43/kyber-network-whitepaper

[16] J. Chow. BTC Relay. Accessed: Apr. 2021. [Online]. Available: https://
github.com/ethereum/btcrelay

[17] F. Vogelsteller and V. Buterin. (2015). EIP 20: ERC-20 Token Stan-
dard. Accessed: Apr. 2021. [Online]. Available: https://eips.ethereum.
org/EIPS/eip-20

[18] W. Warren and A. Bandeali. (2017). 0x: An Open Protocol for Decen-
tralized Exchange on the Ethereum Blockchain. Accessed: Apr. 2021.
[Online]. Available: https://github.com/0xProject/whitepaper

[19] EtherDelta. Accessed: Apr. 2021. [Online]. Available: https://etherdelta.
com

[20] IDEX. Accessed: Apr. 2021. [Online]. Available: https://idex.market
[21] (2019). TBTC: A Decentralized Redeemable BTC-Backed ERC-20

Token. Accessed: Apr. 2021. [Online]. Available: https://docs.keep.
network/tbtc/index.pdf

[22] T. Zhang and L. Wang. (2017). Republic Protocol. Accessed: Apr. 2021.
[Online]. Available: https://republicprotocol.github.io/whitepaper/
republic-whitepaper.pdf

[23] J. Teutsch, M. Straka, and D. Boneh, “Retrofitting a two-way peg
between blockchains,” 2019, arXiv:1908.03999. [Online]. Available:
http://arxiv.org/abs/1908.03999

[24] J. Kwon and E. Buchman. (2016). Cosmos: A Network of Distrib-
uted Ledgers. Accessed: Apr. 2021. [Online]. Available: https://cosmos.
network/whitepaper

[25] G. Wood. (2016). Polkadot: Vision for a Heterogeneous Multi-
Chain Framework. Accessed: Apr. 2021. [Online]. Available: https://
github.com/w3f/polkadot-white-paper/raw/master/PolkaDotPaper.pdf

[26] J. Kwon. (2014). Tendermint: Consensus Without Mining, Draft
V.0.6. Accessed: Apr. 2021. [Online]. Available: https://tendermint.
com/docs/tendermint.pdf

[27] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and
W. Knottenbelt, “XCLAIM: Trustless, interoperable, cryptocurrency-
backed assets,” in Proc. IEEE Symp. Secur. Privacy (S&P), May 2019,
pp. 193–210.

[28] I. Bentov, Y. Ji, F. Zhang, L. Breidenbach, P. Daian, and A. Juels,
“Tesseract: Real-time cryptocurrency exchange using trusted hardware,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2019,
pp. 1521–1538.

[29] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, and
A. Gervais, “ROTE: Rollback protection for trusted execution,” in Proc.
26th USENIX Secur. Symp. (USENIX Security), 2017, pp. 1289–1306.

[30] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “AsyncShock:
Exploiting synchronisation bugs in intel SGX enclaves,” in Proc. Eur.
Symp. Res. Comput. Secur. (ESORICS). Berlin, Germany: Springer,
2016, pp. 440–457.

[31] M. Herlihy, “Atomic cross-chain swaps,” in Proc. ACM Symp. Princ.
Distrib. Comput. (PODC), 2018, pp. 245–254.

[32] M. Herlihy, B. Liskov, and L. Shrira, “Cross-chain deals and adversarial
commerce,” Proc. VLDB Endowment, vol. 13, no. 2, pp. 100–113, 2019.

[33] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous multi-hop locks for blockchain scalability
and interoperability,” in Proc. Annu. Netw. Distrib. Syst. Secur. Symp.
(NDSS), 2019, pp. 1–15.

[34] E. Tairi, P. Moreno-Sanchez, and M. Maffei (2019). A2L: Anony-
mous Atomic Locks for Scalability and Interoperability in Pay-
ment Channel Hubs, Cryptology ePrint Archive. [Online]. Available:
https://eprint.iacr.org/2019/589.pdf

[35] P. Moreno-Sanchez, A. Blue, D. V. Le, S. Noether, B. Goodell, and
A. Kate, “DLSAG: Non-interactive refund transactions for interoperable
payment channels in Monero,” in Proc. Int. Conf. Financial Cryptogr.
Data Secur. (FC), 2019, pp. 325–345.

[36] C. Egger, P. Moreno-Sanchez, and M. Maffei, “Atomic multi-channel
updates with constant collateral in Bitcoin-compatible payment-channel
networks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2019, pp. 801–815.

[37] S. King and S. Nadal. (2012). PPCoin: Peer-to-Peer Crypto-
Currency With Proof-of-Stake. Accessed: Apr. 2021. [Online]. Available:
https://peercoin.net/assets/paper/peercoin-paper.pdf

[38] (2018). EOS.IO Technical White Paper V2. Accessed: Apr. 2021.
[Online]. Available: https://github.com/EOSIO/Documentation/blob/
master/TechnicalWhitePaper.md

[39] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in Bitcoin,” in Proc. Int. Conf. Financial Cryptogr. Data Secur. (FC).
Springer, 2015, pp. 507–527.

[40] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proc.
3rd Symp. Operating Syst. Design Implement. (OSDI), 1999, vol. 99,
no. 1999, pp. 173–186.

[41] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and proac-
tive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461,
2002.

[42] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2014,
pp. 305–319.

[43] A. Zamyatin et al. (2019). SoK: Communication Across Distrib-
uted Ledgers, IACR Cryptology ePrint Archive. [Online]. Available:
https://eprint.iacr.org/2019/1128.pdf

[44] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in Proc. Int. Conf. Financial Cryptogr. Data Secur. (FC).
Berlin, Germany: Springer, 2014, pp. 436–454.

[45] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing Bitcoin security and performance with strong consistency
via collective signing,” in Proc. 25th USENIX Secur. Symp. (USENIX
Security), 2016, pp. 279–296.

[46] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast
payments in Bitcoin,” in Proc. ACM Conf. Comput. Commun. Secur.
(CCS), 2012, pp. 906–917.

[47] J. R. Douceur, “The Sybil attack,” in Proc. 1st Int. Workshop Peer-to-
Peer Syst. (IPTPS). Berlin, Germany: Springer, 2002, pp. 251–260.

[48] The Ethereum Block Explorer: ROPSTEN (Revival) TESTNET.
Accessed: Apr. 2021. [Online]. Available: https://ropsten.etherscan.io

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

TIAN et al.: ENABLING CROSS-CHAIN TRANSACTIONS: DECENTRALIZED CRYPTOCURRENCY EXCHANGE PROTOCOL 3941

Hangyu Tian received the bachelor’s degree from
the Department of Information Security, Univer-
sity of Science and Technology of China (USTC)
in July 2018, where he is currently pursuing the
degree in communication and information system
with the Department of Electronic Engineering and
Information Science (EEIS). His research interests
include network security and cryptography.

Kaiping Xue (Senior Member, IEEE) received the
bachelor’s degree from the Department of Informa-
tion Security, University of Science and Technology
of China (USTC) in 2003, and the Ph.D. degree
from the Department of Electronic Engineering and
Information Science (EEIS), USTC in 2007. From
May 2012 to May 2013, he was a Post-Doctoral
Researcher with the Department of Electrical and
Computer Engineering, University of Florida. He is
currently a Professor with the School of Cyber
Security and the Department of EEIS, USTC. His

research interests include next-generation internet architecture design, trans-
mission optimization, and network security. He is an IET fellow. He serves
on the Editorial Board of several journals, including the IEEE TRANS-
ACTIONS ON DEPENDABLE AND SECURE COMPUTING (TDSC), the IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC), and the IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT (TNSM).
He has also served as a Guest Editor for IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS (JSAC), and a Lead Guest Editor for IEEE
Communications Magazine and IEEE Network.

Xinyi Luo (Student Member, IEEE) received the
B.S. degree in information security from the School
of the Gifted Young, University of Science and
Technology of China (USTC) in July 2020, where
she is currently pursuing the degree with the School
of Cyber Security. Her research interests include
network security and cryptography.

Shaohua Li received the B.E. degree from the
Department of Information Security, University of
Science and Technology of China (USTC) in 2016,
and the M.S. degree from the Department of Elec-
tronic Engineering and Information Science (EEIS),
USTC in 2019. He is currently pursuing the Ph.D.
degree with the Department of Computer Sci-
ence, ETH Zürich, Switzerland. His research inter-
ests include network security protocol design and
analysis.

Jie Xu received the B.S. degree from the Department
of Information Security, University of Science and
Technology of China (USTC) in July 2017, and
the M.S. degree from the Department of Electronic
Engineering and Information Science (EEIS), USTC
in 2020. She is currently pursuing the Ph.D. degree
with the Department of Computer Science, City
University of Hong Kong. Her research interests
include network security and cryptography.

Jianqing Liu (Member, IEEE) received the B.E.
degree from the University of Electronic Science and
Technology of China, Chengdu, China, in 2013, and
the Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Florida,
Gainesville, FL, USA, in 2018. He is currently an
Assistant Professor with the Department of Electri-
cal and Computer Engineering, The University of
Alabama in Huntsville. His research interests include
wireless networking and network security in cyber-
physical systems.

Jun Zhao (Member, IEEE) received the bache-
lor’s degree from Shanghai Jiao Tong University,
Shanghai, China, and the Ph.D. degree in electrical
and computer engineering from Carnegie Mellon
University, Pittsburgh, PA, USA. He is currently an
Assistant Professor with the School of Computer
Science and Engineering, Nanyang Technological
University (NTU), Singapore. Before joining NTU,
he was a Post-Doctoral Researcher with Arizona
State University and an Arizona Computing Post-
Doctoral Best Practices Fellow. His research inter-

ests include blockchain, security, and privacy with applications to the Internet
of Things and deep learning.

David S. L. Wei (Senior Member, IEEE) received
the Ph.D. degree in computer and information sci-
ence from the University of Pennsylvania in 1991.
From May 1993 to August 1997, he was with
the Faculty of Computer Science and Engineering,
The University of Aizu, Japan. He is currently a
Professor with the Computer and Information Sci-
ence Department, Fordham University. His research
interests include cloud and edge computing, machine
learning, the IoT, and information systems security.
He was a Lead Guest Editor or a Guest Editor of

several Special Issues on the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, and
the IEEE TRANSACTIONS ON BIG DATA. He also served as an Associate
Editor for the IEEE TRANSACTIONS ON CLOUD COMPUTING from 2014 to
2018, and IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS for
the Series on Network Softwarization and Enablers from 2018 to 2020.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 19,2021 at 08:13:40 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

